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Uncertainty quantification (UQ) in weather and climate models is required to assess the

sensitivity of their outputs to various parameterization schemes and thereby improve their

consistency with observations. Herein, we present an efficient UQ and Bayesian inference

for the cloud parameters of the NCAR Single Column Atmosphere Model (SCAM6) using

surrogate models based on a polynomial chaos expansion. The use of a surrogate

model enables to efficiently propagate uncertainties in parameters into uncertainties in

model outputs. We investigated eight uncertain parameters: the auto-conversion size

threshold for ice to snow (dcs), the fall speed parameter for stratiform cloud ice (ai), the

fall speed parameter for stratiform snow (as), the fall speed parameter for cloud water

(ac), the collection efficiency of aggregation ice (eii), the efficiency factor of the Bergeron

effect (berg_eff ), the threshold maximum relative humidity for ice clouds (rhmaxi), and

the threshold minimum relative humidity for ice clouds (rhmini). We built two surrogate

models using two non-intrusive methods: spectral projection (SP) and basis pursuit

denoising (BPDN). Our results suggest that BPDN performs better than SP as it enables

to filter out internal noise during the process of fitting the surrogate model. Five out

of the eight parameters (namely dcs, ai, rhmaxi, rhmini, and eii) account for most of

the variance in predicted climate variables (e.g., total precipitation, cloud distribution,

shortwave and longwave cloud radiative effect, ice, and liquid water path). A first-order

sensitivity analysis reveals that dcs contributes ∼40–80% of the total variance of the

climate variables, ai around 15–30%, and rhmaxi, rhmini, and eii around 5–15%. The

second- and higher-order effects contribute ∼7 and 20%, respectively. The sensitivity of

the model to these parameters was further explored using response curves. A Markov

chain Monte Carlo (MCMC) sampling algorithm was also implemented for the Bayesian

inference of dcs, ai, as, rhmini, and berg_eff using cloud distribution data collected at

the Southern Great Plains (USA). The inferred parameters suggest improvements in the

global Climate Earth System Model (CESM2) simulations of the tropics and sub-tropics.
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INTRODUCTION

Uncertainty quantification (UQ) in weather and climate models
enables to evaluate model sensitivities and also to reduce
inconsistencies between the model outputs and observations
(e.g., Allen et al., 2000; Murphy et al., 2004; Stainforth et al., 2005;
Lopez et al., 2006; Jackson et al., 2008; Le Maitre and Knio, 2010;
Covey et al., 2013). In global climate models (GCMs), subgrid-
scale processes (e.g., cloud characteristics and convection) are
often parameterized using various schemes and assumptions
depending on empirical parameters. These introduce different
levels of uncertainty in the parameterization of subgrid-scales
and, thus, in the eventual model simulations (e.g., Warren and
Schneider, 1979). The UQ analysis requires a large number of
model simulations in order to sample the probability distribution
function (PDF) of a parameter, which increases exponentially
with the number of uncertain parameters (Li et al., 2013).
Parameter estimation can be undertaken through a series of
model simulations that perturb the parameters individually and
determine the predictive skill of the model for each simulation
(e.g., Zaehle and Friend, 2010; Anand et al., 2018; Ricciuto
et al., 2018). However, such methods cannot treat the non-linear
interactions between the input parameters and model outputs
(Tarantola, 2004; Hourdin et al., 2017). UQ has nonetheless been
demonstrated as an effective method to determine the interactive
effects of model parameters (e.g., Jackson et al., 2008; Collins
et al., 2011; Yang et al., 2012, 2013; Covey et al., 2013; Zou et al.,
2014; Guo et al., 2015; Qian et al., 2015; Sraj et al., 2016).

The multi-objective UQ framework is an advanced and robust
approach to investigate interactions between model parameters
and helps to identify the critical parameters to be tuned for
best performances (e.g., Bastos and O’Hagan, 2009; Priess et al.,
2011; Li et al., 2013; Yang et al., 2013; Zhao et al., 2013;
Brown et al., 2014; Wang et al., 2014; Gong et al., 2015; Sraj
et al., 2016; Qian et al., 2018). This framework consists of
three principal components: (a) building an efficient surrogate
model to quantify the sensitivity of the model’s outputs to the
input parameter, (b) identifying the most influential parameters,
and (c) inferring optimized values for these parameters based
on available data. The UQ machinery enables constructing
surrogate models from a relatively reasonable number of model
simulations, for a dozen of input parameters (e.g., Lee et al., 2011;
Zhu et al., 2015). Surrogate models built using regression splines,
Gaussian methods, generalized linear models, and polynomial
chaos expansions (PCE) have been successfully employed in
various regional and global applications (e.g., Lee et al., 2011;
Carslaw et al., 2013; Guo et al., 2015; Zhu et al., 2015; Sraj et al.,
2016).

Uncertainties in climate model simulations are mainly due

to cloud parameterizations such as cloud distribution, cloud–
aerosol interactions, cloud feedback, and the convective activity

of clouds (e.g., Albrecht et al., 1988; Bony and Dufresne, 2005;
Lee et al., 2011, 2012; Carslaw et al., 2013; Zelinka et al., 2013,
2020; Zhao et al., 2013; Bony et al., 2015; Pathak et al., 2020).
Significant improvements in representing convection, clouds,

and cloud–aerosol interactions in climate models have been
achieved in the last two decades (e.g., Sanderson et al., 2008;

Gettelman et al., 2010; Golaz et al., 2011; He and Posselt,
2015; Anand et al., 2018; Pathak et al., 2020). However, work
is still required to minimize the uncertainties associated with
cloud representation (e.g., Schwartz, 2004; Lohmann et al., 2007;
Gettelman et al., 2012; Lee et al., 2012; Hazra et al., 2015).

The Community Atmosphere Model version-6 (CAM6)
describes the atmospheric component of the National Center
for Atmospheric Research (NCAR) Community Earth System
Model version-2 (CESM2) (Danabasoglu et al., 2020). It uses
substantially modified physical parameterizations relative to its
predecessors’ versions, except the radiative transfer scheme.
CAM6 incorporates a single framework known as the Cloud
Layer Unified by Binormals (CLUBB) scheme (Bogenschutz
et al., 2013) to represent boundary layer turbulence, shallow
convection, and cloud macrophysics. An improved two-moment
prognostic cloud microphysics framework (also called MG2;
Gettelman and Morrison, 2015; Gettelman et al., 2015) is also
implemented in CAM6 to integrate prognostic precipitation
species (e.g., rain and snow).MG2 interacts with advancedModal
Aerosol Module (MAM4) aerosol microphysics schemes to
compute condensate mass fractions and number concentrations.
Additional advances in CAM6 include the incorporation of
topographic orientation (ridges) and blocking effects of low-level
flows into the orographic gravity wave scheme.

An UQ analysis was performed on CLUBB parameters using
the NCAR single-column atmospheric model (SCAM) version-
5 by Guo et al. (2015), and Energy Exascale Earth System
Model (E3SM) by Qian et al. (2018). The CLUBB scheme
has significantly improved the simulation of the stratocumulus
to cumulus transition through a substantial improvement in
trade winds in the subtropical oceans and the simulation of
coastal stratocumulus clouds (Bogenschutz et al., 2012, 2013).
The single-column model simulates unresolved subgrid scale
processes using parameterized physics (e.g., convection, clouds,
turbulence, and radiation) by prescribing their dynamical state
and tendencies, such as negligible dynamics-physics coupling
(Jess et al., 2011; Guo et al., 2015; Zhang et al., 2016). In climate
modeling, the single-column model has been a successful tool for
developing, validating, and tuning physical parameterizations,
since running a large number of model integrations from a GCM
is time-consuming and computationally expensive (e.g., Lord
et al., 1982; Betts and Miller, 1986; Guichard et al., 2004; Fridlind
et al., 2012; Guo et al., 2015). Thus, we opt to use the NCAR
SCAM-6 (Gettelman et al., 2019) to perform our UQ analysis of
cloud parameterizations.

In this study, we attempt to understand the response of
CAM6 to cloud micro- and macro-physics parameters. We also
quantify the plausible physical mechanisms responsible for the
sensitivity of model simulations to parametric uncertainties using
cloud hydrometeor and cloud radiative effect distributions, as
well as the convective instability. Our study will thus help
to understand the uncertainties associated with model physics
and enables a set of model parameters to be estimated and
used for model calibration. We also highlight the use of PCE
in climate UQ analysis and Basis Pursuit Denoising (BPDN)
in alleviating internal noise inherent to model physics. We
provide the model details, experimental setup, and parameters
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in section Model Details and Methodology and introduce the
framework for sensitivity analysis and Bayesian inference in
section UQ Framework for Sensitivity Analysis and Bayesian
Inference. We present the results in section Results and
Discussion. In particular, we estimate the relative importance of
sensitive parameters (Section Relative Importance of Sensitive
Parameters), quantify the model responses to changes in
these parameters for different relevant atmospheric variables
(Section Response of Simulated QoI to Sensitive Parameters),
and determine the posterior distributions of these parameters
using Bayesian inference and available observations of cloud
distribution (Section Bayesian Inference). Section Conclusions
concludes the study with a summary of the results and findings.

MODEL DETAILS AND METHODOLOGY

Model Description
SCAM6 was used to investigate the sensitivity of the CAM6
physics package to multiple parameters. A large-scale flow
and its related tendencies were prescribed in SCAM from
observational data. CAM6 incorporates various physics packages,
including (a) the CLUBB (Bogenschutz et al., 2012) scheme for
the planetary boundary layer, shallow cumulus, and stratiform
cloud macrophysics, (b) the MG2 cloud microphysics scheme
(Gettelman and Morrison, 2015) for predicting the mass and
number concentrations of falling condensed species (rain and
snow), (c) the Modal Aerosol Model version-4 (MAM4; Liu
et al., 2016) to account for the influence of aerosol on cloud
microphysics, (d) subgrid orographic drag parameterization
(Beljaars et al., 2004) to represent the turbulence from drag
due to subgrid orography with the horizontal scale <5 km,
and (e) the Zhang and McFarlane (1995) deep convection
scheme, updated by Neale et al. (2008) to include the dilute
CAPE computation and by Richter and Rasch (2008) to include
convective momentum transport. More details on the model
configuration can be found in Gettelman et al. (2019) and
Danabasoglu et al. (2020).

Experimental Setup
We configured SCAM6 with 32 vertical levels, the top-level at
2.26 hPa (∼40 km), and forced it with the ARM97 observations
(Gettelman et al., 2019) collected during the 30 day intensive
observation period on June 1997 over the Southern Great Plains
observatory (SGP: 36◦N and 97◦W; Zhang et al., 2016). The
location of the SGP observatory has a significant impact due
to the prevailing mid-latitude and mid-continent large-scale
weather systems, the wide range of cloud and atmospheric
conditions from migratory disturbances, and the presence of
air masses with strong diurnal and annual cycles. ARM97
measurements are extensively used in single-column models
(SCM) to understand convection, atmospheric radiation, cloud
characteristics, and the interaction between radiation and clouds,
aerosols, and gases (e.g., Guichard et al., 2004; Fridlind et al.,
2012; Petch et al., 2014). In the SCM, the large-scale flow and
its related tendencies are prescribed. The large-scale variables,
such as the zonal and meridional components of the flow (U
and V), temperature (T), moisture (Q) are measurable quantities,

but the vertical advection tendencies of U, V, T, and Q are not,
and are therefore computed using the dynamical core. ARM97
observations provide large-scale variables (i.e., U, V, T, and Q).
The vertical advection tendencies of Q are computed using the
Lagrangian dynamical core and the vertical advection tendencies
of U, V, and T are computed using the Eulerian dynamical core.

Investigated Parameters
We selected eight parameters to quantify the uncertainties
in cloud microphysics and macrophysics (hereafter CMP) as
outlined in Table 1. Although many uncertain parameters
are involved in the CMP scheme, we considered only few
parameters that have been reported as being sensitive in
the previous version of this model (e.g., Covey et al., 2013;
Yang et al., 2013; Qian et al., 2015, 2018; Pathak et al.,
2020). The ice cloud fraction (CFi) is calculated from relative
humidity (RH) using the total ice water mixing ratio [i.e.,
the ice mass mixing ratio (qi) plus water vapor mixing ratio
(qv)] and the saturated vapor mixing ratio over ice (qsat),
as follows:

RHti =
qv + qi

qsat
,

RHd =

(

0,
RHti − RHi_min

RHi_max − RHi_min

)

,

CFi = min(1, RH2
d),

where RHi_max (rhmaxi) and RHi_min (rhmini) are the
threshold relative humidity parameters with respect to the
ice, reflecting high sensitivity to total ice super-saturation
and ice cloud cover (Gettelman et al., 2010). The ice cloud
fraction (CFi) is greater than zero when RHti reaches
rhmini, and is equal to one (or 100%) when RHti reaches
rhmaxi. The mass- and number-weighted terminal fall
speeds for all cloud and precipitation species (cloud water,
cloud ice, rain, and snow) were obtained by performing an
integration over particle size distributions with appropriate
weighting by number concentration or mixing ratio
as follows:

VN =

∫ ∞

0 ( ρa
ρa0

)
0.54

aDb Φ (D) dD
∫ ∞

0 Φ (D)dD
,

Vq =

∫ ∞

0
πρ
6

(

ρa
ρa0

)0.54
aDb+3 Φ (D) dD

∫ ∞

0
πρ
6 D3Φ (D) dD

,

where ρa0 is the reference air density at 850 hPa, and
a and b are the empirical coefficients in the diameter-fall
speed relationship (V = aDb; where V is the terminal
fall speed for an individual particle of diameter D). The
empirical coefficient a for different hydrometeor species (e.g.,
ai for cloud ice, as for snow, and ac for cloud water) is
another critical uncertain parameter. Since the auto-conversion
of cloud ice to form snow is calculated by integrating cloud
ice mass- and number-weighted size distributions larger than
some threshold size, the resultant mixing ratio and number
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TABLE 1 | Cloud microphysics and macrophysics parameters used in this study.

Parameter

name

Description Range Remarks

Low Default High

dcs Auto-conversion size threshold for ice to snow 1e−4 5e−4 9e−4 Mainly affects the distribution of high clouds; higher dcs values

correspond to the lesser conversion of cloud ice to snow

ai Fall speed parameter for stratiform cloud ice 350 700 1,400 Mainly affect ice water content

as Fall speed parameter for stratiform snow 5.860 11.72 23.44 Mainly affect ice water content; larger as values correspond to

higher cloud water terminal fall speeds

ac Fall speed parameter for cloud water 1.5e+7 3e+7 5e+7 Mainly affect cloud water content

eii Collection efficiency aggregation ice 0.001 0.1 1.0 Mainly affect ice water content

berg-eff Efficiency factor for Bergeron effect 0.5 1.0 1.5 Mainly affect vapor deposition on cloud ice and liquid content

rhmaxi Threshold maximum relative humidity for ice clouds 0.90 1.0 1.10 Mainly affect total ice supersaturation and ice cloud fractions

rhmini Threshold minimum relative humidity for ice clouds 0.70 0.80 0.90 Mainly affect ice cloud fraction

distribution into snow category are transferred over some
specified time-scale (τauto; Ferrier, 1994). Consequently, the grid-
scale changes in qi and Ni due to auto-conversion may be given
as follows:

(

∂qi
∂t

)

auto

= −F
πρiN0i

6τauto

[

D3
cs

λi
+

3D2
cs

λ2i
+

6Dcs

λ3i
+

3D

λ4i

]

exp−λiDcs ,

(

∂Ni

∂t

)

= −F
N0i

λiτauto
exp−λiDcs ,

where Dcs (or dcs) is the threshold size parameter separating
cloud ice from snow (used for UQ analysis), ρi is the bulk
density of cloud ice, and τauto = 3 min. In addition, the
parameter describing the efficiency factor for vapor deposition
onto ice (bergeff ) is also used. Korolev et al. (2016) found
that the vapor deposition onto ice and the depletion of liquid
(i.e., the Wegener-Bergeron-Findeisen process) is rarely equal
to its theoretical efficiency due to inhomogeneities in humidity
and updrafts, as well as the generation of supersaturation. The
efficiency factor zero corresponds to the state in which no vapor
is deposited, whereas an efficiency factor of one corresponds to a
perfect deposition state. Gettelman et al. (2019) reported that the
condition in which no vapor is deposited on ice corresponds to a
higher fraction of liquid and supercooled liquid.

UQ FRAMEWORK FOR SENSITIVITY
ANALYSIS AND BAYESIAN INFERENCE

Sensitivity Analysis
According to Sobol (1993), if a set of m-independent random
parameters ξ = (ξ1, . . . , ξm) produces response f (ξ ), it can be
written in the form of an expansion as follows:

f (ξ) = f0 +

m
∑

i=1

fi (ξi)+

m
∑

i=1

m
∑

j>1

fij
(

ξiξj
)

+ . . .

+ f1...,m (ξ1, . . . , ξm) (1)

where f0 is the expected value of f (ξ ), and
fi1 ,..., is ({i1, . . . , is} ; s = 1, . . . ,m) are orthogonal functions.
This representation is commonly referred to as the variance
decomposition analysis. The expected square of this
decomposition (Equation 1) leads to the following variance
decomposition of f (ξ ):

V =

m
∑

i=1

Vi +

m
∑

i=1

m
∑

j>1

Vij + . . .+ V1...m (2)

where V is the total variance of f (ξ ), Vi is the partial variance
due to the perturbation of input parameter ξi alone, and Vi1 ,...,is

is the partial variance due to the interactions between perturbed
input parameters {ξi1 , . . . , ..ξ is}. Sobol’s variance-based sensitivity
indices are:

Si1 ,..,is =
Vi1 ,..,is

V
(3)

The first-order sensitivity index (also called the main effect of
ξi) is:

Si =
Vi

V
(4)

Polynomial Chaos (PC) has been suggested as an efficientmethod
for describing the stochastic processes required to quantify
uncertainties in a given system (Ghanem and Spanos, 1991; Le
Maitre and Knio, 2010). PC is based on a probabilistic paradigm
that reflects the stochastic quantities of interest as a truncated PC
expansion, also termed PCE. The PCE of a particular quantity of
interest (QoI; see Table 2) is written as a function ofm uncertain
parameters [ξ = (ξ1, ξ2, . . . , ξm)] in the [−1, +1] space
as follows:

E (ξ) ≈

R
∑

k=0

ekψk (ξ) (5)

Frontiers in Climate | www.frontiersin.org 4 June 2021 | Volume 3 | Article 670740

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Pathak et al. Uncertainty Quantification and Bayesian Inference

TABLE 2 | First-order sensitivity contribution of parameters for different variables.

Variable Major Contributing Parameter Contribution (in percent)

Total Precipitation (PRECT) dcs, ai, rhmini, rhmaxi, and eii 32, 16, 7, 5, and 4

Long-wave Cloud Radiative Effect (LWCF) dcs and ai 50 and 14

Short-wave Cloud Radiative Effect (SWCF) dcs, ai, rhmaxi, eii, and rhmini 18, 19, 15, 4, and 2

Surface Latent Heat Flux (LHFLX) dcs, ai, rhmaxi, rhmini, and eii 23, 19, 10, 4, and 4

Liquid Water Path (LWP) dcs and ai 11 and 9

Ice Water Path (IWP) dcs and ai 84 and 6

Convective Available Potential Energy (CAPE) dcs, ai, rhmaxi, and rhmini 28, 14, 8, and 4

Medium Cloud Cover rhmaxi, dcs, and rhmini 52, 17, and 11

High Cloud Cover dcs and ai 42 and 5

Total Cloud Cover dcs, ai, and rhmaxi 42, 5, and 2

where E(ξ ) is the desired QoI, ek are the PCE coefficients, and
ψk (ξ) are the multi-dimensional Legendre polynomials that
form the following orthogonal basis:

< ψi,ψj >=

∫

ψi (ξ) ψj (ξ) ρ (ξ) dξ = δij < ψ2
i >,

where ρ (ξ) is the underlying uniform distribution.
The expanded form of the PCE in Equation (5) can be written

as follows:

E(ξ ) = e0ψ0 +

m
∑

i=1

e1ψ1 (ξi)+

m
∑

i=1

m
∑

j≥i

eijψ2

(

ξi, ξj
)

+

m
∑

i=1

m
∑

j≥i

m
∑

k≥j

eijkψ3

(

ξi, ξj, ξk
)

+ , . . . (6)

The total number of expansion terms (R) in Equations 5 and 6 for
m parameters and a PC order r is given by:

R =
(m+ r)!

m!r!
(7)

The PC expansion in Equation (6) is similar to the decomposition
in Equation (1) and thus provides a surrogate for approximating
model outputs for a given set of parameters. Transforming
Equation (6) into Equation (2) enables the corresponding
sensitivity indices to be estimated (Crestaux et al., 2009).

PCE coefficients can be computed using two approaches:
intrusive and non-intrusive. In the intrusive methods, the model
equations are reformulated through the substitution of stochastic
or random variables such that the model deploys the stochastic
Navier Stokes Equation (e.g., Kusch and Frank, 2018). It is often
challenging to compute the PC coefficients from an intrusive
method since it involves source code modification (Ghanem
and Spanos, 1991). Non-intrusive methods, on the other hand,
use samples of model simulations for different realizations of
parameters to build a surrogate model (Peng et al., 2014; Sraj
et al., 2016). Herein, we used a non-intrusive spectral projection
(NISP) method (Reagan et al., 2003; Constantine et al., 2012) to
compute the PCE coefficient as follows:

ek =
< E,ψk >

< ψkψk >
=

1

< ψkψk >

∫

Eψk (ξ) ρ (ξ) dξ (8)

The stochastic integral (Equation 8) is computed numerically
using appropriate quadrature methods, as follows:

< E,ψk >≈

Q
∑

q=1

E
(

ξq
)

ψk(ξq)wq (9)

where Q is the total number of quadrature points, ξq denotes
the vectors of the parameters at a quadrature point q, and wq

is the corresponding weight. The Smolyak sparse nested grid-
based quadrature method (Smolyak, 1963) was used to reduce
the number of SCAM6 runs to build the surrogate model. In
this study, for a PC order with r = 4 and m = 8 parameters
(i.e., total truncated PCE terms R = 495), the total number of
quadrature points created from the Smolyak level 5 was 3937 (see
http://www.sparse-grids.de/ and Smolyak, 1963 for full details of
the Smolyak quadrature).

Figure 1 shows the spectrum of normalized PCE coefficients
(

ek
e0

)

calculated from a non-intrusive spectral projection (NISP;

see Equation 8), and the vertical solid lines separating PCE terms
according to their PC order (r = 4; 1, 2, 3, 4). This indicates
that PC does not converge properly since the estimated PCE
coefficients increase instead of decaying with an increase in PC
order, suggesting an overfitting of the model output. This is due
to internal noise in model simulations that is not tolerated by
the NISP method when calculating PCE coefficients (Peng et al.,
2014; Sraj et al., 2016). We thus opted to use a non-intrusive
technique based on compressed sensing (CS; Chen and Donoho,
1994; Van den Berg and Friedlander, 2007, 2009) to estate more
suitable PCE coefficients.

CS estimates the noise in the data to be fitted and then
approximates them using a PC representation that tolerates the
corresponding noise level. In this case, CS solves Equation (5) by
exploiting the approximate sparsity of its signal, which is set by
the l1 norm. CS with the l1 norm is known as BPDN.

Thus, if we consider E = [E(ξ1),E(ξ2), . . . .., E(ξQ)] as the
vector of model evaluations at different quadrature nodes (ξq),
e = (e0, e1, . . . .., eR) as the vector of PCE coefficients, and ψ
as the PC basis functions evaluated at each sampled ξq, then an
equivalent of Equation (5) could be written as follow:

E = ψe (10)
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FIGURE 1 | PCE normalized coefficients ck/c0 for PC of order up to r = 4. Vertical lines separate the PCE terms into their different PC orders. PCE coefficients were

calculated using the non-intrusive spectral projection (NISP) method.

The CS seeks a solution of Equation (10) with the minimum
number of non-zero entries by solving the optimization problem:

minimize

e
||e||1 : || E− ψe| |2 ≤ δ (11)

where δ is noise, estimated by cross-validation (see Peng
et al., 2014). Equation (11) was solved using a standard l1-
minimization solver based on a spectral projection gradient
algorithm (Van den Berg and Friedlander, 2009) provided in
the SPGL1 MATLAB package by Van den Berg and Friedlander
(2007) (see https://friedlander.io/spgl1/ for full details). The
optimization problem (Equation 11) was solved using the
previously simulated 3937 SCAM6 simulations. The resulting
normalized PCE coefficients (ek/e0) are shown in Figure 2; their
spectrum shows a decaying trend. In BPDN, the decrease in the
PCE coefficients eventually reaches a plateau, while a further
increase in the PC order leads to minimal improvement in the
accuracy of the surrogate model. In light of these results, we used
the BPDN approach to build the surrogate model (Equation 10).

Figure 3 shows the scatter plot of SCAM6 simulations against
results from the surrogate model built using PCE and BPDN
for various variables or quantity of interest (QoI). The surrogate
model and SCAM6 both show linear relationships for various

QoIs and the constructed PCE model reproduces well the
mean of the deterministic model signal. To quantify the level
of agreement between SCAM6 and the surrogate model, we
computed the R2-value to estimate the fraction of total variance
in SCAM6 results explained by the surrogate model. The highest
R2-value (0.99) were obtained for the longwave cloud radiative
effect (LWCF) and the lowest value (0.79) for the convective
available potential energy (CAPE) (Figure 3). The R2-values of
the remaining variables, including cloud water path (CWP),
liquid water path (LWP), total cloud fraction (CLDTOT),
surface latent heat flux (LHFLX), shortwave cloud radiative effect
(SWCF), and total precipitation (PRECT) ranged between 0.79
and 0.99, indicating that BPDN enables to successfully build a
surrogate model that is capable of describing the desired QoIs.

Bayesian Inference
The posterior probability density function (PDF) of the CMP
parameters can be calculated by updating the prior PDF

according to Bayes’ rule. Let d = (d1, d2, . . . dn)
T be a vector

of observation, p = (p1, p2, . . . pn)
T a vector of uncertain input

parameters, and G a forward model such that d ≈ G(p). The
prior PDF [π(p)], which represents a priori information about
p, is assumed to be uniform (non-informative, i.e., π

(

p
)

=
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FIGURE 2 | PCE normalized coefficients ck/c0 for PC of order up to r = 4. Vertical lines separate the PCE terms into their different PC orders. PCE coefficients were

calculated using the basis pursuit denoising (BPDN) method.

∏np
i=1

1
(bi−ai)

, such that ai and bi are, respectively, the lower and

upper bounds of parameter pi; Table 1]. The input parameters
p are assumed to be independent with respect to one another.
According to Bayes’ rule, the posterior [π(p|d)] is proportional
to the product of the likelihood [L(d|p)] and the prior as:

π
(

d
)

∝ L
(

p
)

π(p) (12)

The likelihood is obtained from a cost function E(p) using a
Taylor score (TS, Taylor, 2001) and a scaling factor S (used
to normalize the cost function). Gaussian likelihoods based on
misfits [i.e., the exponential form of the mean-square errors
(MSE)] are widely adopted as cost functions (e.g., Sraj et al., 2016;
Qian et al., 2018). Thus, to consider both the misfit in magnitude
and the mismatch in the vertical cloud distribution, we used
[ln(TS)]2 as the cost function (Guo et al., 2015; Qian et al., 2018)
with a theoretical range of (0, infinity).

π
(

d
)

∝ exp exp
[

−E
(

p
)]

∗π(p) (13)

E
(

p
)

= S.{ln ln
[

TS
(

p
)]

}
2

(14)

The TS used to evaluate model performance in terms of standard
deviation and correlation with respect to observations is given

as follows:

TS =
( σmodel
σobs

+
σobs
σmodel

)
2
(1+ VCC0)

k

4 (1+ VCC)k
(15)

VCC =

∑v
i=1 wi

(

di,model − GMmodel

) (

di,obs − GMobs

)

σmodel. σobs .
∑v

i wi
(15a)

σ =

√

∑v
i=1 wi(di − GM)2

∑v
i=1 wi

(15b)

GM =

∑v
i=1 widi

∑v
i=1 wi

(15c)

where subscripts “obs” and “model” denote the observed
and simulated results, respectively. The standard deviation
and vertical correlation coefficients between the observed and
simulated results are denoted by σ and VCC, respectively. VCC0

denotes the maximum possible vertical correlation between
the observations and the model outputs, and k indicates
a value that controls the correlation of the relative weight
of the vertical level compared to the standard deviation
in TS (Equation 15). VCC0 and k were set to 1 and 4,
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FIGURE 3 | Scatter plots of PC-fitted outputs vs. SCAM6 simulations for various climate variables. Row 1 corresponds to total precipitation (PRECT), convective

precipitation (PRECC), and large-scale precipitation (PRECL). Row 2 corresponds to total precipitable water (TMQ), shortwave cloud radiative effect (SWCF), and

longwave cloud radiative effect (LWCF). Row 3 corresponds to latent heat flux (LHFLX), convective available potential energy (CAPE), and total cloud cover (CLDTOT).

Row 4 is similar to the previous rows but for ice water path (IWP), liquid water path (LWP), and cloud water path (CWP). The fraction (0–1) of the total variance of

SCAM6 simulations explained by the PC-based surrogate model for various climatic variables is indicated by numbers in the upper left of each panel.

respectively, following Yang et al. (2013). A lower TS value
is an indicator of better model performance, and model
prediction and observation are considered identical when
TS = 1. Vector d represents the observed vertical cloud
distribution from ARM97, wi is the vertical weight of a level,
and n is the number of vertical levels. The scaling factor
was chosen as

S =
2

1
(16)

Jackson et al. (2004) noted that the spread of the cost function
(i.e.,) due to natural variability could be used for its normalization
(see Equation 14). In general, the natural variability is estimated
via multiple model runs (Decremer et al., 2015). In this study,

the average of all original simulations corresponding to the set
of perturbed parameters was considered as an indicator of the
spread of model bias due to natural variability (Qian et al.,
2018). The Bayesian formulation thus requires the evaluation
of the posterior distribution (Equation 13) to estimate the
uncertain parameters. To this end, we employed a Markov Chain
Monte Carlo (MCMC) technique; however, such an approach
requires a large number of posterior evaluations in order to
reach a meaningful solution. Each posterior evaluation requires
a single model simulation, which is computationally prohibitive.
Therefore, the PC-based surrogate model was used within the
random-walk Metropolis MCMC algorithm to generate the
50,000 samples from posterior distributions for each parameter
(Metropolis et al., 1953).
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FIGURE 4 | Relative contributions of variance for individual parameters (main effect) to the overall variance of different climatic variables. The total contribution of

variance from the second-order (two-way) interaction between parameters is indicated by the gray box in the bar plot (Int2); the remainder of the contribution to

variance from the higher-order (i.e., order > 2) interactions among other parameters is indicated by a white box for each variable.

RESULTS AND DISCUSSION

Relative Importance of Sensitive
Parameters
Figure 4 shows the contribution of first-order sensitivity for
each parameter, the total second-order interactive effect (int2)
between any two-input parameters, and higher-order interactive
effects (inth) between more than two-input parameters, to
the total explained variance for specific QoIs as resulting
from the PCE surrogate model. The total variance explained
by first-order and interactive effects ranges between 80 and
99% (Figure 4), as reflected by the R2 values for different
QoIs (Figure 3). In Figure 4, int2 indicates the impact of a
parameter on the model simulation depending on a second
parameter, while inth corresponds to the impact of a parameter
on the model simulations depending on more than two
parameters. The contribution of first-order effects (in percent)
to the total explained variance from different parameters are
presented in Table 2. We found that dcs contribution is highest,
about 32, 50, 18, 23, 11, 84, and 28% for PRECT, LWCF,
SWCF, LHFLX, LWP, IWP, and CAPE, respectively. dcs also
contributes about 17, 42, and 42% for the medium-level cloud
(CLDMED), the high-level cloud (CLDHGH), and for the total
cloud (CLDTOT), respectively. The total int2 and inth effect
contributed significantly to the total variance. For example, in
PRECT, LWCF, SWCF, LHFLX, LWP, IWP, CAPE, CLDMED,
CLDHGH, and CLDTOT, the int2 was about 8, 3, 8, 7, 15, 4, 8, 7,
3, and 3%, respectively, while the corresponding inth values were
about 15, 27, 20, 20, 30, 4, 10, 6, 43, and 43% (Figure 4).

In addition to the total int2 effect, we also attempted to
determine how effects induced by a single parameter may be

amplified or suppressed by other parameters, compared to their
OAT sensitivity (Zhao et al., 2013). As shown in Figure 5,
we found that the interactive effects between any two-input
parameters are not consequent (<3%) for most of the simulated
variables, with the exception of the interactive effect between dcs
and ai, which shows a prominent contribution of∼4% to PRECT,
10% to LWP, and ∼4% to SWCF. Although the contributions
of any two-parameter interactions are low relative to individual
contributions, the large number of int2 (28) makes their total int2

contribution from all parameter pairs noteworthy (Figure 4).
In order to identify the overall most sensitive parameters, we

quantified the total effects, including their first-order, int2, and
inth contributions (Figure 6). The total sensitivity for dcs ranges
from 40 to 80%, ai from 15 to 30%, and the three-parameter
combination (rhmaxi, rhmini, and eii) from 5 to 15%with respect
to different simulated QoIs. The total sensitivity of some of these
parameters is insensitive, for example, as, ac, and berg_eff , which
contribute <3% to most simulated QoIs, with the exception of
as, which contributed 2–5% to certain variables. Thus, dcs, ai,
rhmaxi, eii, rhmini, and as were identified as the most influential
parameters in CMP parameterization, arranged in decreasing
order of their total sensitivity.

Response of Simulated QoI to Sensitive
Parameters
According to the parameter sensitivities results presented in
section Relative Importance of Sensitive Parameters, we explain
the response characteristics of different QoIs to different
parameters based on the 3,937 SCAM6 simulations. The
characteristics of the response of different QoIs to a parameter

Frontiers in Climate | www.frontiersin.org 9 June 2021 | Volume 3 | Article 670740

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Pathak et al. Uncertainty Quantification and Bayesian Inference

FIGURE 5 | Relative contributions (in %) from the interaction of a parameter with other parameters, to the total variance of PRECT, PRECC, and PRECL (in the first

row), LWP, IWP, and CWP (in the second row), and LWCF, SWCF, and CLDTOT (in the third row), as estimated using the PC-fitted method.

are examined by analyzing the perturbation effect of a parameter
while keeping the remaining parameter values fixed at their mean
value (i.e., zero in a ±1 uncertainty range). We found that the
substantial increase in CLDHGH (∼64 to 83%) and the partial
increase in CLDMED (∼19 to 28%) following an increase in dcs
(Figure 7) may have occurred because increasing dcs typically
reduces the ice to snow conversion and thus increases the ice
particle content of the upper atmosphere. Further, this increase in
ice particles in the upper atmosphere following an increase in dcs
leads to an increase in IWP (∼0.02 to 0.12 kg/m2), LWCF (∼10 to
25 W/m2), and SWCF (−26 to −33 W/m2), and to a decrease in

LWP (∼0.054 to 0.045 kg/m2) (Figure 8). A decrease in PRECT
(∼3.7 to 3.1 mm/day) in response to an increase in dcs is also
noted (Figure 9), which indirectly alters (decreases) the stability
of the atmosphere (CAPE; Figure 7) and thus the convective
precipitation (PRECC; Figure 9), since changes occur in CMP
but not in convection parameterizations. This phenomenon was
also reported for different CMP parameters by Lin et al. (2016)
and Pathak et al. (2020). In addition, the increase in ai caused
more ice particles to fall, thereby decreasing CLDHGH (∼85 to
78%), LWCF (∼30 to 19W/m2) and SWCF (−35 to−29W/m2),
and IWP (0.1 to 0.06 kg/m2) (Mitchell et al., 2008), while causing
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FIGURE 6 | Total contribution of each parameter to the total explained variance (in %) from PC-fitted outputs against SCAM6 simulations for various climatic variables.

A larger number indicates greater significance.

an increase in LWP from 0.044 to 0.049 kg/m2 (Figures 7, 8). The
ai also affects atmospheric instability, which typically increases
with increasing ai (Figure 7), causing an increase in PRECT
from ∼3.1 to 3.4 mm/day (Figure 9; Sun et al., 2011; Yang et al.,
2013; Pistotnik et al., 2016). The effects of ai on LWCF are small
when compared to the effect of dcs; this could reflect the small
changes in CLDHGH that cause an increase in ai. In general, an
increase in dcs increases the concentrations of ice clouds, whereas
an increase in ai decrease ice cloud concentrations, hence the
increased and decreased albedo effects leading, respectively, to
increasing and decreasing SWCF.

Further, the increase in rhmaxi decreases both the grid
box of full ice cloud cover (i.e., 100%) and clouds that reach
supersaturation, leading to a large decrease in CLDMED (30
to 16%). A substantial decrease in CLDHGH was also found;
however, due to lower temperatures in the upper atmosphere
compared to the mid-level atmosphere, supersaturation was
somewhat counterbalanced. The moderate increase in PRECT
from 3.3 to 3.45 mm/day and decrease in SWCF from −31 to

−29 W/m2 were thus the main reasons behind the observed
increase in rhmaxi (Figures 7–9; Xie et al., 2018). Additionally,
the increase in rhmini reduced the fractional ice cloud cover
formation and thus somewhat increased the presence of liquid
clouds, as shown by the increase in CLDMED from 19 to 26%
(Figure 7). We do not show here the response for CLDLOW
since this was relatively insensitive to CMP parameters; its
variation could be due to the control of frontal clouds and
precipitation over the SGP site in addition to local convection
(Qian et al., 2015).

Furthermore, we evaluated the response characteristics of
the vertical distribution of different variables in Figure 10 and
the response characteristics of their vertical averages (from the
surface to 100 hPa) in Figure 11. In Figure 10, the color bar
values for each panel plot are not shown; however, the highest
to lowest values are indicated by the dark yellow to the dark blue
colors of the contour plot. This suggests that the average value
of (a) snow concentration (maximum at ∼400 hPa with a spread
between 600 and 200 hPa; Figure 10) decreases with increasing
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FIGURE 7 | Variation of convective available potential energy (CAPE), low-level cloud (CLDLOW), medium-level cloud (CLDMED), high-level cloud (CLDHGH), and

total cloud cover (CLDTOT) in response to perturbations of eight different parameters from 3,937 SCAM6 simulations. The numbers in each plot represent the relative

contributions (in %) of each input parameter perturbation to the overall variation of different variables. Red indicates that the contribution is significant (F-test) at the

95% significance level. The line in each plot corresponds to the response effect of the perturbation of a single parameter, keeping all other parameters at the zero

(central) position of the parameter uncertainty range for the simulation of that variable. Vertical bars show the range in the variation of values of a particular variable in

response to the perturbation of other parameters.

dcs for the first half of the parameter space, and (b) cloud liquid
concentration (primarily concentrated between the surface and
600 hPa; Figure 11) significantly changes non-linearly relative

to dcs; generally, it decreases for the first 45% of the parameter
space and increases for the last 45% of the parameter space)
and to as (sensitive only to the last 50% of the parameter
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FIGURE 8 | Variation of liquid water path (LWP), ice water path (IWP), cloud water path (CWP), longwave cloud radiative effect (LWCF), and shortwave cloud radiative

effect (SWCF) in response to perturbations of eight different parameters from 3,937 SCAM6 simulations. The numbers in each plot represent the relative contributions

(in %) of each input parameter perturbation to the overall variation of different variables. Red indicates that the contribution is significant (F-test) at the 95% significance

level. The line in each plot corresponds to the response effect of the perturbation of a single parameter when all other parameters at maintained at the zero (central)

position of their uncertainty range for the simulation of that variable. Vertical bars denote the range of variation in values of a particular variable in response to the

perturbation of other parameters.

space, initially increasing but later decreasing) (Figure 11).
Furthermore, we note that the vertical average of cloud ice
concentration (maximum at about 225 hPa with a spread from

300 to 150 hPa) increases significantly due to increasing dcs but
decreases with increasing ai. The rate at which cloud condensate
is converted to precipitation (maximum at ∼450 hPa with a
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FIGURE 9 | Variation of PRECT, PRECC, PRECL, deep convective precipitation (PREDCC), and total precipitable water (TMQ) in response to perturbations of eight

different parameters from 3,937 SCAM6 simulations. The numbers in each plot represent the relative contributions (in %) of each input parameter perturbation to the

overall variation of different variables. Red denotes that the contribution is significant (F-test) at the 95% significance level. The line in each plot corresponds to the

response effect of the perturbation of a single parameter when keeping all other parameters at the zero (central) position of their uncertainty ranges for the simulation

of that variable. Vertical bars show the range of variation for values of a particular variable in response to the perturbation of other parameters.

spread from 300 to 700 hPa; Figure 10) decreases significantly
with increasing dcs (Figure 11). The vertical averages of longwave
cloud radiative effect (maximum at about 350 hPa and 100

hPa) and shortwave cloud radiative effect (centered at about 250
hPa) are primarily sensitive to dcs and ai in the first 60% of
the parameter space. In general, shortwave and longwave cloud
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radiative effect increase with increasing dcs and decrease with
increasing ai (Figure 11). Additionally, the vertical average of
relative humidity (maximum at about 300 hPa with a spread
from 500 to 200 hPa) increases monotonically due to increasing
dcs, rhmaxi, and rhmini, and decreases due to increasing ai.
The vertical average of specific humidity, which is primarily
distributed from the surface to 800 hPa, increases with increasing
dcs and decreases with increasing as within the first 45% of
parameter space; it also decreases monotonically with increasing
ai in the last 60% of the parameter space (Figure 11). Thus,
the increase in radiative effect with increasing dcs supports our
finding of an increase in LWCF and SWCF, as well as the increase
in ice cloud concentration with increasing dcs, which supports
the substantial increase in IWP. Finally, the decrease in the rate of
conversion of cloud condensate to precipitation with increasing
dcs supports the corresponding reduction in PRECT through a
reduction in its instability (Figures 7, 9).

Bayesian Inference
Finally, we analyze the Bayesian inference results for estimating
CMP parameters. The MCMC algorithm (Metropolis et al.,
1953) was used to generate sample chains for the different CMP
parameters. We have run five times, each for 10,000 iterations
(or samples), with different initial parameter values for efficient
samples mixing and convergence. The PCE surrogate model
was used to evaluate the cost function for each MCMC chain
to reduce the computing requirements. Figure 12 shows the
trace plot of the CMP parameters (chains vs. MCMC iteration
number), indicating a well-mixed chain. This implies that the
distribution of the chains will remain unchanged with further
sampling and converged to a stationary distribution. The average
acceptance rate of MCMC samples was found to be 35%. From
Figure 12, we find that the parameter samples of dcs, ai, as, ac,
rhmaxi, rhmini, berg_eff move around their default CMP values.
The parameter samples for eii, on the other hand, did not move
around the default value, but rather skewed leftward to the default
value to cover a larger part of the prior range, resulting in a
wider posterior.

Further, we computed the marginalized posterior distribution
from the MCMC chains by discarding the first 500 iterations (to
begin with a good starting point of MCMC run) using kernel
density estimates (KDE; Silverman, 1986). The marginalized
posterior PDF for each parameter along the diagonal of the eight-
by-eight matrix shows that the posterior PDFs of dcs, ai, as,
rhminl, and berg_eff exhibit a sharp increase but are skewed
leftward for dcs and rightward for ai and as relative to the default
CMP value (Figure 13). Thus, with respect of the default values
for dcs, ai, and as (0.0005, 700, and 11.72), their posterior mean
estimates are found to be 0.0004, 903, 14.85, respectively, while
those of rhminl and berg_eff are found to be 0.79 and 1.03,
respectively, close to their default values of 0.80 and 1.0. The
posterior mean estimates of these parameters are also found
falling within the acceptable ranges (i.e., within the 95% of the
intervals of high posterior probability). The posterior PDFs of ac,
rhmaxi, and eii do not show a sharp peak and are mostly flat,
consistent with our conclusions from their chains (Figure 12)

and indicating less-informative posteriors, which is likely due to
the lack of relevant observations.

The examination of 1D posterior PDFs provides only a
measure of the integrated influence of parameters on model
output; specific functional dependence is hidden. Thus, in
addition to 1D posterior PDFs, we also show 2D PDFs, which
facilitate parameter space visualization and the identification of
optimized parameter sets. We found that the cost function for a
parameter choice is strongly dependent on the other parameter
chosen (Posselt, 2016). For example, the 2D PDF for rhmaxi and
as, which exhibits a linear response, suggests an increase in cost
function with an increase in both rhmaxi and as. We also found
some parameters whose two-dimensional PDFs do not show
any significant variations with changes in the other parameters,
indicating that the cost function is functionally independent (e.g.,
the 2D PDF of eii does not show any significant changes when
other parameters are changed).

To examine the extent to which the parameters posterior
distributions inferred by the proposed UQ framework provide
useful information, we assessed whether the posterior mean
parameters can improve a global climate model performance.We
therefore performed two sets of 7 year global climate simulations;
one using the default parameters, and the other using the the
posterior mean parameters. Both simulations are conducted
using the CESM2 model with prescribed observed climatological
sea surface and sea-ice temperatures. The simulation with
posterior mean parameters suggests an overall improvement
of ∼7% over the globe in annual means, with the largest
improvement of ∼15% over the global land for December-
February (Figure 14). The simulation of individual climate
variables (e.g., total precipitation, cloud distribution, cloud
radiative effect, and humidity) are improved by 5 to 50% over the
globe, as well as over the tropical and sub-tropical regions, across
the different periods (i.e., annual, June-August, and December-
February), in comparison to the default model simulation
(Figure 14). However, over the polar region, some of the
simulated variables with the posterior mean parameters values
have deteriorated by 5 to 20% compared to the default model
simulation. In our setting, posterior parameters distributions
were inferred from data collected in subtropics at the Southern
Great Plains (36◦N and 97◦W; Zhang et al., 2016), and as such
the resulting parameters are calibrated for such regions, which
also explains the improvement we obtained in the subtropics
and tropics. Recent results (Pathak et al., 2020) suggest a spatial
dependency of some of the considered parameters despite being
prescribed as constant values across the globe. Our results over
the polar regions also support the use of spatially varying cloud
parameters in climate models, which will be explored in depth in
our future work.

CONCLUSIONS

This study used an efficient multi-objective UQ framework
to assess the sensitivity of NCAR SCAM6 outputs to cloud
microphysics and macrophysics (CMP) parameterization
schemes. The framework involved building a surrogate model
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FIGURE 10 | Parameter perturbation response to the vertical distribution of snow concentration (ANSNOW), cloud water concentration (AWNC), ice concentration

(AWNI), precipitation production (PRODPREC), longwave heating rate (QRL), shortwave heating rate (QRS), relative humidity (RELHUM), and specific humidity (Q).
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FIGURE 11 | Parameter perturbation responses to vertically averaged (surface to 100 hPa) variables (ANSNOW, AWNC, AWNI, PRODPREC, QRL, QRS, RELHUM,

and Q).

using a polynomial chaos expansion, sensitivity analysis, and
Bayesian inference to identify and quantify the uncertainties of
various (quantities of interest) QoIs from the NCAR SCAM6

model associated with CMP parameterizations. The basis pursuit
denoising (BPDN) approach was applied to build the polynomial
chaos expansion (PCE) model to mitigate for internal noise
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FIGURE 12 | Chains of parameters from MCMC samples. The horizontal red line (and the value shown in red) indicate the default parameter value used in NCAR

SCAM6.
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FIGURE 13 | Probability Distribution Functions (PDFs) of parameters using KDE along the diagonal of the matrix. The contour plots show the joint PDFs of two

parameters. The black and red vertical lines show the default and posterior mean parameter values.

in model simulations. The surrogate model was shown to
realistically approximate the model outputs, explaining most
of the variance of different QoIs, with the highest explained
variance (about 99%) for longwave cloud radiative effect (LWCF)
and the lowest explained variance (about 79%) for convective
available potential energy (CAPE).

The UQ analysis suggested that the simulated QoIs are most
sensitive to five (dcs, ai, rhmaxi, rhmini, and eii) of the eight
CMP parameters. dcs alone contributed 40–80% of the total
variance of different simulated QoIs, ai 15–30%, and rhmaxi,
rhmini, and eii each contributed 5–15%. Parameters as, ac, and
berg_eff were found to be the least sensitive, each of which
contributed <5% to the total variance. Further splitting the total
sensitivity effect of a parameter into first-, second-, and higher-
order sensitivities, we found that the first-order sensitivity of dcs,
ai, rhmini, rhmaxi, and eii together contribute more than 60%
of the total variance in different QoIs. While, the second- and
higher-order sensitivity of dcs, ai, rhmini, rhmaxi, and eii together
contribute about 7 and 20% of the total variance in different
QoIs. Some previous studies using the predecessor version of this
model have also argued that dcs and ai are the most sensitive
parameters for the simulation of total precipitation over the

tropical region (He and Posselt, 2015; Qian et al., 2015; Zhang,
2015; Pathak et al., 2020). Other studies that employed different
models have also suggested dcs and ai to be highly sensitive to
cloud distribution (e.g., Bony and Dufresne, 2005; Sanderson
et al., 2008; Golaz et al., 2011; Gettelman et al., 2012). The
sensitivity of rhmaxi to cloud distributionwas also reported in the
E3SM model (Qian et al., 2018; Xie et al., 2018). Uncertainties in
these parameters are considered as important factors in climate
model sensitivity (Zelinka et al., 2020).

We also found that an increase in dcs increases the
concentration of ice between 300 and 150 hPa (and vice versa
for snow concentrations) by decreasing the conversion rate
of ice to snow, which causes a substantial increase in cloud
cover. This leads to significant increase in ice water path (IWP),
LWCF, and SWCF. Furthermore, the increase in longwave and
shortwave heating rates due to increased dcs were shown to
sustain the corresponding increases in LWCF and SWCF. A
significant decrease in total precipitation (PRECT) occurred
due to an increase in dcs, which indirectly affected (decreased)
the conversion of cloud condensate to precipitation; this was
clear from the reduced instability, i.e., the CAPE and reduced
convective precipitation. The decrease in the conversion of cloud
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FIGURE 14 | The Model Performance Index (MPI in percent) resulting from simulations of various climate variables over the global, tropics (30◦N−30◦S), norther

subtropics (30–60◦N), southern sub-tropics (30–60◦S), northern polar (60–90◦N), and southern polar (60–90◦S) regions, across different periods [i.e., Annual (ANN),

June-August (JJA), December-February (DJF)]. The MPI is constructed using a metric developed by Zhang (2015). The contours in color show the percentage

improvement (positive values) or deterioration (negative values) for different climate variables from the simulation with posterior mean parameters with respect to the

default model simulation. Total MPI—model performance as averaged over all climate variables. Following observations and reanalysis data are used for construction

of this metrics, the Global Precipitation Climatology Project (Adler et al., 2003) for total precipitation, the Clouds and Earth’s Radiant Energy System-Energy Balanced

and Filled (Loeb et al., 2009) project for shortwave and longwave radiative effect, the National Aeronautics and Space Administration Water Vapor Project (Randel

et al., 1996) for liquid water path over ocean, and the International Satellite Cloud Climatology Project (Young et al., 2018) for low, middle, high, and total cloud, the

ECMWF Interim reanalysis (Dee et al., 2011) for humidity, temperature, and geopotential height.

condensate to precipitation due to an increase in dcs also reduced
the liquid water path (LWP), as noticed from reduced cloud
water concentrations. The possible physical mechanism behind
the sensitivity of QoIs with respect to ai values seems to work
oppositely to dcs. In addition, an increase in relative humidity
occurred in response to increased dcs, rhmaxi, and rhmini. A
decrease (increase) in cloud water concentration in response to
an increase in rhmaxi (rhmini) was also reported. The impact of

rhmaxi and rhmini on PRECT was identified through studying
its effects on middle clouds (CLDMED). Generally, CLDMED
decreases (increases) due to increasing rhmaxi (rhmini).

The Bayesian inference results for vertical cloud distribution
showed that the Markov chain Monte Carlo (MCMC) chains for
dcs, ai, as, ac, rhmaxi, rhmini, and berg_eff fluctuated around
their default CMP values. However, for eii, the MCMC chains
did not fluctuate around the default value but were skewed
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largely leftward; suggesting a non-informative cost function. The
marginalized posterior distributions of the MCMC chains for
dcs, ai, as, rhminl, and berg_eff showed well-defined peaks. The
corresponding posterior mean estimate values were, respectively,
found to be 0.0004, 903, 14.85, 0.79 and 1.03, compared to the
corresponding default values of 0.0005, 700, 11.72, 0.80 and
1.0. The marginalized posterior distributions for ac, rhmaxi,
and eii were mostly flat, indicating the probability of being
nearly uniform across the parameter space; consequently, they do
not provide meaningful information to estimate their posterior
means. Global climate simulations performed using the posterior
mean and default parameters have shown that the climate
simulations using the posterior mean parameters values suggest
an overall-improvement of ∼7% over the globe in annual
means. The largest improvement of ∼15% was obtained over
the global land for December-February. Specifically, the climate
simulations using the posterior mean parameters values were
improved over the tropical and sub-tropical regions, whereas it
has deteriorated over the polar region. In line to the findings
of Pathak et al. (2020), we anticipate that this deterioration
in polar regions could be due to a spatial dependency of
some of the considered parameters despite being prescribed
as constant values across the globe in the climate models.
Furthermore, the functional linear dependence of rhmaxi on
as was also noted from the joint probability distribution of
both parameters. This provides important information for
understanding cloud processes and their associated physical
processes and will assist developers in further improving
climate models.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

RP, HD, AS, SS, SM, OK, and IH identified the problem and
designed the work to meet the objective. RP, HD, SE, and AS
conducted the analysis. RP, HD, SE, AS, SS, SM, OK, and IH
wrote the manuscript using the analysis of RP, HD, SE, and
AS. All authors contributed to the article and approved the
submitted version.

FUNDING

The research reported in this paper was supported by the office
of Sponsor Research (OSR) at King Abdullah University of
Science and Technology (KAUST) under the Virtual Red Sea
Initiative (REP/1/3268-01-01) and the Saudi ARAMCO Marine
Environmental Research Center at KAUST.

ACKNOWLEDGMENTS

The DST Center of Excellence in Climate Modeling (RP03350)
and Indian Institute of Technology Delhi, India, are
acknowledged for their partial support. We thank NCAR
for providing the Single-Column Community Atmosphere
Model (SCAM).

REFERENCES

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., et al.

(2003). The version-2 global precipitation climatology project (GPCP)monthly

precipitation analysis (1979-present). J. Hydrometeorol. 4, 1147–67. doi: 10.

1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2

Albrecht, B. A., Randall, D. A., and Nicholls, S. (1988). Observation of marine

stratocumulus clouds during FIRE. Bull. Amer. Meteor. Soc. 69, 618–636.

doi: 10.1175/1520-0477(1988)069<0618:OOMSCD>2.0.CO;2

Allen, M. R., Stott, P. A., Mitchell, J. F. B., Schnur, R., and Delworth, T. L. (2000).

Quantifying the uncertainty in forecasts of anthropogenic climate change.

Nature 407, 617–620. doi: 10.1038/35036559

Anand, A., Mishra, S. K., Sahany, S., Bhowmick, M., Rawat, J. S., and Dash,

S. K. (2018). Indian summer monsoon simulations: usefulness of increasing

horizontal resolution, manual tuning, and semi-automatic tuning in reducing

present-day model biases. Sci. Rep. 8:3522. doi: 10.1038/s41598-018-21865-1

Bastos, L. S., and O’Hagan, A. (2009). Diagnostics for Gaussian process emulators.

Technometrics 51, 425–438. doi: 10.1198/TECH.2009.08019

Beljaars, A. C. M., Brown, A. R., and Wood, N. (2004). A new parametrization

of turbulent orographic form drag. Q. J. Roy. Meteor. Soc. 130, 1327–1347.

doi: 10.1256/qj.03.73

Betts, A. K., and Miller, M. J. (1986). A new convective adjustment scheme.

Part II: SINGLE column tests using GATE wave, BOMEX, and arctic air-

mass data sets. Q. J. R. Meteor. Soc. 112, 693–709. doi: 10.1002/qj.49711

247308

Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C.,

and Schanen, D. P. (2013). Higher-order turbulence closure and its impact

on climate simulations in the community atmosphere model. J. Clim. 26,

9655–9676. doi: 10.1175/JCLI-D-13-00075.1

Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Schanen, D. P.,

Meyer, N. R., et al. (2012). Unified parameterization of the planetary boundary

layer and shallow convection with a higher-order turbulence closure in the

Community Atmosphere Model: single-column experiments. Geosci. Model

Dev. 5, 1407–1423. doi: 10.5194/gmd-5-1407-2012

Bony, S., and Dufresne, J. L. (2005). Marine boundary layer clouds

at the heart of tropical cloud feedback uncertainties in climate

models. Geophys. Res. Lett. 32:L20806. doi: 10.1029/2005GL02

3851

Bony, S., Stevens, B., Frierson, M. W., Jakob, C., Kageyama, M., Pincus, R., et al.

(2015). Clouds, circulation and climate sensitivity. Nat. Publ. Gr. 8, 261–268.

doi: 10.1038/ngeo2398

Brown, S. J., Murphy, J. M., Sexton, D. M. H., and Harris, G. R. (2014).

Climate projections of future extreme events accounting for modelling

uncertainties and historical simulation biases. Clim. Dyn. 43, 2681–2705.

doi: 10.1007/s00382-014-2080-1

Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M.,

et al. (2013). Large contribution of natural aerosols to uncertainty in indirect

forcing. Nature 503, 67–71. doi: 10.1038/nature12674

Chen, S., and Donoho, D. (1994). “Basis pursuit,” in Proceedings of 1994 28th

Asilomar Conference on Signals, Systems, and Computers (Pacific Grove, CA).

doi: 10.1109/ACSSC.1994.471413

Collins, M., Booth, B. B., Bhaskaran, B., Harris, G. R., Murphy, J. M., Sexton, D. M.

H., et al. (2011). Climate model errors, feedbacks and forcings: a comparison

of perturbed physics and multi-model ensembles. Clim. Dyn. 36, 1737–1766.

doi: 10.1007/s00382-010-0808-0

Constantine, P. G., Eldred, M. S., and Phipps, E. T. (2012). Sparse pseudospectral

approximation method. Comput. Methods Appl. Mech. Eng. 229–232, 1–12.

doi: 10.1016/j.cma.2012.03.019

Frontiers in Climate | www.frontiersin.org 21 June 2021 | Volume 3 | Article 670740

https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
https://doi.org/10.1175/1520-0477(1988)069<0618:OOMSCD>2.0.CO;2
https://doi.org/10.1038/35036559
https://doi.org/10.1038/s41598-018-21865-1
https://doi.org/10.1198/TECH.2009.08019
https://doi.org/10.1256/qj.03.73
https://doi.org/10.1002/qj.49711247308
https://doi.org/10.1175/JCLI-D-13-00075.1
https://doi.org/10.5194/gmd-5-1407-2012
https://doi.org/10.1029/2005GL023851
https://doi.org/10.1038/ngeo2398
https://doi.org/10.1007/s00382-014-2080-1
https://doi.org/10.1038/nature12674
https://doi.org/10.1109/ACSSC.1994.471413
https://doi.org/10.1007/s00382-010-0808-0
https://doi.org/10.1016/j.cma.2012.03.019
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Pathak et al. Uncertainty Quantification and Bayesian Inference

Covey, C., Lucas, D. D., Tannahill, J., Garaizar, X., and Klein, R. (2013). Efficient

screening of climate model sensitivity to a large number of perturbed input

parameters. J. Adv. Model. Earth Syst. 5, 598–610. doi: 10.1002/jame.20040

Crestaux, T., Le Maitre, O. P., and Martinez, J.-M. (2009). Polynomial chaos

expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94, 1161–1172.

doi: 10.1016/j.ress.2008.10.008

Danabasoglu, G., Lamarque, J. -F., Bacmeister, J., Bailey, D. A., and DuVivier, A.

K., Edwards, J., et al. (2020). The Community Earth System Model Version 2

(CESM2). J. Adv. Model. Earth Syst. 12, 1–35. doi: 10.1029/2019MS001916

Decremer, D., Chung, C. E., and Raisanen, P. (2015). Strategies for reducing the

climate noise in model simulations: ensemble runs versus a long continuous

run. Clim. Dyn. 44, 1367–1379. doi: 10.1007/s00382-014-2161-1

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al.

(2011). The ERA-Interim reanalysis: configuration and performance of the data

assimilation system. Q. J. R. Meteor. Soc. 137, 553–597. doi: 10.1002/qj.828

Ferrier, B. S. (1994). A double-moment multiple-phase four-class bulk ice scheme.

Part I: description. J. Atmos. Sci. 51, 249–280.

Fridlind, A. M., Ackerman, A. S., Chaboureau, J.-P., Fan, J., Grabowski, W.

W., Hill, A. A., et al. (2012). A comparison of TWP-ICE observational

data with cloud-resolving model results. J. Geophys. Res. 117:D05204.

doi: 10.1029/2011JD016595

Gettelman, A., Kay, J. E., and Shell, K. M. (2012). The evolution of climate

sensitivity and climate feedbacks in the community atmosphere model. J. Clim.

25, 1453–1469. doi: 10.1175/JCLI-D-11-00197.1

Gettelman, A., Liu, X., Ghan, S. J., Morrison, H., Park, S., Conley, A. J., et al. (2010).

Global simulations of ice nucleation and ice supersaturation with an improved

cloud scheme in the Community Atmosphere Model. J. Geophys. Res. Atmos.

115, 1–19. doi: 10.1029/2009JD013797

Gettelman, A., and Morrison, H. (2015). Advanced two-moment bulk

microphysics for global models. Part I: off-line tests and comparison

with other schemes. J. Clim. 28, 1268–1287. doi: 10.1175/JCLI-D-14-

00102.1

Gettelman, A., Morrison, H., Santos, S., Bogenschutz, P., and Caldwell, P. M.

(2015). Advanced two-moment bulk microphysics for global models. Part II:

global model solutions and aerosol-cloud interactions. J. Clim. 28, 1288–1307.

doi: 10.1175/JCLI-D-14-00103.1

Gettelman, A., Truesdale, J. E., Bacmeister, T., Caldwell, P. M., Neale, R.

B., Bogenschutz, P. A., et al. (2019). The Single Column Atmosphere

Model Version 6 (SCAM6): not a scam but a tool for model

evaluation and development. J. Adv. Model. Earth Syst. 11, 1381–1401.

doi: 10.1029/2018MS001578

Ghanem, R. G., and Spanos, P. D. (1991). Stochastic Finite Elements: A Spectral

Approach.New York, NY: Springer-Verlag, 214. doi: 10.107/978-1-4612-3094-6

Golaz, J.-C., Salzmann, M., Donner, L. J., Horowitz, L. W., Ming, Y., and Zhao,

M. (2011). Sensitivity of the aerosol indirect effect to sub-grid variability in

the cloud parameterization of the GFDL atmosphere general circulation model

AM3. J. Clim. 24, 3145–3160. doi: 10.1175/2010JCLI3945.1

Gong, W., Duan, Q., Li, J., Wang, C., Di, Z., Dai, Y., et al. (2015).

Multi-objective parameter optimization of common land model using

adaptive surrogate modeling. Hydrol. Earth Syst. Sci. 19, 2409–2425.

doi: 10.5194/hess-19-2409-2015

Guichard, F., Petch, J. C., Redelsperger, J.-L., Bechtold, P., Chaboureau, J.-P.,

Cheinet, S., et al. (2004). Modelling the diurnal cycle of deep precipitating

convection over land with cloud-resolving models and single-column models.

Q. J. R. Meteor. Soc. 130, 3139–3172. doi: 10.1256/qj.03.145

Guo, Z., Wang, M., Qian, Y., Larson, V. E., Ghan, S., Ovchinnikov, M., et al. (2015).

A sensitivity analysis of cloud properties to CLUBB parameters in the single-

column Community Atmosphere Model (SCAM5). J. Adv. Model. Earth Syst.

6, 829–858. doi: 10.1002/2014MS000315

Hazra, A., Chaudhari, H. S., Rao, S. A., Goswami, B. N., Dhakate, A., Pokhrel, S.,

et al. (2015). Impact of revised cloud microphysical scheme in CFSv2 on the

simulation of the Indian summer monsoon. Int. J. Climatol. 35, 4738–4755.

doi: 10.1002/joc.4320

He, F., and Posselt, D. J. (2015). Impact of parameterized physical processes on

simulated tropical cyclone characteristics in the community atmospheremodel.

J. Clim. 28, 9857–9872. doi: 10.1175/JCLI-D-15-0255.1

Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J. C., Balaji, V., Duan, Q., et al.

(2017). The art and science of climate model tuning. Bull. Am. Meteor. Soc. 98,

589–602. doi: 10.1175/BAMS-D-15-00135.1

Jackson, C., Sen, M., and Stoffa, P. (2004). An efficient stochastic Bayesian

approach to optimal parameter and uncertainty estimation for climate model

predictions. J. Clim. 17, 2828–2841. doi: 10.1175/1520-0442(2004)017andlt

Jackson, C. S., Sen, M. K., Huerta, G., Deng, Y., and Bowman, K. P. (2008).

Error reduction and convergence in climate prediction. J. Clim. 21, 6698–6709.

doi: 10.1175/2008JCLI2112.1

Jess, S., Spichtinger, P., and Lohmann, U. (2011). A statistical subgrid-

scale algorithm for precipitation formation in stratiform clouds in the

ECHAM5 single column model. Atmos. Chem. Phys. Discuss. 11, 9335–9374.

doi: 10.5194/acpd-11-9335-2011

Korolev, A., Khain, A., Pinsky, M., and French, J. (2016). Theoretical study of

mixing in liquid clouds—Part 1: classical concepts. Atmos. Chem. Phys. 16,

9235–9254. doi: 10.5194/acp-16-9235-2016

Kusch, J., and Frank, M. (2018). Intrusive methods in uncertainty quantification

and their connection to kinetic theory. Int. J. Adv. Eng. Sci. Appl. Math. 10,

54–69. doi: 10.1007/s12572-018-0211-3

Le Maitre, O. P., and Knio, O. M. (2010). Spectral Methods for

Uncertainty Quantification. Dordrecht: Springer-Verlag, 536.

doi: 10.1007/978-90-481-3520-2

Lee, L. A., Carslaw, K. S., Pringle, K., Mann, G. W., and Spracklen, D. V.

(2011). Emulation of a complex global aerosol model to quantify sensitivity

to uncertain parameters. Atmos. Chem. Phys. Discuss. 11, 12253–12272.

doi: 10.5194/acp-11-12253-2011

Lee, L. A., Carslaw, K. S., Pringle, K. J., and Mann, G. W. (2012). Mapping the

uncertainty in global CCN using emulation.Atmos. Chem. Phys. 12, 9739–9751.

doi: 10.5194/acp-12-9739-2012

Li, J. D., Duan, Q. Y., Gong, W., ye, A. Z., Dai, Y. J., Miao, C. Y., et al.

(2013). Assessing parameter importance of the Common Land Model based on

qualitative and quantitative sensitivity analysis. Hydrol. Earth Syst. Sci. Discuss.

10, 2243–2286. doi: 10.5194/hessd-10-2243-2013

Lin, G., Wan, H., Zhang, K., Qian, Y., and Ghan, S. J. (2016). Can nudging be

used to quantify model sensitivities in precipitation and cloud forcing?. J. Adv.

Model. Earth Syst. 8, 1073–1109. doi: 10.1002/2016MS000659

Liu, X., Ma, P. L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., et al. (2016).

Description and evaluation of a new four-mode version of the modal aerosol

module (MAM4) within version 5.3 of the community atmosphere model.

Geosci. Model Dev. 9, 505–522. doi: 10.5194/gmd-9-505-2016

Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F., Kato, S.,

et al. (2009). Toward optimal closure of the earth’s top-of-atmosphere radiation

budget. J. Clim. 22, 748–766. doi: 10.1175/2008JCLI2637.1

Lohmann, U., Stier, P., Hoose, C., Ferrachat, S., Kloster, S., Roeckner, E.,

et al. (2007). Cloud microphysics and aerosol indirect effects in the global

climate model ECHAM5-HAM. Atmos. Chem. Phys. Discuss. 7, 3719–3761.

doi: 10.5194/acpd-7-3719-2007

Lopez, A., Tebaldi, C., New, M., Stainforth, D., Allen, M., Kettleborough, J.,

et al. (2006). Two approaches to quantifying uncertainty in global temperature

changes. J. Clim. 19, 4785–4796. doi: 10.1175/JCLI3895.1

Lord, S. J., Chao, W. C., and Arakawa, A. (1982). Interaction of a cumulus cloud

ensemble with the large-scale environment. Part IV: the discrete model. J.

Atmos. Sci. 39, 104–113.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,

E. (1953). Equation of state calculations by fast computing machines. J. Chem.

Phys. 21, 1087–1092. doi: 10.1063/1.1699114

Mitchell, D. L., Rasch, P., Ivanova, D., McFarquhar, G., and Nousiainen,

T. (2008). Impact of small ice crystal assumptions on ice sedimentation

rates in cirrus clouds and GCM simulations. Geophys. Res. Lett. 35, 1–5.

doi: 10.1029/2008GL033552

Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins,

M., et al. (2004). Quantification of modelling uncertainties in a large ensemble

of climate change simulations. Nature 430, 768–772. doi: 10.1038/nature02771

Neale, R. B., Richter, J. H., and Jochum, M. (2008). The impact of convection on

ENSO: from a delayed oscillator to a series of events. J. Clim. 21, 5904–5924.

doi: 10.1175/2008JCLI2244.1

Pathak, R., Sahany, S., and Mishra, S. K. (2020). Uncertainty quantification

based cloud parameterization sensitivity analysis in the NCAR community

atmosphere model. Sci. Rep. 10, 1–17. doi: 10.1038/s41598-020-74441-x

Peng, J., Hampton, J., and Doostan, A. (2014). A weighted ℓ1-minimization

approach for sparse polynomial chaos expansions. J. Comput. Phys. 267,

92–111. doi: 10.1016/j.jcp.2014.02.024

Frontiers in Climate | www.frontiersin.org 22 June 2021 | Volume 3 | Article 670740

https://doi.org/10.1002/jame.20040
https://doi.org/10.1016/j.ress.2008.10.008
https://doi.org/10.1029/2019MS001916
https://doi.org/10.1007/s00382-014-2161-1
https://doi.org/10.1002/qj.828
https://doi.org/10.1029/2011JD016595
https://doi.org/10.1175/JCLI-D-11-00197.1
https://doi.org/10.1029/2009JD013797
https://doi.org/10.1175/JCLI-D-14-00102.1
https://doi.org/10.1175/JCLI-D-14-00103.1
https://doi.org/10.1029/2018MS001578
https://doi.org/10.107/978-1-4612-3094-6
https://doi.org/10.1175/2010JCLI3945.1
https://doi.org/10.5194/hess-19-2409-2015
https://doi.org/10.1256/qj.03.145
https://doi.org/10.1002/2014MS000315
https://doi.org/10.1002/joc.4320
https://doi.org/10.1175/JCLI-D-15-0255.1
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.1175/1520-0442(2004)017andlt;2828:AESBATandgt;2.0.CO;2
https://doi.org/10.1175/2008JCLI2112.1
https://doi.org/10.5194/acpd-11-9335-2011
https://doi.org/10.5194/acp-16-9235-2016
https://doi.org/10.1007/s12572-018-0211-3
https://doi.org/10.1007/978-90-481-3520-2
https://doi.org/10.5194/acp-11-12253-2011
https://doi.org/10.5194/acp-12-9739-2012
https://doi.org/10.5194/hessd-10-2243-2013
https://doi.org/10.1002/2016MS000659
https://doi.org/10.5194/gmd-9-505-2016
https://doi.org/10.1175/2008JCLI2637.1
https://doi.org/10.5194/acpd-7-3719-2007
https://doi.org/10.1175/JCLI3895.1
https://doi.org/10.1063/1.1699114
https://doi.org/10.1029/2008GL033552
https://doi.org/10.1038/nature02771
https://doi.org/10.1175/2008JCLI2244.1
https://doi.org/10.1038/s41598-020-74441-x
https://doi.org/10.1016/j.jcp.2014.02.024
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Pathak et al. Uncertainty Quantification and Bayesian Inference

Petch, J. C., Hill, A., Davies, L., Fridlind, A., Jakob, C., Lin, Y., Xie, S.,

and Zhu, P. (2014). Evaluation of intercomparisons of four different types

of model simulating TWP-ICE. Quart. J. Roy. Meteor. Soc. 140, 826–837.

doi: 10.1002/qj.2192

Pistotnik, G., Groenemeijer, P., and Sausen, R. (2016). Validation of convective

parameters in MPI-ESM decadal hindcasts (1971-2012) against ERA-interim

reanalyses.Meteorol. Zeitschr. 25, 631–643. doi: 10.1127/metz/2016/0649

Posselt, D. J. (2016). A Bayesian examination of deep convective squall line

sensitivity to changes in cloud microphysical parameters. J. Atmos. Sci. 73,

637–665. doi: 10.1175/JAS-D-15-0159.1

Priess, M., Koziel, S., and Slawig, T. (2011). Surrogate-based optimization of

climate model parameters using response correction. J. Computer Sci. 2, 335–

344. doi: 10.1016/j.jocs.2011.08.004

Qian, Y., Wan, H., Yang, B., Golaz, J.-C., Harrop, B., Hou, Z., et al. (2018).

Parametric sensitivity and uncertainty quantification in the version 1 of E3SM

atmosphere model based on short perturbed parameter ensemble simulations.

J. Geophys. Res. Atmos. 123, 13046–13073. doi: 10.1029/2018JD028927

Qian, Y., Yan, H., Hou, A., Johannesson, G., and Klein, S. (2015). Parametric

sensitivity analysis of precipitation at global and local scales in the

Community Atmosphere Model CAM5. J. Adv. Model. Earth Syst. 6, 513–526.

doi: 10.1002/2014MS000354

Randel, D. L., Vonder Haar, T. H., Ringerud, M. A., Stephens, G. L., Greenwald,

T. H., and Combs, C. L. (1996). A new global water vapor dataset. Bureau Am.

Meteor. Soc. 77, 1233–1246.

Reagan, M. T., Najm, H. N., Ghanem, R. G., and Knio, O. M. (2003). Uncertainty

quantification in reacting flow simulations through non-intrusive spectral

projection.Combust. Flame 132, 545–555. doi: 10.1016/S0010-2180(02)00503-5

Ricciuto, D., Sargsyan, K., and Thornton, P. (2018). The impact of parametric

uncertainties on biogeochemistry in the E3SM landmodel. J. Adv. Model. Earth

Syst. 10, 297–319. doi: 10.1002/2017MS000962

Richter, J. H., and Rasch, P. J. (2008). Effects of convective momentum transport

on the atmospheric circulation in the community atmospheric model, Version

3. J. Clim. 21, 1487–1499. doi: 10.1175/2007JCLI1789.1

Sanderson, B. M., Piani, C., Ingram, W. J., Stone, D. A., and Allen, M. R. (2008).

Towards constraining climate sensitivity by linear analysis of feedback patterns

in thousands of perturbed-physics GCM simulations. Clim. Dyn. 30, 175–190.

doi: 10.1007/s00382-007-0280-7

Schwartz, S. E. (2004). Uncertainty requirements in radiative forcing

of climate change. J. Air Waste Manag. Assoc. 54, 1351–1359.

doi: 10.1080/10473289.2004.10471006

Silverman, B. W. (1986). Density Estimation: For Statistics and Data Analysis.

London: Chapman and Hall, 175.

Smolyak, S. A. (1963). Quadrature and interpolation formulas for tensor products

of certain classes of functions. Dokl. Akad. Nauk SSSR. 4, 240–243.

Sobol, I. (1993). Sensitivity analysis or nonlinear mathematical models. Math.

Model Comput. Exp. 1, 407–414.

Sraj, I., Zedler, S. E., Knio, O. M., Jackson, C. S., and Hoteit, I. (2016). Polynomial

chaos-based Bayesian inference of K-profile parameterization in a general

circulation model of the tropical pacific. Mon. Weather Rev. 144, 4621–4640.

doi: 10.1175/MWR-D-15-0394.1

Stainforth, D. A., Aina, T., Christensen, C., Collins, M., and faull, N., Frame, D. J.,

et al. (2005) Uncertainty in predictions of the climate response to rising levels

of greenhouse gases. Nature 433, 403–406. doi: 10.1038/nature03301

Sun, F., Hall, A., and Qu, X. (2011). On the relationship between low cloud

variability and lower tropospheric stability in the Southeast Pacific. Atmos.

Chem. Phys. 11, 9053–9065. doi: 10.5194/acp-11-9053-2011

Tarantola, A. (2004). Inverse Problem Theory and Methods for Model Parameter

Estimation. SIAM, 342.

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a

single diagram. J. Geophys. Res. 106, 7183–7192. doi: 10.1029/2000JD900719

Van den Berg, E., and Friedlander, M. P. (2007). SPGL1: A Solver for Large-Scale

Sparse Reconstruction. Available online at: https://www.cs.ubc.ca/~mpf/spgl1/

index.html (accessed January 10, 2020).

Van den Berg, E., and Friedlander, M. P. (2009). Probing the Pareto

frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31, 890–912.

doi: 10.1137/080714488

Wang, C., Duan, Q. Y., Gong, W., Ye, A. Z., Di, Z. H., and Miao, C. Y.

(2014). An evaluation of adaptive surrogate modeling based optimization

with two benchmark problems. Environ. Model. Softw. 60, 167–179.

doi: 10.1016/j.envsoft.2014.05.026

Warren, S. G., and Schneider, S. H. (1979). Seasonal simulation as a test for

uncertainties in the parameterizations of a Budyko-Sellers zonal climate model.

J. Atmos. Sci. 36, 1377–1397.

Xie, S., Lin, W., Rasch, P. J., Ma, P.-L., Neale, R., Larson, V. E., et al.

(2018). Understanding cloud and convective characteristics in version 1 of

the E3SM atmosphere model. J. Adv. Model. Earth Syst. 10, 2618–2644.

doi: 10.1029/2018MS001350

Yang, B., Qian, Y., Lin, G., Leung, L. R., Rasch, P. J., Zhang, G. J., et al.

(2013). Uncertainty quantification and parameter tuning in the cam5 zhang-

mcfarlane convection scheme and impact of improved convection on

the global circulation and climate. J. Geophys. Res. Atmos. 118, 395–415.

doi: 10.1029/2012JD018213

Yang, B., Qian, Y., Lin, G., Leung, R., and Zhang, Y. (2012). Some issues in

uncertainty quantification and parameter tuning: a case study of convective

parameterization scheme in the WRF regional climate model. Atmos. Chem.

Phys. 12, 2409–2427. doi: 10.5194/acp-12-2409-2012

Young, A., Knapp, K. R., Inamdar, A., Hankins, W., and Rossow,W. B. (2018). The

International Satellite Cloud Climatology Project H-Series climate data record

product. Earth Syst. Sci. Data 10, 583–593. doi: 10.5194/essd-10-583-2018

Zaehle, S., and Friend, A. D. (2010). Carbon and nitrogen cycle dynamics in

the O-CN land surface model: 1. Model description, site-scale evaluation,

and sensitivity to parameter estimates. Glob. Biogeochem. Cycles 24:GB1005.

doi: 10.1029/2009GB003521

Zelinka, M. D., Klein, S. A., and Taylor, K. E. (2013). Contributions of different

cloud types to feedbacks and rapid adjustments in CMIP5. J. Clim. 26,

5007–5027. doi: 10.1175/JCLI-D-12-00555.1

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi,

P., et al. (2020). Causes of higher climate sensitivity in CMIP6models.Geophys.

Res. Lett. 47, 1–12. doi: 10.1029/2019GL085782

Zhang, G. J., and McFarlane, N. A. (1995). Sensitivity of climate simulations

to the parameterization of cumulus convection in the canadian

climate centre general circulation model. Atmosph. Ocean 33, 407–446.

doi: 10.1080/07055900.1995.9649539

Zhang, M., Somerville, R. C. J., and Xie, S. (2016). The SCM concept

and creation of ARM forcing datasets. Meteorol. Monogr. 57, 24.1–24.12.

doi: 10.1175/AMSMONOGRAPHS-D-15-0040.1

Zhang, T. (2015). An automatic and effective parameter optimization method for

model tuning.Geosci. Model Dev. 8, 3579–3591. doi: 10.5194/gmd-8-3579-2015

Zhao, C., Liu, X., Qian, Y., Yoon, J., Hou, Z., Lin, G., et al. (2013). A

sensitivity study of radiative fluxes at the top of atmosphere to cloud-

microphysics and aerosol parameters in the community atmosphere model

CAM5. Atmos. Chem. Phys. 13, 10969–10987. doi: 10.5194/acp-13-10969-

2013

Zhu, Q., Xu, X., Gao, C., Ran, Q.-H., and Xu, Y.-P. (2015). Qualitative and

quantitative uncertainties in regional rainfall frequency analysis. J. Zhejiang

Univ. Sci. A 16, 194–203. doi: 10.1631/jzus.A1400123

Zou, L. W., Qian, Y., Zhou, T. J., and Yang, B. (2014). Parameter tuning and

calibration of RegCM3 with MIT-Emanuel cumulus parameterization

scheme over CORDEX East Asia domain. J. Clim. 27, 7687–7701.

doi: 10.1175/JCLI-D-14-00229.1

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Pathak, Dasari, El Mohtar, Subramanian, Sahany, Mishra, Knio

and Hoteit. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Climate | www.frontiersin.org 23 June 2021 | Volume 3 | Article 670740

https://doi.org/10.1002/qj.2192
https://doi.org/10.1127/metz/2016/0649
https://doi.org/10.1175/JAS-D-15-0159.1
https://doi.org/10.1016/j.jocs.2011.08.004
https://doi.org/10.1029/2018JD028927
https://doi.org/10.1002/2014MS000354
https://doi.org/10.1016/S0010-2180(02)00503-5
https://doi.org/10.1002/2017MS000962
https://doi.org/10.1175/2007JCLI1789.1
https://doi.org/10.1007/s00382-007-0280-7
https://doi.org/10.1080/10473289.2004.10471006
https://doi.org/10.1175/MWR-D-15-0394.1
https://doi.org/10.1038/nature03301
https://doi.org/10.5194/acp-11-9053-2011
https://doi.org/10.1029/2000JD900719
https://www.cs.ubc.ca/~mpf/spgl1/index.html
https://www.cs.ubc.ca/~mpf/spgl1/index.html
https://doi.org/10.1137/080714488
https://doi.org/10.1016/j.envsoft.2014.05.026
https://doi.org/10.1029/2018MS001350
https://doi.org/10.1029/2012JD018213
https://doi.org/10.5194/acp-12-2409-2012
https://doi.org/10.5194/essd-10-583-2018
https://doi.org/10.1029/2009GB003521
https://doi.org/10.1175/JCLI-D-12-00555.1
https://doi.org/10.1029/2019GL085782
https://doi.org/10.1080/07055900.1995.9649539
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0040.1
https://doi.org/10.5194/gmd-8-3579-2015
https://doi.org/10.5194/acp-13-10969-2013
https://doi.org/10.1631/jzus.A1400123
https://doi.org/10.1175/JCLI-D-14-00229.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles

	Uncertainty Quantification and Bayesian Inference of Cloud Parameterization in the NCAR Single Column Community Atmosphere Model (SCAM6)
	Introduction
	Model Details and Methodology
	Model Description
	Experimental Setup
	Investigated Parameters

	UQ Framework For Sensitivity Analysis and Bayesian Inference
	Sensitivity Analysis
	Bayesian Inference

	Results and Discussion
	Relative Importance of Sensitive Parameters
	Response of Simulated QoI to Sensitive Parameters
	Bayesian Inference

	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


