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Numerical weather and climate simulations nowadays produce terabytes of data, and

the data volume continues to increase rapidly since an increase in resolution greatly

benefits the simulation of weather and climate. In practice, however, data is often

available at lower resolution only, for which there are many practical reasons, such as

data coarsening to meet memory constraints, limited computational resources, favoring

multiple low-resolution ensemble simulations over few high-resolution simulations, as

well as limits of sensing instruments in observations. In order to enable a more

insightful analysis, we investigate the capabilities of neural networks to reconstruct

high-resolution data from given low-resolution simulations. For this, we phrase the

data reconstruction as a super-resolution problem from multiple data sources, tailored

toward meteorological and climatological data. We therefore investigate supervised

machine learning using multiple deep convolutional neural network architectures to

test the limits of data reconstruction for various spatial and temporal resolutions,

low-frequent and high-frequent input data, and the generalization to numerical and

observed data. Once such downscaling networks are trained, they serve two purposes:

First, legacy low-resolution simulations can be downscaled to reconstruct high-resolution

detail. Second, past observations that have been taken at lower resolutions can be

increased to higher resolutions, opening new analysis possibilities. For the downscaling

of high-frequent fields like precipitation, we show that error-predicting networks are far

less suitable than deconvolutional neural networks due to the poor learning performance.

We demonstrate that deep convolutional downscaling has the potential to become a

building block of modern weather and climate analysis in both research and operational

forecasting, and show that the ideal choice of the network architecture depends on the

type of data to predict, i.e., there is no single best architecture for all variables.
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1. INTRODUCTION

A universal challenge of modern scientific computing is the rapid
growth of data. For example, numerical weather and climate
simulations are nowadays run at kilometer-scale resolution on
global and regional domains (Prein et al., 2015), producing
a data avalanche of hundreds of terabytes (Schär et al.,
2020). In practice, however, data is often available at lower

resolution only, for which there are many practical reasons.
For example, older archived simulations have been computed
on lower resolution or were reduced due to memory capacity
constraints. Also, when allocating the computational budget
running multiple low-resolution ensemble simulations might
be favored over few high-resolution simulations. The loss of

high-resolution information is a serious problem that must

be addressed for two critical reasons. First, the loss of data
limits any form of post-hoc data analysis, sacrificing valuable
information. Second, an in-situ data analysis (Ma, 2009), i.e.,
the processing of the data on the simulation cluster, is not
reproducible by the scientific community, since the original
raw data has never been stored. Even if a large amount
of computing resources is available for re-running entire
simulations and outputting higher frequency data for analysis,
it still requires reproducible code, which is cumbersome to
maintain due to the changes in super computing architectures
(Schär et al., 2020). For these reasons, reconstruction algorithms
from partial data are a promising research direction to
improve data analysis and reproducibility. Not only is the
reconstruction of higher spatial and temporal resolutions
valuable for numerical simulations, meteorological observations
are also only available at certain temporal resolutions and suffer
from sparse observational networks. In many applications, such
as in hydrology, higher temporal resolutions are desperately
needed, for example to inform urban planners in the design
of infrastructures that support future precipitation amounts
(Mailhot and Duchesne, 2010).

In climate science, deep learning has recently been applied to
a number of different problems, including microphysics (Seifert
and Rasp, 2020), radiative transfer (Min et al., 2020),
convection (O’Gorman and Dwyer, 2018), forecasting (Roesch
and Günther, 2019; Selbesoglu, 2019; Weyn et al., 2019), and
empirical-statistical downscaling (Baño-Medina et al., 2020).
For example, Yuval et al. (2021) have applied deep learning
for parametrization of subgrid scale atmospheric processes
like convection. They have trained neural networks on high-
resolution data and have applied it as parametrization for coarse
resolution simulation. Using deep learning, they demonstrated
that they could decrease the computational cost without affecting
the quality of simulations.

In computer vision, the problem of increasing the resolution
of an image is referred to as the single-image super-resolution
problem (Yang et al., 2014). The super-resolution problem
is inherently ill-posed, since infinitely many high-resolution
images look identical after coarsening. Usually, the recovery of
a higher resolution requires assumptions and priors, which are
nowadays learned from examples via deep learning, which–in
the context of climate data–has proven to outperform simple

linear baselines (Baño-Medina et al., 2020). For single-image
super-resolution, Dong et al. (2015) introduced a convolutional
architecture (CNN). Their method receives as input an image
that was already downscaled with a conventional method, such
as bicubic interpolation, and then predicts an improved result.
The CNN is thereby applied to patches of the image, which
are combined to result in the final image. The prior selection
of an interpolation method is not necessarily optimal, as it
places assumptions and alters the data. Thus, both Mao et al.
(2016) and Lu and Chen (2019) proposed variants that take
the low-resolution image as input. Their architectures build on
top of the well known U-Net by Ronneberger et al. (2015).
The method learns in a encoder-decoder fashion a sub-pixel
convolution filter or deconvolution filter, respectively, which
were shown to be equivalent by Shi et al. (2016). A multi-scale
reconstruction of multiple resolutions has been proposed by
Wang et al. (2019). Further,Wang et al. (2018) explored the usage
of generative adversarial networks (GANs). A GAN models the
data distribution and samples one potential explanation rather
than finding a blurred compromise of multiple explanations.
These generative networks hallucinate plausible detail, which is
easy to mistake for real information. Despite the suitability of
generative methods in the light of perceptual quality metrics, the
presence of possibly false information is a problem for scientific
data analysis that has not been fully explored yet. For a single-
image super-resolution benchmark in computer vision, we refer
to Yang et al. (2019).

Next, we revisit the deep learning-based downscaling in
meteorology and climate science, cf. Baño-Medina et al. (2020).
Rodrigues et al. (2018) took a supervised deep learning approach
using CNNs to combine and downscale multiple ensemble
runs spatially. Their approach is most promising in situations
where the ensemble runs deviate only slightly from each other.
In very diverse situations, a standard CNN will give blurry
results, since the CNN finds a least-squares compromise of
the many possible explanations that fit the statistical variations.
In computer vision terms, this approach can be considered a
multi-view super-resolution problem, whereas we investigate the
more challenging single-image super-resolution. Höhlein et al.
(2020) studied multiple architectures for spatial downscaling of
wind velocity data, including a U-Net based architecture and
deep networks with residual learning. The latter resulted in the
best performance on the wind velocity fields that they studied.
Following Vandal et al. (2017), they included additional variables,
such as geopotential height and forecast surface roughness, as
well as static high-resolution fields, such as land sea mask and
topography. They demonstrated that the learning overhead of
such a network is justified, when considering the computation
time difference between a low-resolution and high-resolution
simulation. Later, we will show that residual networks will
not generally outperform direct convolutional approaches on
our data, since the best choice of network is data-dependent,
and we also include temporal downscaling in our experiments.
Pouliot et al. (2018) studied the super-resolution enhancement
of Landsat data. Vandal et al. (2017, 2019) stacked multiple
CNNs to learn multiple higher spatial resolutions from a given
precipitation field. Cheng et al. (2020) proposed a convolutional
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architecture with residual connections to downscale precipitation
spatially. In contrast, we also focus on the temporal downscaling
of precipitation data, which is a more challenging problem
due to motion and temporal variation. Toderici et al. (2017)
solved the compression problem of high-resolution data and
did not consider the downscaling problem. In principle, it
would be imaginable to not store a coarsened version of the
high-resolution data (which would be possible in our pipeline),
but to store the compressed latent space as encoded by the
network (as done by Toderici et al., 2017). The latter requires
to keep the encoding/decoding code alongside the data and
has the potential downside that many (old) codes have to be
maintained, which could turn out impractical for operational
scenarios. Instead, we investigate a pipeline in which we start
from coarsened data. It is clear, however, that a learnt encoder
could provide a better compression than a simple coarsening.
CNNs tend to produce oversmoothed results, as they produce
a compromise of the possible explanations that satisfy the
incomplete data. Different approaches have been tested to
improve the spatial detail, including the application of relevance
vector machines (Sachindra et al., 2018) and (conditioned)
generative neural networks (Singh et al., 2019; Han and Wang,
2020; Stengel et al., 2020). While the latter improves the visual
quality, it is not yet clear how much the interpretability of the
result is impeded by the inherent hallucination.

When considering the various meteorological variables that
are at play, we can observe large differences between the rates
at which the structures in the data evolve temporally, how
they correlate with spatial locations–for example convection
near complex topography, and how much spatial variation
they experience. For this reason, we investigate and evaluate
meteorological fields from both ends of the spectrum: low-
frequent and high-frequent signals. Fundamentally, two different
approaches are imaginable. A deep neural network could either
predict a high-resolution field directly, or an error-corrector from
a strong baseline approach could be learnt, utilizing the strengths
of contemporary methods. Thereby, the success of the error-
predicting approach depends on the quality of the baseline. We
explore both types of architecture in the light of the underlying
signal frequency, as we hypothesize that for high-frequent data
the baseline might not reach the significant quality needed to
be useful for the error-predicting network. In order to avoid
over-smoothing of the results, we augment the loss function
to enforce the preservation of derivatives. Further, numerically
simulated data and measured data have different signal-specific
characteristic in terms of smoothness, occurrence of noise and
differentiability. As both domains–simulation and observations–
profit greatly from highly-resolved data, we investigate the spatial
and temporal downscaling on both simulated and observed data.

2. METHOD AND DATA

Formally, we aim to downscale a time-dependent meteorological
scalar field s(x, y, t) from a low number of grid points X × Y × T
to a higher number of grid points X × Y × T, with X = kxX,
Y = kyY , and T = ktT. Thereby, kx, ky, and kt are called

the downscaling factors. We approach the problem through
supervised deep learning, i.e., at training time we carefully
prepare groundtruth pairs of low-resolution and high-resolution
scalar field patches. A patch is a randomly cropped space-time
region from the meteorological data. Afterwards, convolutional
neural networks are trained to recall the high-resolution patch
from a given low-resolution patch. Using patches enables direct
control over the batch size, which is an important hyper-
parameter during training, as it influences the loss convergence.
Since our network architectures are convolutional, the networks
can later be applied to full domains, i.e., cropping of patches
is not necessary at inference time after training. We follow
prior network architectures based on the U-Net by Ronneberger
et al. (2015), one called UnetSR by Lu and Chen (2019)–an
end-to-end network directly predicting the downscaled output,
the other one called REDNet by Mao et al. (2016)–a residual
prediction network. Both networks receive trivially downscaled
data as input and have an encoder-decoder architecture where
skip connections connect the feature maps from the encoder to
their mirrored counterpart in the decoder. In the following, we
refer to our residual predicting network as RPN and the end-
to-end deconvolution approach as DCN. Before explaining the
network architectures in detail, we introduce the data and explain
the coarsening of high-resolution data to obtain groundtruth
pairs for the training process.

2.1. Data
Here we describe the two data sets on which we apply and test
the method. The data originates from two sources: climate model
simulations and observations.

2.1.1. Climate Model Data
The described method and approach is tested on the climate
data produced by a regional climatemodel COSMO (Consortium
for Small Scale Modeling). It is a non-hydrostatic, limited-area,
atmospheric model designed for applications from the meso-β
to the meso-γ scales (Steppeler et al., 2003). The data has been
produced by a version of COSMO that is capable of running
on GPUs (Fuhrer et al., 2014), and has been presented and
evaluated in Hentgen et al. (2019). The climate simulation has
been conducted with a horizontal grid spacing of 2.2 km (see
Leutwyler et al., 2017; Hentgen et al., 2019). The red box in
Figure 1 shows the domain that we use for the temperature
predictions. Since precipitation can be close to zero in many
regions of the domain, we expanded the domain to the blue
box for the precipitation experiments. We used temperature and
precipitation fields available every 5 min for the months June and
July in 2008.

2.1.2. Observations
The observational data set used in this study is a gridded
precipitation dataset for year 2004, covering the area of
Switzerland. The horizontal grid spacing of the data is 1 km
(Wüest et al., 2010) and it is available at hourly frequency. It
is generated using a combination of station data with radar-
based disaggregation. The data is often used for climate model
evaluation (see e.g., Ban et al., 2014).
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FIGURE 1 | The analysis region over central Europe used in this study indicated with red box (temperature) and blue box (precipitation).

2.2. Supervised Machine Learning for
Downscaling of Meteorological Data
Let X be a coarse patch with X × Y × T regular grid points,
and let Y be the corresponding downscaled patch with X ×

Y × T grid points. Further, let f (Y) be a map that coarsens a
high-resolution patch Y into its corresponding low-resolution
patch X:

X = f (Y)︸ ︷︷ ︸
coarsening

, Y = f−1(X)︸ ︷︷ ︸
downscaling

(1)

The inverse problem f−1, i.e., the downscaling problem, is usually
ill-posed, since the map f is not bijective. While any high-
resolution patch can be turned into a unique low-resolution patch
via coarsening, the reverse will have multiple possible solutions,
i.e., f is surjective, but not injective.

However, not every possible solution to Y = f−1(X)
is physically meaningful and realizable in real-world data. It

therefore makes sense to construct the inverse map f−1 in
a data-driven manner from real-world data to only include
mappings that have actually been seen during training, which is
the key idea behind supervised machine learning. The inverse
map is thereby parameterized by a concatenation of multiple
weighted sums of inputs that each go through a non-linear
mapping. The composition–a deep neural network–thereby
becomes a differentiable, highly non-linear mapping between
the input and output space, and can be iteratively trained via
gradient descent.

The success of a deep neural network thereby hinges on three
key criteria:

1. the architecture of the neural network combines low-frequent
and high-frequent information, and the gradients dY/dX are
well defined to facilitate the training process,

2. the training data is of high quality and expressive, i.e., we
explore the space of possible mappings sufficiently and the
mappings are sufficiently distinct.
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FIGURE 2 | Illustrations of the convolutional neural network architectures for downscaling of low-frequent and high-frequent meteorological variables. Both

architectures receive three time steps of the scalar field to predict (temperature or precipitation) and additional fields (longitude, latitude, surface height) as input. For

RPN, the input data is downscaled conventionally in both space and time. For DCN, the input data is downscaled conventionally only in space. In both networks, the

time variable is appended in the latent space and indicates at which relative time between the input frames the output should be downscaled at. (A)

Residual-predicting network (RPN) for low-frequent signals, such as temperature. (B) Deconvolutional network (DCN) for high-frequent signals, such as precipitation.

3. the loss function expresses the desired goal well and the
energy manifold is well-behaved to allow a stable (stochastic)
gradient descent.

In the following subsections, we elaborate on the network
architectures in section 2.2.1, the training data generation in
section 2.2.2, and the training procedure and loss function
in section 2.2.3.

2.2.1. Network Architecture
When observing meteorological variables, such as temperature
and precipitation, we can see vast differences in their spatial
and temporal variability. While temperature varies slowly in
space and time, i.e., it is a comparatively low-frequent signal,
precipitation is far more localized and varies faster, i.e., it is a
high-frequent signal that is harder to predict with conventional
downscaling techniques. To leverage the data characteristics, we
design two separate convolutional neural networks to represent
the inverse mapping f−1.

2.2.1.1. Low-Frequent Data: Residual-Predicting Network

(RPN)
In case, the data has low spatial and temporal variability,
a conventional downscaling technique might already take us
close to the desired solution. Rather than learning the entire
downscaling process, it will then be an easier task to correct the
conventional downscaling method, which is the core concept of
residual learning (cf. Dong et al., 2015). Let f̂−1 be an existing

downscaling technique, such as trilinear interpolation in space-
time. Then, the inverse f−1(X) can be formed by:

f−1(X) = f̂−1(X)︸ ︷︷ ︸
trilinear downscaling

+ r(̂f−1(X))︸ ︷︷ ︸
residual

(2)

where our neural network only learns to predict the residual
r(̂f−1(X)) of the trilinear downscaling method. For this, we
follow the architecture of Mao et al. (2016), who applied an
encoder-decoder architecture, which is detailed further below.
The advantage of this approach is that it is comparatively easier to
improve over the existing trilinear baseline method in contrast to
learning a downscaling method from scratch. If f̂−1(X) performs
poorly, for example since the scalar field exhibits too much
temporal variability, then the next approach will perform better.

2.2.1.2. High-Frequent Data: Deconvolutional Network

(DCN)
Consider a case in which too much motion occurred between
time steps, e.g., a cloud got transported to a new location
not overlapping with its previous location. Then, the trilinear
downscaling method might interpolate two small clouds in the
time step in-between at the original and the final location, rather
than obtaining a single translating cloud in the middle. Other
than before, the linear downscaling in time might not be close
enough to benefit from residual prediction. In such cases where a
a conventional temporal downscaling method is not helpful, we
learn the partial mapping p(̃f−1(X)) from spatially-downscaled
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TABLE 1 | Temperature (◦C) downscaling mean-squared errors (MSE), coloring

the best (•), intermediate (•) and worst (•) result.

MSE (◦C) Baseline RPN DCN

kt \kx,y 1 2 4 1 2 4 1 2 4

1 – 0.398 0.669 – 0.168 0.216 – 0.177 0.461

2 0.016 0.399 0.669 0.016 0.169 0.253 0.031 0.177 0.308

4 0.017 0.411 0.677 0.017 0.150 0.232 0.054 0.190 0.421

12 0.102 0.416 0.678 0.099 0.194 0.259 0.113 0.216 0.393

Columns show spatial scaling factors kx = ky ∈ {1, 2, 4} and rows show temporal scaling

factors kt ∈ {1, 2, 4, 12}. Note that the residual-predicting network (RPN) outperformed

the baseline and DCN in all cases. Temporal downscaling introducesmarginal errors, since

the field is varying slowly in time.

data to the high resolution:

f−1(X) = p(̃f−1(X))︸ ︷︷ ︸
partial downscaling

(3)

where f̃−1(X) performs only spatial downscaling using bilinear
interpolation, but not temporal downscaling and where
p(̃f−1(X)) performs both the temporal downscaling and
improves over the result of f̃−1. Since f̃−1(X) does not
interpolate information in time, a residual prediction is no
longer applicable. Hence, the high-resolution data is predicted
directly. For the network architecture, we follow a typical U-Net
architecture (Ronneberger et al., 2015), which is a general
design not limited to downscaling problems. In our downscaling
setting, the input data is spatially downscaled with a bilinear
baseline method, as was proposed by Lu and Chen (2019) for
image super-resolution. In the following, we explain how the
networks are structured and which modifications improved the
performance for meteorological downscaling problems.

2.2.1.3. Layers and Skip Connections
The neural network architectures are illustrated in Figure 2. In
both architectures, the network consists of convolutional layers
only. Among the most recent convolutional neural network
architectures, U-Nets by Ronneberger et al. (2015) are often the
most promising approach. A U-Net extracts both low-frequency
and high-frequency features from the data by repeatedly
performing feature extraction and coarsening. In the so-called
contraction phase, we apply successively two convolutional
layers followed by a MaxPooling layer to extract features and
then reduce the resolution. To handle convolutions on image
boundaries, we use zero-padding and apply the convolutions
with a stride of 1, i.e., every pixel of the input data will once
be the center of a convolution kernel. We repeat this structure
four times where the last time we omit the pooling layer. Within
each layer, we extract a certain number of features. Starting with
64 features maps, we double the size until 512 feature maps
are reached in the last layer. This is the amount of information
available in the subsequent step: the synthesis of the output
in the expansion phase. In the expansion phase, the goal is to
reconstruct a high resolution image from all previously extracted

features by iteratively increasing the number of grid points until
the target resolution is reached. We do this by using so-called
UpSampling layers, which repeat the values to a larger data block,
followed by three convolutional layers. The key to success is to
provide in each level of the U-Net the featuremaps that have been
extracted previously on the same resolution during contraction.
This is achieved by skip connections from the contraction to the
expansion phase. Adding the skip connections as in the U-Net
by Ronneberger et al. (2015) has two positive effects. First, it was
shown to smooth the loss landscape (c.f., Li et al., 2018), which
makes it easier to perform gradient descent during training.
Second, the skip connections give access to the high-frequency
information of earlier layers, which greatly helps to construct
high-frequent outputs.

2.2.1.4. Inputs and Outputs
Since we intend to downscale data both in space and time, we
provide the network with both spatial and temporal information.
Thus, the input to the model is a 4D data block, one dimension
is used for the time steps, two for the spatial information, and
the last one holds the so-called channels. A difference to the
conventional U-Net is that we experimented with additional data
channels that provide more information to resolve ambiguities
in the inverse map f−1. The effectiveness of additional data
channels was already demonstrated by Vandal et al. (2017)
and Höhlein et al. (2020) for downscaling. These additional
channels include latitude and longitude such that the network
can learn regional weather patterns, and altitude to include
dependencies on the topography. For example, we observed that
adding these additional fields improved the residual by 7.3%,
for a precipitation downscaling with kx = ky = kt = 4.
In addition, we provide temporal information to the network,
which allows us to give the model information about the relative
time between the next known adjacent time steps. Since the
time variable is a constant and not a spatially-varying map–
unlike all other previously mentioned additional information, we
append the time to the latent space, i.e., the feature map at the
end of the feature extraction phase. Other options to include
the time are imaginable. Including time as a constant separate
slice in the input would increase the network size, which is
why we opted for appending it to the latent space. Our data
concentrated on a specific season. Including the day of the year
as additional variable in order to learn seasonal effects would be
straightforward to add.

The output of the network depends on the chosen
architecture. As described above, we predict the error residual
for the low-frequent data in the RPN, e.g., for the temperature
field. In the case of high-frequent data, such as precipitation, we
directly predict the high-resolution outputs in the DCN. In both
cases, the networks are convolutional, thus the network can be
applied at inference time to the full input domain at once.

2.2.2. Training Data Generation
Supervised machine learning requires groundtruth pairs of
low-resolution and corresponding high-resolution patches. In
the following, we describe how these groundtruth pairs are
generated from the given high-resolution meteorological data.
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FIGURE 3 | Validation loss plots of both architectures on temperature and precipitation. The left plot shows that RPN converges faster and achieves a lower loss

during training for the temperature field than DCN. On the other hand, we see that the same RPN architecture is unable to learn when applied on precipitation data.

(A) Network loss for temperature during training. (B) Network loss for precipitation during training.

The coarsening operation depends on the units of the data.
When the units remain the same (e.g., absolute temperature
in K), then we use an average operation only. When the units
change (e.g., total precipitation depends on the time step),
then we apply averaging and convert the units afterwards.
In case of precipitation, the coarsening in time is equal to
an accumulation of the precipitation values. Generally, we
recommend to use an averaging operation to do the coarsening,
since a max operation or a simple subsampling would cause
aliasing artifacts that would not be present if the data was
simulated or measured on lower resolution. For the residual
predicting network (RPN), we downscale the low-resolution
data with a conventional trilinear interpolation method, and
feed the downscaled data to the network in order to predict
the residual (c.f., section Low-frequent data: residual-predicting
network (RPN)). In this work, we applied linear interpolation
to avoid extrapolation of minima and maxima. Any other
existing downscaling method, such as cubic interpolation,
would conceptually also be imaginable. For DCN, the network
receives spatially-downscaled input, similar to RPN. In the
temporal direction, we input the coarse resolution, since a linear
interpolation would cause blending and ghosting artifacts that
the network would have to learn to undo. During training, we
randomly crop patches with a resolution of 32×32 from the high-
resolution and (conventionally downscaled) low-resolution data.
We thereby separate the time sequence into a training period and
a testing period to assure that the training and testing sets are
independent. For this, we used the last 10% of the time range
for testing.

Since the input fields (temperature or precipitation, and
longitude, latitude, and surface height) would have different value
ranges, we normalize all fields globally across the entire data set to
the unit interval [0, 1], which is a common preprocess with neural
networks. The scaling factors are stored, such that the results of
the network can be scaled back to the physical units later.

2.2.3. Training Procedure and Loss
As loss function, wemeasure the difference between the predicted
result Y and the groundtruth Y. Convolutional neural networks
are known to oversmooth the output. Hence, we assess the
difference with an L1 norm that is combined with a gradient
loss to not only penalize differences in the values but also
in the derivatives, which aids in the reconstruction of higher-
frequency details. We refer to Kim and Günther (2019) and Kim
et al. (2019) for a discussion of the norms and weights of the
gradient loss.

L(Y,Y) = |Y− Y|1︸ ︷︷ ︸
data loss

+λ |∇Y− ∇Y|1︸ ︷︷ ︸
gradient loss

(4)

Here, λ is a weight indicating how much the focus should lie
on the difference of gradients. We explored the residual for
different choices of λ in a precipitation downscaling experiment
with scaling factors 2 in temporal and spatial dimension. The
baseline obtains a residual of 6.601 MSE [g/m2]. Setting λ = 0,
i.e., not including the gradient loss term, gives the simple L1-
norm, which obtains a residual of 8.181 MSE [g/m2], which is
larger than the baseline. Thus, the gradient loss term is required
such that the network is able to concentrate on high-frequent
details. We empirically set λ = 1 in our experiments, which
result in a residual of 3.882 MSE [g/m2]. Increasing λ further,
e.g., to λ = 10, again increased the residual of the network to
5.846 MSE [g/m2].

As common with neural networks, we performed for
both network architectures a hyperparameter optimization,
i.e., we empirically adjusted each network parameter, such
as the number of layers, the number of features, the batch
size, and the activation functions to obtain the best neural
network for each problem. Alternatively, automatic hyper-
parameter optimization frameworks, such as Optuna are
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FIGURE 4 | Downscaling results for temperature (in ◦C) by a factor of kx = ky = kt = 4 in both the temporal and spatial dimension. The first row shows time steps of

the trivially downscaled domain. The second row shows a patch as it is sent into the network. The third row compares the result of the network to the groundtruth on

the full domain. The last row shows the groundtruth comparison for the patch that was predicted.

available (Akiba et al., 2019), which could be employed in

the future. We choose Adam as optimizer with the default

settings (learning rate 0.001) as proposed by Kingma and Ba

(2014), and used a batch size of 8 to meet GPU memory
constraints. Both networks were trained for 80 h on a single

compute node (Intel Xeon CPU E5-2630, Nvidia GeForce
1080Ti). The training time is an important factor in the

hyper-parameter optimization. Automatic frameworks, such as

Optuna (Akiba et al., 2019), explore many different hyper-
parameter combinations, each requiring a training run. For
such an automatic hyper-parameter optimization, the total
training time would scale linearly in the number of tested
parameter configurations.

2.3. Analysis
To evaluate the neural networks, we performed a number of
experiments, which are detailed in the following sections. To
quantify the improvement over the trilinear downscaling in
space-time, we calculate the mean squared error (MSE). Let i ∈
{1, . . . , n} be the index of the n grid points of a space-time patch,
then MSE is defined as:

MSE(Y,Y) =
1

n

n∑

i

|Yi − Yi|
2 (5)

where Y is the downscaled result and Y is the groundtruth. Along
with the quantitativemeasures, we visualize the downscaled fields
to show the amount of detail that is reconstructed visually.
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FIGURE 5 | The error map of Figure 4 in MSE (◦C) shows a comparison between the trilinear interpolated input and our predicted output relative to the groundtruth.

On the full domain, RPN reduces the MSE from 1.438 to 0.143◦C which is a 10× improvement, and on the zoom-in (blue box), the MSE reduced from 0.533 to

0.077◦C.

To assess how well the network is able to downscale in
space and in time, we vary the downscaling factors kx, ky, and
kt in an ablation study in sections 3.1.1 and 3.2.1, and train
a network for each case separately. We can expect that small
factors will perform better, since less information is missing.
The networks were designed for low-frequent input data (RPN)
and high-frequent input data (DCN). Therefore, we evaluate
both networks on their respective data type, namely temperature
fields for RPN, and the precipitation for DCN. To justify the
need for DCN, we apply the RPN network to high-frequent
precipitation data, as well. Likewise, we apply the DCN network
to low-frequent temperature data.

Finally, we train neural networks for observational data in
section 3.2.2. Compared to numerical data, observations exhibit
very different data characteristics in terms of resolution, noise,
and spatial and temporal variation.

3. RESULTS

In this section, we report and discuss results of our experiments.
We begin with experiments on low-frequent data (temperature),
which is followed by reporting results for high-frequent data

(precipitation). For all shown metrics, we compare with the
high-resolution ground truth, which is equivalent to the result
obtained by a full resimulation. A resimulation is prohibitively
expensive, taking a full day on Piz-Daint (supercomputer at the
Swiss National Supercomputing Center (CSCS) in Switzerland)
utilizing 100 GPU nodes (Nvidia Tesla K20X).

3.1. Temperature
First, we investigate the downscaling capabilities for both
network architectures by reporting the residual errors for
different downscaling factors.

3.1.1. Network Comparison
We reduced the number of spatial grid points by a factor of 2 and
4, and the time steps by a factor of 2, 4, and 12. For all scaling
factors, we perform downscaling with the baseline method and
our two network architectures, and report the MSE (in ◦C) in
Table 1. With only temporal downscaling (kx = ky = 1),
RPN and the baseline give similar results, while DCN is about
80% worse. Across all spatial downscaling factors, varying the
temporal downscaling does not significantly change the result,
since the temporal variation of temperature was low. Compared
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TABLE 2 | Precipitation (g/m2 ) downscaling mean-squared errors (MSE), coloring

the best (•), intermediate (•) and worst (•) result.

MSE (g/m2) Baseline RPN DCN

kt \kx,y 1 2 4 1 2 4 1 2 4

1 – 1.074 3.069 – 6.233 3.631 – 0.491 1.575

2 1.020 1.740 3.441 6.034 5.569 3.769 0.258 0.649 1.717

4 2.775 3.224 4.353 5.080 4.341 3.108 1.045 1.393 2.178

12 5.974 6.153 6.601 4.762 12.11 27.65 3.672 3.445 3.882

Columns show spatial scaling factors kx = ky ∈ {1, 2, 4} and rows show temporal scaling

factors kt ∈ {1, 2, 4, 12}. The deconvolution approach (DCN) consistently outperforms

the baseline and RPN. Note that both spatial and temporal downscaling affect the error

significantly. For such high-frequent data, RPN is rarely able to improve over the baseline.

to the baseline, RPN is able to reduce the error for kx = ky = 2
by about 58%, while DCN achieves 53%. A more significant
difference occurs for spatial downscaling with kx = ky = 4,
for which RPN achieves 64% and DCN only 41% reduction
compared to the baseline (cf. Table 1). In Figure 3A, we see at
the example of kx = ky = 2, kt = 4 that both networks
achieve a reasonable reduction of the loss. RPN improves over
the DCN architecture in both the convergence rate and the
obtained residual. We can observe that for a low-frequent signal,
such as temperature, the residual predicting network (RPN)
consistently outperforms the baseline and the deconvolutional
approach (DCN). The only exception occurred for kx = ky = 1
(no spatial down-scaling) and kt = 2 (temporal down-scaling
by factor 2). Since temperature varies very slowly in time, the
baseline already obtains a very small error. In that case, RPN is
on average 0.001◦C worse than the baseline (only yellow square
for RPN in Table 1), which is a negligible difference. We can
also see that a reconstruction from a high temporal coarsening
(kt = 12, kx = ky = 2) is better than the reconstruction from
larger spatial coarsening (kt = 1, kx = ky = 4), which would
both reconstruct from the same number of low-resolution grid
points. This is because temperature changes slower over time,
therefore downscaling in this dimension is easier for the neural
network to learn.

In addition to the quantitative measures, we provide a
qualitative view onto the reconstructed temperature field.
Figure 4 shows a sample of the testing set with a spatial and
temporal downscaling factor of kx = ky = kt = 4. The RPN
model is able to recover detailed structures, increasing the quality
not only quantitatively but also visually. The corresponding
error map in Figure 5 shows that the remaining errors remain
highest in regions with complex topography due the high spatial
variability. The MSE reduced by a factor of 10.

The reconstruction of temperature data can be done in parallel
and takes 1 min on a single Intel i7 4770 HQ (2.2 GHz) per
timestep, while the network requires about 125 MB of storage.

3.2. Precipitation
In this section, we study amore challenging task: the downscaling
of high-frequent precipitation fields.

3.2.1. Network Comparison
The numerical precipitation data was given at 5 min intervals.
For temporal downscaling, we test the reconstruction from
10, 20 min, and hourly data. In Table 2, we report the MSE
for the baseline, RPN and DCN for multiple combinations
of downscaling factors. While the low-frequent temperature
field was best reconstructed by residual learning using RPN,
the technique fails on the high-frequent precipitation field,
increasing the error on average by a factor of two. Using the DCN
architecture instead, consistently leads to better results. For kx =
ky = 1, the DCN improved over the baseline on average by about
43%, for kx = ky = 2 by about 54%, and for kx = ky = 4 by about
47%. The less the spatial dimension was downscaled, the higher
the improvement when increasing the temporal downscaling.
Thus, other than for RPN and low-frequent fields, here, the
temporal factor is more important. For example with DCN, we
induce more error when reconstructing from a coarsening with
a temporal factor to 12 (kt = 12, kx = ky = 2) than when
reconstructing from a coarsening with a spatial factor of four
(kt = 4, kx = ky = 4), although the total number of grid points
to start from was larger for kt = 12, kx = ky = 2. In Figure 3B,
we see at the example of kx = ky = 2, kt = 4 that only the
DCN network was able to learn for precipitation fields, and that
the same RPN architecture that was used before on temperature
was not able to reduce the loss, which explains the higher errors
of RPN compared to the baseline.

Figure 6 shows an example of downscaling from 20 to 5 min.
The time steps that are sent into the network shown, in which a
cloudmovement from the top left to the bottom right is apparent,
as well as how precipitation decreases over time. Using this
information, the DCN network is able to estimate the position
and the amount of precipitation at a specific intermediate
time. Figure 7 shows the error map of a conventional linear
downscaling and our neural network prediction, where we can
see that the DCN output is closer to the ground truth.

3.2.2. Application of Deep Learning to Observational

Data
Given the experiments on simulated data, another interesting
question is to see if the model is able to learn how to downscale
observational data. For this, we run eight instances of our model
training on the observational data and performed downscaling
between different pairs of resolutions. We checked how the
model can downscale from 2, 4, 6, 12, and 24 hourly data to
1 h intervals. Additionally, we evaluated the downscaling from
12 and 24 h data to 6 h data, and from 24 h data to 12 h.
The results are summarized in Table 3. We observe that for
small downscaling factors like from 2 to 1 h data, our model
is able to reduce the error compared to the baseline by 24.65%.
Increasing the downscaling factor decreases the performance
and gets worse for high factors like 12 or 24–1 h data. For
such extreme downscaling, not enough information is present to
disambiguate the correct hourly information.When downscaling
smaller factors but on coarser resolution, i.e., with a downscaling
factor of 2 but from 12 to 6 h data, the model is able to
improve significantly over the baseline and for the extreme case
of downscaling from daily data to 12 h data it achieved an
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FIGURE 6 | Downscaling results for precipitation (g/m2) by a factor of kt = 4 from 20 to 5 min resolution. The first row shows time steps of the trivially downscaled

domain (spatially). The second row shows a patch as it is sent into the network. The third row compares the result of the network to the groundtruth on the full

domain. The last row shows the groundtruth comparison for the patch that was predicted.

error reduction of up to 70%. Figure 8 shows an example of this
downscaling scenario.

4. CONCLUSIONS

In this paper, we investigated the suitability of deep learning
for the reconstruction of numerically-simulated and observed
low-resolution data in both space and time. We thereby
concentrated on two meteorological variables—temperature
and precipitation—for which we develop suitable network

architectures that utilize additional time-invariant information,
such as the topography. We decided on temperature and
precipitation to assess the performance of a neural network
on both low-frequent and very high-frequent fields in order
to test the limits of the architectures. While we observed
that slowly-changing information, such as temperature can
be adequately predicted through an error-predicting network,
we found that fields with larger variations in both space
and time, such as precipitation, require a different approach
and cannot profit from residual learning, as there is no
straight-forward downscaling method to leverage which achieves
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FIGURE 7 | The error map of Figure 6 compares the trilinear interpolated baseline, the time-integrated network input covering the time to predict, and our predicted

output. DCN reduces the MSE from 2.269 to 0.745 g/m2 on the full domain, and from 4.531 to 0.910 g/m2 in the shown patch.

TABLE 3 | Observation downscaling results in temporal dimension, using the

baseline and our DCN.

MSE (kg/m2) factors Baseline DCN Reduction (%)

2–1 h 0.229 0.173 −24.65

4–1 h 0.571 0.551 −3.522

6–1 h 0.557 0.534 −4.205

12–1 h 0.647 0.649 0.283

24–1 h 0.697 0.762 9.348

12–6h 6.254 4.531 −27.558

24–6 h 8.762 5.836 −33.395

24–12 h 12.925 3.802 −70.586

When targeting hourly outputs, the DCN is beneficial only for small scaling factors. For

predictions of 6 and 12 h intervals, the network achieved a 30 or 70% error reduction,

respectively.

close enough baselines. Learning to suppress unnecessary or
wrong structures is more difficult, then letting the network
directly predict the high-resolution output by itself from
the extracted features. For both cases, we developed a
convolutional architecture with residual skip connections in
order to extract features at different scales and to combine
them in the subsequent deconvolution, leading us to a high-
resolution prediction.

One possible reason why data is available at lower resolution
only is that it has been coarsened for storage. If storage
alone was the concern, it would be more effective to apply
lossy compression approaches directly to the high-resolution
data, especially if the data has low-frequent regions that could

be sampled more sparsely than the uniformly chosen coarse
resolution used throughout this manuscript for coarsening. That
said, a limitation of the presented downscaling approach is that
it is not able to compete with lossy compressions that were able
to work from the high-resolution data. Instead, we focused on
what can be recovered once the damage is done, i.e., once the
data has been coarsened. Future work could follow up on the
compression, for which an information theoretic approach would
be instructive (MacKay, 2003; Yeung, 2010). In the future, it
would be interesting to study if there are ways to predict the
optimal downscaling parameters. This will be quite challenging,
since the best network and the best parameter choice is strongly
dependent on the data characteristics, which vary not only
spatially but also temporally.

At present, we assumed that the meteorological data is
available on regular grids. In such a case, convolutional
layers proved useful for feature map extraction in the
hidden layers. In the future, it would be interesting
to study convolutional approaches for unstructured or
irregularly structured data. Possible approaches would
include PointNet-like convolutions (Qi et al., 2017)
that waive connectivity information by introducing
order-independent aggregations, or graph convolutional
networks (Kipf and Welling, 2016) that operate on arbitrary
grid topologies.

CNNs and GANs similarly share the problem that their
interpretation is difficult, since both involve nonlinear mappings.
For example, both of our CNN approaches RPN and DCN
obtain an error that is theoretically unbounded. It would be
imaginable to bound the reconstruction heuristically using the
coarse input data, for example by only allowing a certain
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FIGURE 8 | Downscaling results of observational precipitation from 24 h resolution to 12 h. Top row shows input patches ranging from 1 day 12:00 UTC to the other

12:00 UTC. Middle row shows the predicted output patch and the groundtruth. Last row compares the baseline and predicted error maps relative to the groundtruth

(MSE kg/m2 ). Our method learns to scale the amount of precipitation dependent on the time we estimate. Our method can reduce the MSE from 14.251 to 0.252.

deviation away from the input signal, but this would of
course be rather heuristic. Extreme weather events could be
smoothed out since the frequency of their occurrence was
not accounted for in the training data. Weighting individual
training samples is an interesting direction for future work,
which would require more data and an identification of the
extreme events.

Neural networks can learn to disambiguate the reconstruction
from low-resolution to high-resolution data in a data-
driven way. In the future, it would be interesting to
include additional regularizers into the loss function to
utilize physical conservation laws that needed to hold

during simulation. Further, it would be interesting to apply
residual predictions to dynamical downscaling models, as
this would build up on the meteorological knowledge that
went into the design of dynamical models. While running
the dynamical models also imposes a computational cost,
there is great potential in including more physics into the
learning process.

The work presented here shows a proof of concept
how neural networks can be used to reconstruct data
that has been coarsened, and how this could serve for
development/reconstruction of high-resolution model data
and observations. For example, trained networks can be
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used for disaggregation of daily observational values into
subdaily instead of using functions that can introduce statistical
artifacts. It still remains to expand the current study to
different domains and to longer time periods and it still
remains an open problem to investigate if and how the
hallucinations of generative neural networks (Singh et al., 2019;
Han and Wang, 2020; Stengel et al., 2020) might impede the
data analysis.
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