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In an endeavor to design better forecasting tools for real-time prediction, the present

work highlights the strength of the multi-model multi-physics ensemble over its

operational predecessor version. The exiting operational extended range prediction

system (ERPv1) combines the coupled, and its bias-corrected sea-surface temperature

forced atmospheric model running at two resolutions with perturbed initial condition

ensemble. This system had accomplished important goals on the sub-seasonal scale

skillful forecast; however, the skill of the system is limited only up to 2 weeks. The next

version of this ERP system is seamless in resolution and based on a multi-physics

multi-model ensemble (MPMME). Similar to the earlier version, this system includes

coupled climate forecast system version 2 (CFSv2) and atmospheric global forecast

system forced with real-time bias-corrected sea-surface temperature from CFSv2. In

the newer version, model integrations are performed six times in a month for real-time

prediction, selecting the combination of convective and microphysics parameterization

schemes. Additionally, more than 15 years hindcast are also generated for these

initial conditions. The preliminary results from this system demonstrate appreciable

improvements over its predecessor in predicting the large-scale low variability signal and

weekly mean rainfall up to 3 weeks lead. The subdivision-wise skill analysis shows that

MPMME performs better, especially in the northwest and central parts of India.

Keywords: multi-physics, multi-model, extended range prediction, monsoon, ensemble prediction

1. INTRODUCTION

The Indian summer monsoon is an economically prodigious phenomenon accountable for the
gross domestic product (GDP) of the world’s second-largest populated country (Gadgil and Gadgil,
2006). A voluminous scientific literature unveils the manifold aspects and theories concatenating
the events of this significant annual occurrence (Raghavan, 1973; Rao, 1976; Sikka andGadgil, 1980;
Parthasarathy et al., 1992; Webster and Yang, 1992; Goswami et al., 1999; Wang and Fan, 1999;
Jiang et al., 2004; Joseph and Sijikumar, 2004; Goswami, 2005; Annamalai, 2010; Rajeevan et al.,
2010). Apart from being a decisive economic factor, the monsoon has perpetuated the research
in recent decades to undertake the emanating climate changes and accompanied extreme weather
conditions (Goswami et al., 2006, 2019; Ajayamohan and Rao, 2008; Guhathakurta and Rajeevan,
2008; Rajeevan et al., 2008; Joseph et al., 2015; Parker et al., 2016; Sooraj et al., 2016; Houze et al.,
2017; Roxy et al., 2017). In the above view, the prediction of monsoon is not only exigent but is
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highly inevitable. The significant rainfall contribution from intra-
seasonal scale variability in the monsoon highlights the stature of
sub-seasonal to seasonal (S2S) scale prediction (Abhilash et al.,
2013, 2014b,c; Vitart and Robertson, 2018; Robertson et al.,
2019).

The deterministic prediction on the S2S scale has limitations,
and therefore probabilistic methods or ensemble prediction
systems are considered (Molteni et al., 1996; Buizza et al.,
2007, 2008; Vitart and Molteni, 2009; Rashid et al., 2011). The
prediction from an ensemble of perturbed initial conditions (ICs)
is one of the popular techniques. An idea initiated from the extra-
tropical cyclogenesis problem (Bjerknes and Solberg, 1922) and
an instigating theory of baroclinic instability (Charney, 1947;
Eady, 1949), the perturbations in the atmospheric flows became
a central solution to the initial value problem of numerical
weather prediction (O’Malley, 1988). Later, it was polished into
a well-versed technique to generate the ensemble of ICs to
enhance prediction skill across various weather scales (Toth
and Kalnay, 1993, 1997; Buizza and Palmer, 1995, 1998). The
atmospheric lagged average is another traditional ensemble
generation method (Hoffman and Kalnay, 1983; Kalnay and
Dalcher, 1987; Chen et al., 2013) where the forecast from different
initialization for the same target period is amalgamated into
ensemble mean. These two techniques are famously known to
address the uncertainties sourced from ICs.

Some of the recent literature incline toward grand ensemble
based on multiple models (Krishnamurti et al., 2000; Sahai et al.,
2013; Abhilash et al., 2015; Kalnay, 2019). The advantages in
one or more aspects of one model formulation over the other
could provide better assistant in the multi-model approach. The
concept of inter-model diversity arises from the need to address
another class of errors recognized as model-errors. Although
there is a varying perspective on the nature and origin of these
errors, they are largely attributed to the representation of physical
processes in the model. The approximations considered while
formulating parameterization schemes and misrepresentation
of significant sub-grid scale phenomena in the model could
cause biases in the predicted fields. Further, it is proposed
that the multi-physics ensemble scheme can be an alternative
to account for these model-errors (Richardson, 1997; Harrison
et al., 1999; Orrell et al., 2001). The intra-model diversification
introduced by using more than one physical parameterization
showed significant improvement over single physics predictions
(Stensrud and Fritsch, 1994; Berner et al., 2011; Tapiador et al.,
2012; Greybush et al., 2017; Xu et al., 2020).

The above-mentioned ensemble prediction techniques have
advantages as well as limitations when it comes to real-time
prediction. For example, the perturbed initial conditions based
ensemble could palliate the growth of initial errors, but such
ensemble tends to be under dispersive, leading to presumptuous
probabilistic prediction and underestimated larger weather
anomalies (Stensrud et al., 2000). Similarly, lagged ensembles
with improper weights from older initializations can debase
the mean forecast (Abhilash et al., 2014b). Further, the model-
error ensemble techniques require physical consistency among
the members in terms of errors but are known to increase
the ensemble spread (Green et al., 2017). Therefore, careful

examination of these techniques is required to achieve the
desired improvement.

The efficacy of any prediction tool is determined by its
validity and reliability measured as the forecast skill (Murphy,
1991; Casati et al., 2008). Many skill assessment and verification
methods are available to evaluate and compare various prediction
strategies (Ghelli and Ebert, 2008; Jolliffe and Stephenson, 2011;
Ebert et al., 2013). These methods increase the confidence in any
prediction approach andmotivate to understand and improve the
limitations in the hypothesis formulation.

The skill analysis is vital, especially for the complex monsoon
systems giving a significant annual rain share. In the present
study, we evaluate the skill of a multi-model multi-physics
ensemble prediction strategy for the Indian summer monsoon.
This strategy is a part of developing a new extended range
ensemble forecasting framework and here we will compare it
to its current operational version. The functional version is
only a multi-model ensemble prediction system (Sahai et al.,
2013, 2016; Abhilash et al., 2014c, 2015) developed under the
“National Monsoon Mission(NMM)” project (Rao et al., 2020)
and has received acclaim on its successful implementation in
2016. This operational version is being used for extended range
prediction (ERP) at the India Meteorological Department (IMD)
and provides outlooks for rainfall, heatwaves, cyclones, and
other meteorological parameters for various sectoral applications
(Pattanaik et al., 2019). The next ERP version under development
uses a multi-physics approach along with the multi-model
framework. The results presented here are from the preliminary
runs of this new version generated from unperturbed ICs. The
comparison with the older version highlights its usefulness
and drawbacks. This documentation will be handy for further
improvements and modifications in the new framework.

The next section elaborates more on both the prediction
systems as well as methodologies and datasets utilized in the
study. The skill of ERP systems is discussed in the subsequent
section, followed by conclusions.

2. DATA AND METHODOLOGY

The operational ERP system at IMD is a multi-model ensemble
framework (Pattanaik et al., 2019). It comprises of two horizontal
resolution variants (with 382 and 126 truncations) of twomodels;
climate forecast system version 2 (CFSv2) and atmospheric global
forecast system (GFS) from National Centers for Environmental
Prediction (NCEP) (Saha et al., 2014). Further, this total of
four variants run with a four-member ensemble of perturbed
atmospheric ICs. These atmospheric ICs are obtained from
National Center for Medium Range Weather Forecasting and
oceanic ICs from Indian National Center for Ocean Information
Services for CFSv2. Additionally, the real-time sea-surface
temperature (SST) from CFSv2 after bias-correction is used as
forcing to GFS (detailed technique can be seen in Abhilash et al.,
2014a, Mandal et al., 2019, and Kaur et al., 2020). This ERP
system was developed and thoroughly tested for skill at Indian
Institute of Tropical Meteorology (IITM) under NMM. The
operational forecasts are generated every week with Wednesday
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ICs for the next 32 days, also on the fly hindcast for 2003 to 2015
is produced for each IC. This system is henceforth addressed as
ERPv1 in the paper.

The successor version of the above-mentioned prediction
system is in the final development stage. This new ERP system
also has two model variants CFSv2 and GFS, but the two
resolution variants are now replaced with one seamless mode
where the horizontal resolution of T574 transitions into the
coarser T382 resolution after 15 days. Additionally, a multi-
physics strategy is adopted for generating ensemble. We have
used three convective parameterization permutations with two
micro-physics parameterizations. These convection schemes
include Simplified-Arakawa Shubert (SAS) (Pan and Wu, 1995),
revised deep-convection SAS (NSAS) (Han and Pan, 2011),
and revised SAS with modified shallow-convection (NSAS_SC)
(Han and Pan, 2011). Zhao and Carr (ZC) (Zhao and Carr,
1997) and Ferrier (FER) (Ferrier et al., 2002) are the two
micro-physics schemes incorporated in the new formulation.
The resultant six physics combinations are SASZC, SASFER,
NSASZC, NSASFER, NSASZC_SC, and NSASFER_SC. CFSv2
runs with all six combinations, whereas GFS has only four
and does not include SASZC and SASFER. Similar to ERPv1,
GFS is forced with bias-corrected CFSv2 real-time SST. The
NCEP climate forecast system reanalysis ICs are utilized for both
CFSv2 and GFS. The new multi-physics multi-model prediction
contains 36 days forecast initialized on 1st, 6th, 11th, 16th, 21st,
and 26th of each month for hindcast period 2001–2015. We
are going to label this physics-based multi-model ensemble as
MPMME hereafter.

The anomaly correlation coefficient (ACC), Pearson
correlation, Heidke skill score (HSS) (Barnston, 1992), root
mean square error (RMSE), root mean square skill score (RMSS),
and Brier skill score (BSS) (Brier, 1950) are the verification
matrices used to analogize MPMME skill with ERPv1. The
verification is done for the weekly mean rainfall forecast at

4-week leads. The week 1 lead corresponds to the initial 7 days
forecast, subsequent 8–14 days constitute week 2; similarly,
15–21 and 22–28 days forecast defines week 3 and 4, respectively,
using common hindcast 2003–2015 from both the versions of
ERP system. The sample size considered for ERPv1 is 22 weeks
× 13 years = 286 forecasts for each lead. Similarly, MPMME has
a sample of 24 weeks × 13 years = 312 forecasts. The skill scores
are computed against observed daily rainfall from Tropical Rain
Measure Mission (TRMM) merged rainfall provided by IMD
(Mitra et al., 2009; Pai et al., 2014). The Monsoon Intraseasonal
Oscillation (MISO) indices are computed following Sahai et al.
(2013) and Suhas et al. (2013). It is specified that the MPMME
includes only control runs (i.e., six members from CFSv2 and
four members from GFS). Therefore, We have selected only 10
members from ERPv1 (three from each variant of CFS model
and two from each GFS variant) for a fair comparison with
10-member MPMME.

3. RESULTS

The hindcast from both ERPv1 and MPMME is analyzed for
skill in predicting Indian summer monsoon weekly mean rainfall
(ISMR) from June to September.

TABLE 1 | Anomaly correlation coefficient (ACC) of predicted weekly mean rainfall

over the monsoon zone.

Lead ERPv1 MPMME

ACC

W1 0.775 0.856

W2 0.627 0.706

W3 0.378 0.480

W4 0.248 0.173

FIGURE 1 | Anomaly correlation coefficient for weekly mean rainfall (mm/day) over Monsoon Zone of India during summer monsoon.
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3.1. Monsoon Zone Weekly Rainfall
Prediction Skill
ISMR exhibit large spatiotemporal heterogeneity during the
season with positive (negative) rainfall anomalies over central
India representing active (break) monsoon. A box defined in
Rajeevan et al. (2010) over central India is the widely used
prototypical monsoon region known as the core monsoon zone.
Figure 1 and Table 1 illustrate the skill of predicted weekly mean
rainfall averaged over the monsoon zone at 4-week leads. The
ERPv1 has 0.78 and 0.63 ACC in week 1 and 2 lead, respectively.
It is improved by almost a factor of 0.1 in MPMME for both
the weeks. Although the skill is dropped in the third, it is still
above 0.4, the practical skill limit. In the 4th week, the skill further
declined. The difference between the deterministic prediction
skill of both systems over the monsoon zone is statistically
significant at 99.9, 95%, and above 90% confidence level for
week 1, 2, and 3, respectively, and the difference in skill is not
significant in the 4th week.

Apart from spatial non-uniformity, the monsoonal rainfall
has well-documented temporal variability that arises from intra-
seasonal fluctuations. These fluctuations are recognized as spells
of increased and minimum to no rain conditions over the
monsoon zone. The transitions between these two spells are
challenging but crucial, and models would have difficulties
predicting such transitions, limiting the predictability of monthly
rainfall. Figure 2 compares the monthly skill of weekly averaged
rainfall over the monsoon zone for both systems. June and
September have higher skill than July andAugust in both systems,
which could be attributed to model inefficiency to predict

frequent synoptic-scale systems in later months. However, the
coefficient values are >0.6 for both systems in the first 2 weeks,
which are reduced in following leads.

Regarding improvement, the month of June (Figure 2A)
record the highest increase in the skill where at all 4 leads,

MPMME shows 10, 18, 32, and 12% improvement over ERPv1,

which is significant at 95% confidence level. The significant

phenomena during June, such as monsoon onset and cyclonic
system genesis impact the subsequent progress of the monsoon.
These events are important to be predicted especially for dam

management for releasing and storage planning of water, for
agro-met services to begin sowing, and for disaster mitigation
due to extreme rainfall activities. Hence, improvement in
prediction skill of June will be highly beneficial for real-time ERP
of monsoon onset and extreme rainfall conditions. Further, July,
August, and September witness an increase in ACC up to week 3
lead (except week 2 lead during August) for MPMME. Relatively
less skill is seen for the 4th week for these months than ERPv1,
but the difference is insignificant as ERPv1 skill is also <0.4.

HSS gives fractional betterment of the forecast over a reference
forecast, which is climatology in our case. HSS for deterministic
forecast verification of various thresholds for weekly mean
rainfall over monsoon zone is plotted in Figure 3. The skill
decreases for higher rainfall thresholds at all weekly leads,
indicating both versions’ limitation in predicting heavy rainfall.
However, the MPMME could perform better than reference
forecast minimum up to 3 weeks leads for the given thresholds.
The figure affirms the improvement in MPMME performance
over ERPv1.

FIGURE 2 | Anomaly correlation coefficient for weekly mean rainfall over monsoon zone of India for the month of (A) June, (B) July, (C) August, and (D) September at

four week leads.
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FIGURE 3 | Heidke Skill score at different thresholds of weekly mean rainfall over Monsoon Zone of India for (A) week 1, (B) week 2, (C) week 3, and (D) week 4 lead.

FIGURE 4 | Subdivision-wise predictability limit for (A) extended range prediction system (ERPv1) and (B) multi-physics multi-model ensemble (MPMME)

during monsoon.
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3.2. Skill Assessment Over Meteorological
Subdivisions
The ERP broadens the application spectrum of the
meteorological forecast. These different sector-specific
applications stipulate meteorological information at the
finer spatial scale. However, the generation of stakeholder
requisite forecast products requires skill assessment at the
smaller spatial scale because the area-averaged precipitation
skill will not be sufficient. Therefore, we will look into the
skill for the meteorological subdivisions of India. There are 36
such subdivisions across the country; for further details, please
refer Joseph et al. (2019).

The standard signal to noise ratio (SNR) is considered here
to find out the limit of rainfall predictability (lead at which
SNR becomes one) for these subdivisions. Figure 4 shows the
spatial map of predictability with color indicating the number
of predictable days. In both ERPv1 (Figure 4A) and MPMME
(Figure 4B), maximum subdivisions show predictability of 10–
14 days. A very few numbers of subdivisions, i.e., 5, have
predictability >16 days. The number of such subdivisions
with predictability higher than 16 days is almost doubled in
MPMME. Simultaneously, the number is reduced by two for
subdivisions with <8 predictable days in MPMME compared to
ERPv1. In total, more than 12 subdivision show improvement in
predictability by 2–4 days inMPMME, these subdivisions fall into
north and northwest India. A similar increment is also seen for a
few subdivisions in southern peninsular and northeast India. In
contrast, for many subdivisions in central India, the predictability
remains unchanged in MPMME, except a very few subdivision
(i.e., 4) where predictability dropped by 1–2 days.

The week-wise anomaly correlations for subdivisions are
shown in Figure 5, where ACC>0.2 is statistically significant
at a level of 99.9%. Both ERPv1 and MPMME have good skill
in the week 1 and 2 forecast, with MPMME outperforming
ERPv1 for maximum subdivisions. The lead-in prediction skill
is maintained in week 3 by MPMME, where many subdivisions
have ACC >0.2 and 0.3 in contrast to ERPv1. Week 4 is less
skillful than the first 3 weeks in both ERPv1 and MPMME,
where most of the subdivisions shows ACC smaller than 0.2.
Figure 6 illustrates the RMSS values from ERPv1 and MPMME
at 4 leads for meteorological subdivisions; the shaded values (i.e.,
>0) indicates reasonable prediction skill. Furthermore, similar to
ACC, RMSS is also better in MPMME than ERPv1 for up to 3
weeks. Subdivisions in northeast India are less skillful in both
ERPv1 and MPMME; the previous authors have linked lower
predictability to more rainfall contribution from less predictable
synoptic systems over the northeast regions (Abhilash et al., 2018;
Joseph et al., 2019).

Overall, MPMME show reasonable improvement in
deterministic skill over northwest and central India compared to
ERPv1. The studies have reported the more frequent occurrence
of extreme rainfall over these regions (Singh et al., 2011; Woo
et al., 2019; Joseph et al., under revision; Rai et al., 2020).
Therefore, improved predictability and prediction skill for these
regions in MPMME can effectively improve the extreme event
prediction (will be addressed in a separate study).

FIGURE 5 | Sub-divisional skill in terms of anomaly correlation coefficient for

(A) extended range prediction system (ERPv1) and (B) multi-physics

multi-model ensemble (MPMME) during monsoon.

3.3. Prediction Skill for Monsoon
Intraseasonal Oscillation
MISO is one of the most dominant mode of low-frequency
intraseasonal variability, known to provide predictability in
the extended range during the Indian summer monsoon. The
enhanced skill witnessed in earlier sections could be explained
by analyzing the model’s ability to capture this large-scale signal.

The MISO prediction skill is computed in terms of bivariate
anomaly correlation coefficient (BVCC) and root mean square
error as mentioned in Rashid et al. (2011) of predicted MISO
Indices from all ICs with the observed. The leading pair of
model predicted MISO Indices from all ICs with the observed
counterpart are utilized for ACC and RMSE computation. The
BVCC is plotted in Figure 7 along with the RMSE for MISO
indices as a function of lead days. We consider BVCC >0.5
and RMSE lower than 1.4 as a threshold for skillful MISO
prediction. The horizontal line intersects the BVCC axis at
0.5 and RMSE axis at 1.41 to track the significant skill and
error limit. The black line represents the combined skill for
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FIGURE 6 | Sub-divisional skill in terms of root mean square score for (A)

extended range prediction system (ERPv1) and (B) multi-physics multi-model

ensemble (MPMME) during monsoon.

all MISO phases, whereas blue and cyan show the evolution
of CC and RMSE for the transition to the active and break
phase, respectively. The figure clearly shows a gain in skill
for MPMME over ERPv1. The ERPv1 reaches the prediction
limit in around 19 days, whereas the MPMME has this limit
beyond 21 days.

The study from Goswami and Xavier (2003) reveals that the
potential predictability for break (less to no rain) conditions
during monsoon is high compared to the active. They also
suggested that higher predictability of transition to break phase is
due to governance of error growth in this phase by low frequency
(30–60 days) signal. Abhilash et al. (2014b) also showed that ERP
(from CFSv2-based 11-member ensemble) of breaks are more
skillful. Similar inference can be made from Figure 7 for phase-
dependent prediction skill of both systems; ERPv1 and MPMME
also show slightly better predictability for break transition (Cyan
line in Figures 7A,B) than active (blue). MPMME have improved
skill for both (active and break) phases in comparison to ERPv1.

FIGURE 7 | Monsoon Intraseasonal Oscillation (MISO) prediction skill for (A)

extended range prediction system (ERPv1) and (B) multi-physics multi-model

ensemble (MPMME), where solid lines are for bivariate anomaly correlation

coefficient (BVCC) and dotted line represent root mean square error (RMSE).

The higher predictability in northwest regions of India is
associated with low-frequency monsoon oscillations (Joseph
et al., 2019), which is evident in Figure 5. Therefore, the 2–4 days
increase in predictability in MPMME over these regions can be
attributed to about 2 days gain in the skill of this low variability
signal skill, i.e., MISO.

3.4. Probabilistic Forecast Skill
In the previous sections, we have evaluated the deterministic
prediction skill from ERPv1 and MPMME; in this section, we
look into some probabilistic verification. The BSS is calculated for
categorical rainfall probabilistic prediction (Figure 8). Based on
the tercile method, three categories are defined as above normal
(when the rainfall amount is more than upper tercile value), near
normal (when it is between upper tercile and lower tercile values),
and below normal (when it is below the lower tercile value). The
probabilities for either category are 100% for the observation.

The BSS compares the brier score of the forecast with
the reference forecast (climatology), assuming a 33% equal
occurrence probability for each category. A BSS value >0
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FIGURE 8 | Brier skill score from extended range prediction system (ERPv1) and multi-physics multi-model ensemble (MPMME) for (A) above normal, (B) near

normal, and (C) below normal categorical rainfall forecast over monsoon zone.

indicates an improvement over climatology. Both ERPv1 and
MPMME have better skill in predicting the above normal
(Figure 8A) and below normal (Figure 8C) categories up to
2 weeks. The near-normal (Figure 8B) rainfall predictions are
comparatively less skillful in both systems. It is interesting to note
from the figure that the considerable improvement is there for
MPMME over ERPv1 in almost all categories in the first 2-week
leads. The skill of both system reduces at longer leads.

The analysis presented in this section favors MPMME until
almost 21-day lead. However, the current results are only
from multi-physics ensemble, i.e., addressing model-errors to
some extent. Nevertheless, the model also suffers from initial
condition errors at longer leads. A few earlier studies have also
concluded that physics ensemble along with perturbed initial
conditions ensemble could provide better skill by addressing two
major bias components (Stensrud and Fritsch, 1994; Stensrud
et al., 2000). Therefore, the results of this study can be
ameliorated further with the careful selection of physics and
initial condition ensemble.

4. CONCLUSIONS

The present work highlights the improvements of a physics-
based multi-model extended range ensemble prediction system
over its predecessor operational version in predicting ISMR.
This new MPMME framework distinguishes itself from the
ERPv1 in its single seamless horizontal resolution, and
most importantly, for considering multiple realizations of

atmospheric dynamics achieved by permutations of convection
and microphysics parameterizations.

The skill of MPMME and ERPv1 for ISMR is compared using
different verification scores for spatiotemporal forecast evolution
at weekly leads. ACC for hindcast of 2003–2015 from MPMME
signifies an improvement for monsoon zone rainfall over ERPv1
up to 3-week lead. The MPMME prediction skill for 4 months
from June to September also witnesses increment up to 3-week
lead. The month of June has the highest skill for MPMME at all
4-week leads, which will come in handy for predicting monsoon
onset and extreme rain-producing systems in the onset phase.
The HSS for rainfall over monsoon zone elucidates the enhanced
skill at all thresholds of the weekly mean rainfall for MPMME
over ERPv1.

The MPMME extends the predictability limit by 2–4 days
compared to ERPv1 as indicated by sub-division map. Similarly,
the conclusion drawn from subdivision-wise ACC and RMSS
favors MPMME in most regions through 7, 14, and 21-day
leads. The subdivisions in the northwest and central parts of the
country exhibit a maximum increase in the skill. All the phases of
large-scale MISOs have a better prediction from MPMME than
ERPv1, reflecting in the overall gain in predictability at the sub-
division level. The tercile-based categorical rainfall prediction
is verified for the probabilistic skill of both systems. BSS for
these categorical rainfall occurrences exhibits the superiority of
physics-based MPMME over ERPv1.

Although the results presented here are from the preliminary
development stage, the different verifications used in the study
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support the MPMME over its operational version ERPv1 up to
21 days lead. Further assessment of signal and noise added per
physics combination could assist in considering the weighted
average of these ensembles to generate the forecast products.
Since we have only considered the unperturbed control initial
condition inMPMME, adding a few perturbed ICmembers could
further help improve the prediction, especially at longer leads, by
controlling the growth of initial condition uncertainty (Stensrud
and Fritsch, 1994; Stensrud et al., 2000). The study proffers the
utility of physics-based ensemble and finds its scope in further
exploration. It is anticipated that the enhanced temporal skill for
June and spatial skill for northwest and central regions of India
could probably improve the extreme event prediction.
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