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Evidence suggests that climate change could drastically reduce Mexico’s agricultural

productivity with severe socio-ecological consequences. Population growth and the

increasing demand of resources will exacerbate these impacts. Focusing on rainfed

maize production, we evaluate the socio-ecological risk that municipalities currently

face and how climate change could modify it. Municipalities were classified based on

their biophysical and socioeconomic traits like temperature, precipitation, population,

gross domestic product, marginalization, and agricultural subsidies. The study identifies

municipalities that would face higher risk under climate change conditions, and it

evaluates whether increases in agricultural subsidies could be effective for reducing the

farmers’ future risk. Our results show that during the 2010’s, 36.8% of the municipalities

and 15% of the population were at very high and high risk, respectively. By 2070,

under a high-warming scenario these figures increase to 56.5 and 18.5%. We find

that a generalized augment in agricultural subsidies is not enough to compensate for

the effects of climate change on the socio-ecological risk of rainfed maize producers.

We suggest that transformative adaptation is required for managing the agricultural

risk that socio-ecological systems experience under climate change conditions. Such

adaptation strategies should include poverty alleviation, promotion of resistant and native

varieties of crops, capacity building to improve management and water use, sustainable

technification, and soil restoration.

Keywords: socio-ecological system, maize, risk assessment, Mexico, climate change

INTRODUCTION

Agriculture is the main livelihood option and one of the primary sources of people’s household
self-consumption and income in rural and peri-urban areas of low-and middle-income countries
(Stevens andMadani, 2016). Nevertheless, this activity is highly sensitive to changes in temperature
and precipitation regimes (IPCC, 2014). Due to observed changes in climate, almost every aspect of
food security (i.e., production, access, and price stability) has been affected, especially in poor and
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vulnerable societies. Such situation puts agricultural livelihoods
at risk and in a state of insecurity, threatens food production at
the local level, and it can lead to cascade impacts on regional and
global population (Cohn et al., 2016; Donatti et al., 2019; Ray
et al., 2019).

Climate change risk arises from the interaction between
hazard, vulnerability, and exposure (IPCC, 2014). Various social
and economic processes influence these latter attributes of risk.
That means that risk is not an isolated entity constructed solely
by the possible impacts of biophysical components. It is linked
to socioeconomic, cultural, and ecological traits that modify the
systems’ resistance and resilience (Kotzee and Reyers, 2016).
Changes in exposure to adverse climatic elements like high
temperatures, change in precipitation patterns, or heat weaves
could negatively impact the disadvantaged individuals and
communities whose livelihoods depend on climatic conditions
(Leichenko and Silva, 2014).

Agriculture is a dynamic socio-ecological system (SES) that
results from human-environment interactions in a process
shaped by uncertainty, errors, learning, and adaptation (Rivera-
Ferre et al., 2013; Maass, 2017). Agriculture is a SES that bridges
the biophysical and social elements. Although it is a system
that humans widely manage, it could not exist without the
biophysical component on which it depends. The agricultural
development depends entirely on the benefits of provision (e.g.,
food) and regulation (e.g., climate, pollination) of nature to
people (Díaz et al., 2018). Nevertheless, it also depends on
the management that individuals give to their farming systems.
Moreover, agriculture responds to other large-scale processes,
such as climate and macroeconomy, social and cultural contexts.
Besides, agriculture integrates the coevolution of the relationship
between biophysical elements like temperature and precipitation,
socioeconomic and cultural practices of farmers like different
management types, and willingness to change crop varieties
(Fuller et al., 2015). The SES approach identifies complex patterns
and non-linear dynamics between social and natural systemswith
different organization and hierarchy levels (Liu et al., 2007). The
SES framework allows us to analyze the biophysical and the social
subsystems, their complexity, and their synergies at different
spatial-temporal scales (Turner et al., 2003; Bennett et al., 2016).

We applied a SES approach to maize agriculture because
it is the most important crop in terms of land area and
production, besides being the staple component of Mexican
diets (Bellon et al., 2018). Consequently, maize production is
essential not only in cultural terms but also in food security
and people’s livelihoods (Eakin, 2000). Smallholder farmers
(≤5 ha with no technification) produce around 60% of the
country’s national maize production. Maize farmers are highly
dependent on rainfed agriculture, and novel climates will impose
new challenges to the continuity of this livelihood (e.g., yield
reduction, fulfill self-consumption and local demand, income
decrease) (Monterroso et al., 2011).

Many studies assess the agricultural risk to climate change
focusing on the economic and production impacts. Such studies
use biophysical crop models that provide gross estimates of
changing yields (Howden et al., 2007; De Salvo et al., 2013;
Rosenzweig et al., 2014). Climate change scientists have analyzed

the impacts of climatic variables over rainfed maize in Mexico
(Murray-Tortarolo et al., 2018; Ureta et al., 2020), while others
have explored the linkage between institutions, climate risk, and
vulnerability of maize production (Eakin et al., 2018). Although
these studies are useful to identify coarse trends and impacts
of climate change on maize production, they do not consider
the diversity of the socio-ecological contexts which can affect
their risk.

Because of the socio-ecological challenges that people can
face to deal with the effects of new climate conditions linked to
maize production, we combine climate and socioeconomic data
in an integrative modeling framework to develop a multivariate
risk index. It identifies which municipalities would be at
higher risk under climate change, paying particular attention to
rainfed maize production. In Mexico, most of the governmental
strategies to support the agricultural sector are subsidies that
are mainly target cereals producers. These subsidies aim to raise
yields by increasing fertilizers’ use (Galeana-Pizaña et al., 2021),
which does not necessarily improve capacities to decrease the risk
of environmental threats. In the risk index, we include increases
in agricultural subsidies to assess how effectively this strategy
shapes future climate change risk for maize producers. Finally,
based on the municipalities’ regional risk context, we proposed
potential adaptation strategies to alleviate future climate threats
on maize producers.

DATA AND METHODS

Dataset
We use a set of socioeconomic and biophysical data to represent
the socio-ecological systems’ traits. The information of the
socioeconomic variables is taken from different information
sources. Population and GDP data are from the national
census from the National Institute for Statistics and Geography
(INEGI, 2010, 2015). We downscaled the economic data
assuming a constant municipality share, based on the historical
contribution reported by the National Information Systems
for Municipalities (SNIM, 2013).1 A national marginalization
index developed by the National Population Council (CONAPO,
2010)2 was included to quantify different elements related
to poverty, education, housing, population distribution, and
incomes (Table 1). The monetary support (subsidies) provided
by the Programa Producción para el Bienestar (2019) for farmers
was from the Ministry of Agriculture and Rural Development
(SADER).3 Data on the percentage of the population working in
the primary sector (2010) was taken Geoinformation Portal of
the National Commission for Biodiversity (CONABIO, 2012).4

Rainfed maize yield data from 2003 to 2018 were from the
National System of Agricultural Information (SIAP, 2018).5 We
averaged the yield of the two cultivation periods (spring-summer
and autumn-winter) to obtain the annual yield values.

1http://snim.rami.gob.mx/
2http://www.conapo.gob.mx/
3https://www.suri.agricultura.gob.mx:8017/buscadorBeneficiario
4http://www.conabio.gob.mx/informacion/gis/
5https://www.gob.mx/siap
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TABLE 1 | Elements that integrate the national index of marginalization CONAPO,

2010.

Element Indicator

Education 1. % of Illiteracy in population > 15 years old

2. % of people > 15 years old without

primary school

Housing 3. % of people without drainage

4. % of people without electricity

5. % of people without piped water

6. % of population in overcrowded houses

7. % of population in earthen floor houses

Population distribution 8. Localities < 5,000 inhabitants

Incomes 9. % of people with ≤ 2 minimum wage

Bioclimatic variables were obtained from the WorldClim
1.4 database (Hijmans et al., 2005).6 These layers are globally
interpolated surfaces obtained from climatic stations’ records
and represent annual, seasonal, and extreme temperature and
precipitation trends for a period between 1960 and 1990. These
scenarios are bias-corrected and readily available in raster format.
For our analysis, we used a spatial resolution of 2.5min (about
4.5 km). We averaged each socio-economic and climatic variable
for each municipality across Mexico.

Rotated Principal Components Analysis
(PCA)
Principal Component Analysis (PCA) allows to reduce the
dimensionality of a set of interrelated variables, while retaining
most of the variance of the original dataset (Jolliffe, 2002).
This technique provides insights about the interrelations of
variables and suggest new and more simple interpretations of
the original data (Jolliffe, 2002; Wilks, 2011). PCA uses the
variance-covariance structure of the data to produce linear
combinations Yi =

∑n
j=1 uijxj that are orthogonal to the

original dataset X. This is done by finding the eigenvalues λ

and eigenvectors u of the equation (Σ − λI) u = 0 where
Σ is the covariance or correlation matrix of X. Due to the
differences inmeasurement scales of the variables, the correlation
matrix is used in our analysis (Jolliffe, 2002). The first principal
component (PC1) is the linear combination Y1 =

∑n
j=1 u1jxj

that maximizes var(u′1X) = u′1Σu1 subject to the constraint
u′1u1 = 1. The remaining principal components (PC) are
the linear combinations of u′jX that maximize var(u′jX) subject

to the constraints u′juj = 1 and cov(u′jX, u
′
k
X) = 0 for

all j 6= k. Principal component rotation is used to simplify
the interpretation of the PC and to further separate the
main direction of variability. In this paper, varimax rotation
normalized is applied (Jolliffe, 2002). In the case of rotated PCA,
the scores are calculated as F = BZ where F is the matrix of
scores, Z is the matrix of standardized values of X and B =

L(L′L)−1 is the matrix of loadings (Harman, 1976; Jollife, 2002).
If the number of eigenvectors to be rotated that is selected

6https://www.worldclim.org/data/worldclim21.html#

is too small, this could lead to the problem of underrotation
which can distort or lead to mixed modes of variability. On the
contrary, selecting too many eigenvectors for rotation produces
overrotation which can contaminate the analysis as it would
lead to excessive separation of modes (O’Lenic and Livezey,
1988). To avoid such problems, we follow O’Lenic and Livezey
(1988) and analyze the existence of “shelves” in the scree plot
of eigenvalues which would suggest the mixing of signals and,
depending on the amount of explained variance, they could
indicate that the remaining PC represent noise. We combine this
truncation criteria with the Kaiser rule which suggests that the PC
with associated eigenvalues smaller than 1 should be discarded
(Johnson and Wichern, 2007). It is important to note that while
the total amount of explained variance of the set of selected PC
is the same before and after rotation, the explained variance is
redistributed among the PC (also called factors after rotation),
and their relative contribution can be different.

The rotated PCA analysis was performed to identify factors
that could be used as a proxy for climate change risk at the
municipal level for maize yields and farmers. We interpret
the resulting PC or factors as risk indices that combine
biophysical and socioeconomic elements and that aim to
represent climate and socioeconomic challenges affecting rainfed
maize production. Mexican municipalities (n = 2,457) were
classified according to these risk indices. Table 2 shows the
variables included in our PCA analysis.

Multivariate Risk Index
Our analysis focuses on characterizing the historical socio-
ecological conditions (i.e., bioclimatic and socioeconomic
variables) at the municipality level and on how risk levels would
change under future climate conditions and the corresponding
rainfed maize yields.

A composite risk index is proposed to summarize the
information contained in the rotated PCs to help rank
municipalities according to their implied risk in different
dimensions. The purpose of the aggregation of variables of
different nature is to identify municipalities at risk from a socio-
ecological perspective. The index also identifies municipalities
that would potentially face higher impacts from future climate
change in maize production and farmers’ livelihood given the
current socio-ecological conditions. In this form, we integrate
in a coupled and additive way not only climate conditions
that affect the maize phenology (e.g., higher temperatures),
but also contextual socioeconomic issues that could reinforce
potential negative impacts (Table 2). The proposed index is
based on the use quadrants for analyzing and classifying PCA
scores (Chakraborty et al., 2019; Estrada et al., 2020). This is
illustrated in a two-dimensional space and then generalized to
an n-dimensional space. Consider a scatterplot of two factors
on the Cartesian plane which is divided in four quadrants that
intersect in the origin (0,0). The quadrants represent four possible
combinations in which the factor scores can fall: quadrant I
contains the combination of score values that are positive in
both factors, (+,+); quadrant II is defined by negative values in
the x-axis and positive values in the y-axis (−,+); quadrant III
contains the score values that are negative in both axes (−,−); and
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TABLE 2 | Description of socioeconomic and climatic variables and their assumed

effects in maize agriculture.

Variable Description References

Annual mean

temperature, (bio1),

temperature range

(bio2, bio7),

temperature

seasonality (bio4), and

extreme temperatures

(bio5, bio6)

Increases in means

temperatures, shifts in

seasonality, and

extreme climatic

conditions are

expected in the future

for Mexico. As maize

crop is directly related

to temperature

conditions, we expect

that increases in

temperatures will

impact yields (ton/ha).

Certain phenological

development stages of

maize are highly

susceptible to high

temperatures.

NeSmith and

Ritchie, 1992;

Porter et al., 2014;

Feng et al., 2015

Annual precipitation

and seasonality (bio12,

bio15)

Certain phenological

development stages of

maize are highly

susceptible to shifts to

annual precipitation

regimes.

Murray-Tortarolo

et al., 2018; Ureta

et al., 2020

Marginalization High marginalization is

an expression of social

vulnerability of farmers

and limits their capacity

to cope with change or

stressors.

Adger, 2006;

Olsson et al., 2014

% people in primary

sector

People rely on maize

production to

self-consumption and

income. More people in

the sector means more

rural areas.

Yields Yields decrease affects

food security of

municipalities that

highly depend on crop

production.

Myers et al., 2017

GDP and per capita
GDP

A proxy of municipality

development that may

help farmers to cope

with crisis through

livelihood

diversification.

Reardon et al.,

2007

quadrant IV defined by positive values in the x-axis and negative
values in the y-axis (+,−). In PCA analysis, the interpretation of
each quadrant is derived from the meaning that is assigned to
each factor. For example, assume that factor 1 and factor 2 are
interpreted as aridity and income indices, respectively, and that
high positive values indicate more arid conditions and higher
income. Then, the municipalities with higher levels of aridity
and income would be found in quadrant I, while quadrant II
would contain those that are less arid and that are characterized
by high income levels, and so on. Positive/negative values in the

PCA indices can be associated to challenges or advantages certain
municipalities have in terms of socioecological risk. This use of
factors for classification can be generalized to n-dimensions once
the interpretation of each factor is assigned and can be used
to define multivariate risk indices as follows. First, positive and
negative scores in each factor are associated with higher or lower
risk levels. Second, for each factor, if the sign of the i-th factor
score (i.e., municipality) contributes to a higher risk, then a value
of 1 is assigned and added to the multivariate risk index. Third,
the total score for each municipality is normalized by the number
of factors used, and thus the risk index is bounded between zero
and one. Values close to 1 in this composite index represent
municipalities with higher risk from climatic elements (i.e., high
temperatures, low precipitation) and socioeconomic elements
(i.e., low GDP, high marginalization, and high dependency of
primary sector income) that can affect agricultural producers
focused on rainfed maize. Supplementary Table 1 provides a
description of factor conditions for the construction of the
proposed multivariate risk index.

Risk Index Under Future Scenarios
We use a supervised ensemble machine learning Random
Forest (RF) algorithm to predict current maize yields across
municipalities under a set of socioeconomic and climatic
predictors. RF is a technique based on bootstrap aggregation,
which reduces the variance in predictions, it is highly flexible
allowing it to incorporate different types of variables, and exhibits
a high predictive power (Hastie et al., 2004). This algorithm
is extensively used to generate predictions of crop yields at
global and regional scales (Everingham et al., 2016; Jeong et al.,
2016) and particularly maize crops (Márquez-Ramos et al.,
2020). Five bioclimatic (bio1, bio4, bio5, bio6, bio12) and four
socioeconomic variables (population, GDP, marginalization, and
subsidies for maize production) (Supplementary Figure 1) at
the municipality level were selected to train RF models. Rows
with missing data were removed from the original dataset, and
therefore the final dataset for this part was composed of 2,300
municipalities. First, we explored a wide range of parameters
(mtry, maxnodes, ntree, and nodesize) with the aim to select
the best combination that minimizes the prediction error using
the RMSE (root mean square error). The best parameterization
for the final model was: ntree = 1,000, importance = T, mtry
= 7, nodesize = 10, maxnodes = NULL. We implemented a
cross-validation strategy to avoid model overfitting and potential
spatial autocorrelation effects (Supplementary Figure 2). This
strategy consists of generating a random partition of the data into
two sets: calibration (70% of the data) and another for validation
(30%). The final model’s fit and predictive ability was evaluated
using R-squared and RMSE (Supplementary Figure 2)7.

Based on our calibrated RF model, we generate a projection
under a future high-warming climate change scenario (RCP8.5)
produced by the Beijing Climate Center Climate System Model
(BCC-CSM1.1) for 2070. We generated an additional scenario
that includes an increase of 25% in agricultural subsidies

7Further details on predictive accuracy of Random Forest models and dependence
plots are in the (Supplementary Figure 8).
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(scenario RCP8.5+25%). This scenario is motivated by the fact
that ImpProd19 was the most important variable in all RF
models trained (Supplementary Figure 3). Accordingly, it could
be theorized that an increase in agricultural subsidies could
alleviate the reduction in maize yields produced under a high-
emission climate change scenario. This scenario was used to
evaluate if economic subsidies can be considered as an effective
adaptation policy to reduce the risk farmers would face in
the future.

Finally, the projected bioclimatic variables (RCP8.5 from
BCC-CSM1.1), future maize yields (estimated from projections
of a RF model), and a plus of 25% more subsidies were
used to evaluate the future risk for all municipalities using
the multivariate risk index proposed in section Multivariate
Risk Index.

RESULTS

PCA
We selected the first five components from the PCA, which
account for 84% of the total variance of the dataset. Varimax
normalized rotation was applied to the retained PCs, and Table 3
shows the resulting factor loadings. The resulting rotated PCs
(referred to as factors) can be separated into two groups. The
first group refers to biophysical elements like minimum, mean
and maximum temperatures (factor 1), and precipitation, and
temperature variability (factor 3). The second group combines
socioeconomic characteristics like the municipality size in terms
of population and GDP (factor 2), marginalization, proportion of
people working in the primary sector, and per capita GDP (factor
4) (Figure 1).

The factors’ values are related to the risk that municipalities
can face considering the socio-ecological elements. High values
of factor 1 refer to municipalities with high temperatures
(Figure 1), and high values of factor 3 relate to temperature
variability, low precipitation, and low maize yields. The
socioeconomic factors show that high positive values in factor 2
correspond to highly populated municipalities with large GDP
values with better access to services. On the contrary, high
values of factor 4 represent marginalized municipalities (see
Supplementary Figure 4) with more people depending on the
agricultural activities and low per capita GDP (Figure 2). Using
these relationships, a composite risk index was constructed. Each
of the calculated factors was converted to a Boolean variable
according to the sign of the factor’s value for each municipality.
A value of 1 was assigned to represent a high risk, while zero
signifies low risk (Figure 1, see section Multivariate Risk Index;
Supplementary Table 1).

Historical Risk Index
In the 2010’s, 37% of the Mexican municipalities (Table 4)
showed a very high and high-risk category; these municipalities
represent 46.9% of the country and 14.9% of its population.
The municipalities at risk are mainly in the north of Mexico
(Figure 3). Northern municipalities highlight because they
face very high temperatures and high-temperature variability.
However, those areas are not recognized as large producers

TABLE 3 | Factor loadings of the rotated principal components (PC’s).

Variable Factors

1 2 3 4

Mean 0.193 0.092 —0.579 0.369

Marg 0.120 0.047 −0.145 —0.863

porPob −0.017 0.196 −0.151 —0.822

Pob10 −0.018 —0.960 −0.000 0.172

GDP10 −0.018 —0.975 0.024 0.154

GDPpc10 0.109 −0.461 0.172 0.674

Bio1 0.955 0.003 −0.246 −0.037

Bio12 0.167 0.048 —0.652 −0.331

Bio15 0.033 −0.008 0.0752 0.009

Bio2 −0.324 −0.021 0.681 0.020

Bio4 0.285 0.006 0.700 0.400

Bio5 0.964 0.008 0.211 0.101

Bio6 0.760 0.006 —0.581 −0.164

Bio7 −0.028 0.000 0.896 0.293

Expl.Var. 2.701 2.139 3.042 2.463

Prp.Totl. 0.193 0.153 0.217 0.175

Varimax rotation normalized.
Eigenvector entries larger than 0.5 are shown in red.
Mean, maize mean yield 2003–2019; marg, marginalization; porPob, percentage of the
population working in the primary sector; Pob10, population in 2010; GDP10, GDP in
2010; GSPpc10, GDP per capita in 2010.

of rainfed maize. All the Mexican states and almost all
municipalities grow rainfed maize (95.7%), and the production
is concentrated in three states which account for nearly half of
the national rainfedmaize (48.6%) (Figure 4). Themunicipalities
with the largest rainfed production are in the Pacific Coast
(Jalisco), which account for 27.7% of national output, followed
by the municipalities of the State of Mexico (11.6%), and those
from Chiapas (9.3%). During 2003–2019 the mean yield of
rainfed maize was 2.09 ton/ha, and 55.6% of the municipalities
(n = 1,308) had lower values than the national mean, and
29.5% of the municipalities (n = 694) showed yields lower than
1.0 ton/ha. Many municipalities (90.5%) in the very high-risk
category showed yields lower than 3.0 ton/ha. Municipalities of
two states (Chihuahua and Durango) represent 30.6% of the
national area in the very high-risk category. Low yields of these
municipalities impact their risk jointly with high temperatures,
temperature variability, and low precipitation (Figure 2). The
trend is similar for the high-risk category, where 80.8% of the
municipalities have yields lower than 3.0 ton/ha. Besides, 7.3% of
the municipalities in this risk class—mainly located in the north
of the country (Chihuahua and Sonora)—do not produce rainfed
maize. These municipalities are at risk linked to the bioclimate
elements driven by factor 1 and factor 3 (Figure 2). Several
municipalities in the north show low yields (less than 3 ton/ha),
this in combination with climatic variables (high temperatures
and low precipitation), contribute to their high-risk category.
The risk decreases in municipalities across the Pacific Coast, and
it becomes more heterogeneous toward southern states and the
Gulf Coast, including the Yucatán Peninsula. Here, the diversity
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FIGURE 1 | Explanatory variables used in the PCA and the resulting factors. Gray rectangles explain the value given to the risk index.

of risk links to the heterogeneity in terms of the municipalities’
social, economic, and urban-rural context. Municipalities in the
center of the country stand out for a predominance of low to
very low risk, due to the socioeconomic context of large cities and
predominantly industrial areas (i.e., State ofMexico,Mexico City,
Guanajuato, Tlaxcala) (Supplementary Figure 5).

Future Risk Index

Future Risk With Current Subsidies Level

Future risk for the scenario RCP 8.5 shows that by 2070, 16.0 and
40.5% of Mexico could be at very high-, and high-risk categories,
respectively, which includes 4.5 and 14% of the Mexican
population (Table 4). Three states account for more than 30%
of the very high-risk category, Chihuahua (13.2%), Durango
(10.3%), and Chiapas (11.5%). The northern states are at risk
mainly due to their increased exposure to high temperatures

and low precipitation. Moreover, at a very high-risk class, 87%
of the municipalities (n = 320) show maize yields <3.0 ton/ha
and 24.7% <1.0 ton/ha. Risk increases in some municipalities
in the southern part of the country, in a more dispersed way
in Oaxaca state, and central, north, and southern municipalities
of Chiapas state (Table 3). Municipalities of Chiapas in the very
high-risk category have a historical mean yield of 2.4 ton/ha,
and by 2070, it decreases to 1.1 ton/ha. It means that maize
producers will face higher risks and challenges imposed not
only for climate change but also for its historically high degrees
of marginalization in several municipalities of southern states.
At a national level, 89.3% of the municipalities reduce their
yields, and 370 of them (16.1%) decrease it by more than 70%
compared to their historical mean. This reduction seems to be
the trend for most of the Mexican rainfed maize producers’
municipalities. For instance, the RCP 8.5 shows a national
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FIGURE 2 | Climatic and Socio-economic factors regionalization. (A) Combination of variables related to temperature, (B) Combination of Population and GDP size,

(C) Combination of temperature variables, precipitation, and rainfed maize yield, (D) Combination of Index of marginalization, people working on the primary sector

and per capita GDP.

TABLE 4 | Risk categories of municipalities, based on historical data (2010), and the RCP8.5 and RCP8.5+25% scenarios.

Model Variables Risk category

Very low Low Medium High Very high

2010 Municipalities % of

the country

50 (2.2%) 458 (19.9%) 974 (42.3%) 675 (29.3%) 143 (6.2%)

% of km2 1.1% 13.7% 40.6% 38.4% 6.2%

% of population 12.0% 43.1% 33.9% 9.4% 1.5%

2070 RCP8.5 Municipalities % of

the country

33 (1.4%) 244 (10.6%) 724 (31.5%) 931 (40.5%) 368 (16.0%)

% of km2 2.5% 15.2% 37.9% 37.5% 12.1%

% of population 7.6% 32.2% 29.3% 17.0% 5.3%

RCP8.5+25% Municipalities % of

the country

35 (1.5%) 247 (10.7%) 726 (31.6%) 917 (39.9%) 375 (16.3%)

% of km2 2.5% 15.4% 32.5% 36.8% 12.7%

% of population 8.2% 32.3% 37.1% 16.9% 5.6%

mean yield reduction of 38%, which impacts the risk of the
municipalities. In terms of risk related to climate, by 2070, 78.7%
of the studied municipalities (n = 1,811) will have increases

higher than 3.5◦C. Of these, 28 municipalities showed decreases
in annual precipitation ≥ 50mm. The municipalities that are
projected to exhibit more constraints for higher temperature
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FIGURE 3 | (A) Historical Risk Index, (B) Future Risk Index 2070 and the RCP8.5 scenario, (C) Future Risk Index 2070 and the RCP8.5+25% scenario.

tendency and lower reductions in precipitation are in seven
states, on the Pacific Coast (Jalisco, Michoacán, and Nayarit),
north of Mexico (Chihuahua and Durango), and center of the
country (Hidalgo and Morelos) (Supplementary Figures 6, 7 in
https://github.com/abiharo/risk_index).

Future Risk With 25% Increase in Subsidies

Although increasing subsidies (i.e., monetary support mainly
use for fertilization) are projected to reduce the drop in
the mean national yields (14.0 vs. 30.0%), the scenario
RCP8.5+25% does not produce differences in future risk in
comparison to the RCP8.5 (Figure 4). For instance, there
is a slight increase in the percentage of municipalities and
extent in the very high-risk category between both scenarios
(1.0 and 0.6%, respectively) (Table 4). We suggest that this is
due to a non-linear relationship between subsidies and risk
categories. The complex and non-linear relationship between
maize yields and subsides was also identified in the RF
models (Supplementary Figure 5). However, this scenario shows
a much lower reduction of mean rainfed maize yield of
14.0%, suggesting that overall socioenvironmental risk would
not decrease by augmenting agricultural subsidies to mitigate
the yield reduction. That means that the negative impacts
of climate change overpass the benefits of the economic
support for increasing yields, making evident the complexity

to tackle the agricultural risk to climate change. However,
for some municipalities, the increment in subsidies modifies
their risk category. For example, some municipalities of some
states (i.e., Jalisco and Zacatecas) reduce their risk category
(Figure 5; Supplementary Figure 5), while others on the Pacific
Coast (Guerrero, Oaxaca, and Chiapas) increase their risk
(Figure 5; Supplementary Figure 5). These two cases could
be an expression of regional socioeconomic conditions that
predominantly drive risk in certain municipalities.

Based on Bellon’s et al. (2021) data, we calculated the
number of smallholder farmers in the very high- and high-risk
municipalities. We found that 1,259 and 4,254 farmers with
a mean yield of <1 ton/ha are in these two risk categories,
respectively (Table 5). By 2070, the number increased in the RCP
8.5 to 2,085 farmers at very high-risk and 4,323 in high-risk.
The scenario RCP8.5+25% shows that an increment of subsidies
does not reduce the number of farmers in the very high-risk
category. Nevertheless, in the high-risk category, subsidies could
slightly alleviate farmers, avoiding that 179 of them fall in this
category (Table 5).

Adaptation Strategies for Reducing Socio-Ecological

Risk to Climate Change
To decrease the risk through the Mexican municipalities, we
propose some adaptation strategies based on the heterogeneity
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FIGURE 4 | (A) Historical mean rainfed maize yield (2003–2019), (B) Maize future yield 2070 and the RCP 8.5 scenario, (C) Maize future yield 2070 and the

RCP8.5+25% scenario.

of the municipalities (Table 6). We can notice that municipalities
from the northwest region (Supplementary Figure 9), followed
by those from the southwest, show the highest risk (Table 6). As
we mentioned, the risk in the northern region is strongly driven
by climatic elements like high temperatures, low precipitation,
and high-temperature variability. We suggest that to reduce
the risk, the municipalities should diversify their crops by
promoting native races of maize and growing other products
that can be more tolerant to heat and water stress. Some
transformative adaptation strategies include improving the
water management to avoid overexploitation of water tables
by exploring some sustainable alternatives. On the contrary,
adaptation in municipalities in the Southern region should
focus on capacity building to sustainable increase production to
alleviate poverty while decreasing the impacts on soil degradation
and land-use change. Municipalities of the West and Southwest
need to promote their native races of maize, from which some are
tolerant to heat conditions. Municipalities from the North Center
and East region face threats to both climatic and socioeconomic
conditions. For these municipalities, transformative adaptation
can include the diversification of economic activities like
sustainable forestry or ecotourism. Municipalities of the regions
respond differently to the risk, and consequently, adaptation

and transformative strategies need to integrate their threats
and their context to better implement adaptations to climate
change. Inmost regions, we identified the need for transformative
adaptations, particularly in regions with high marginalization
levels and the most vulnerable groups, such as indigenous
communities and smallholder farmers. To these transformative
strategies, we added incremental strategies that are still necessary
to face the impacts of climate change.

DISCUSSION

Our analysis shows that more than half of the Mexican
municipalities could be at high and very high risk of climate
change due to their socio-ecological conditions. The SES
approach allows us to identify areas that could be more affected
by shifting climate (e.g., increases in extremes temperatures
and reduced levels of precipitation) matching with challenging
socioeconomic conditions (i.e., poverty, marginalization, and
low GDP). The identification of these elements is crucial to
develop an effective adaptation policy for the agricultural sector
(Fedele et al., 2019). Our findings highlight how spatial risk
variation under shifting climates and socioeconomic factors
can guide adaptation to prioritize municipalities. There is a
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FIGURE 5 | (A) Difference between future Risk RCP8.5 scenario and the Historical Risk, (B) Difference between future Risk RCP8.5+25% scenario and the Historical

Risk, (C) Difference between future Risk RCP8.5 and RCP8.5+25% scenarios.

very high level of variation among and within the Mexican
maize for climate adaptation (Hellin et al., 2014). The general
overall climatic ranges for maize included 0 to 2,900m altitude,
11.3◦ to 26.6◦C annual mean temperature, 12.0◦ to 29.1◦C
growing season mean temperature, and 426–4245mm annual
rainfall (Ruiz-Corral et al., 2008). However, it seems that
rainfed maize are strongly correlated to annual precipitation and
precipitation seasonality (Challenger, 1998; Murray-Tortarolo
et al., 2018). The RF models identified that annual precipitation
was the second most important predictor in rainfed maize
yields (Supplementary Figure 3). Therefore, larger variations in
climatic conditions in the future will have a higher impact on
rainfed agriculture and farmers’ economy. Mexico’s geographical
characteristics (physical and human) are playing a direct
role in the suitability of rainfed maize as we found in our
modeling approach implemented here. In arid and semi-arid
regions (in northern Mexico), the risk was driven by extreme
temperatures, high seasonality, and low precipitation regimes.
These regions are more prone to extreme climatic events
(Pontifes et al., 2018). For instance, the north of Mexico is
not suitable for rainfed agriculture because of the threat to
droughts (mean annual precipitation <350mm) (Moreno and
Huber-Sannwald, 2011). This threat will impact the already

TABLE 5 | Number of farmers with low rainfed maize yield in very high and

high-risk categories.

Risk Yield 1 ton/ha 3 ton/ha 5 ton/ha

Number of farmers

Very high risk Historical 1,259 1,620 1,660

RCP8.5 2,085 3,671 3,721

RCP8.5+25% 2,112 3,721 3,928

High risk Historical 4,254 7,248 7,861

RCP8.5 4,323 8,262 8,840

RCP8.5+25% 4,075 7,981 8,629

The data of farmers are from Bellon et al. (2021).

low yields (<3.0 ton/ha) which will reduce by climate change
(Murray-Tortarolo et al., 2018). To overcome the climatic
challenges for the agricultural sector in the north of Mexico,
farmers have implemented irrigation management to grow
animal feed crops such as sorghum and wheat, leaving staple
foods production to the southern and central Mexico (Eakin
et al., 2014b). The south seems prone to be affected not only
by climate change (Monterroso et al., 2011; López-Blanco et al.,
2018; Murray-Tortarolo et al., 2018) but also by socioeconomic
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constraints. Southern states of Mexico, like Chiapas, have lagged
in investment (Fox and Haight, 2010), and the adoption of
mechanization is impossible due to topography restrictions
(Eakin et al., 2014c). However, Chiapas has many maize low-
yield native varieties which subsistence can be related more
to the cultural value than the commercial one. These native
varieties can explain, in part, the climatically robust varieties
of maize in that region (Eakin, 2005; Mercer et al., 2012).
That means that Chiapas preserves its native maize varieties,
avoiding the commercial varieties (Perales et al., 2003; Brush
and Perales, 2007). A priority national strategy should be to
study the potential of native varieties to increasing temperatures
as an adaptation to climate change. In this context, subsidies
should change their aim to support native races in contrast to
commercial ones.

The focus on commercial varieties and markets is related to
agricultural subsidies based on the global north’s economic and
commercial model (Pingali, 2007). They do not consider the
country’s wide socio-environmental heterogeneity, particularly
among agricultural groups (Evenson and Gollin, 2003). In
Mexico, the national programs to support farmers like The
Programa de Apoyos Directos al Campo (PROCAMPO which
means, Direct Field Support Programme), does not reach the
majority of the most marginalized peasant communities (Fox
and Haight, 2010). Also, the Productive Program (PROAGRO)
has not positively impacted the smallholder farmers’ maize
production (Valentín-Garrido et al., 2016). Most of the time,
these programs are focused only on a single part of the system,
like crop production and profitability. Therefore, they only
target large-size farmers with large cultivation areas, irrigation
infrastructure, and economic solvency. While PROCAMPO was
promoted to facilitate the transition of smallholder farmers of
basic grains into higher-value crops, in practice, it has become a
steady source of cash income for farmers of all scales (Eakin et al.,
2014b).

Five northern states in Mexico have received the largest rural
per capita shares of public investment in agriculture, linked
to two factors: the large farm and thus larger benefits via
PROCAMPO, and support programs that target capital intensive
and mechanized agriculture (Scott, 2010; Eakin et al., 2014a).
One state (Sinaloa) received over 12.0% of public agriculture
subsidies, accounting only for 4.0% of the population in the
primary sector. Contrastingly, the State of Mexico receives
3.0% of public expenditures with 5% of people in the same
sector. Moreover, the same state (Sinaloa) received 68 and
100% of the budget allocated to two programs to support
national agriculture (Ingreso Objetivo program and Cobertura
de Precios) between 2006 and 2009 (Appendini, 2014). This
highlights the national interest to entail substantial subsidies
for commercial agribusiness and the limitation that smallholder
farmers face to deal with climate adversities. We integrated
subsidies in the future risk assessment to assess the positive
impacts in decreasing the risk, but it is to notice that subsidies
have promoted intensive use of chemical inputs with high
environmental impacts (OECD, 2005). In this study, the increase
of the agricultural subsidies seems to positively impact the mean
national yield of rainfed maize. However, these augments did

not significantly reduce the risk to climate change because of
the complexity of elements involved, like the marginalization
and poverty in the south and the lack of infrastructure and
capacities to sustainably deal with the lack of water in the
north of Mexico. We support exploring other alternatives like
promoting heat and drought resistant and native varieties, crop
rotation and diversification, alternatives to tackle the lack of
water like environmentally friendly desalinization of seawater
for agriculture, and sustainable technological support to increase
crop production.

Our risk index included population and GDP size, which
relates to cities that show lower risk. However, there are urban
municipalities at high risk not only because of high temperatures
but also because some peri-urban areas growmaize (Losada et al.,
2011). Besides the urban agricultural risk to climate change, there
are other risks related to cities like diseases, pollution (Elmqvist
et al., 2013), flooding (Jha et al., 2012), and heatwaves (Li and
Bou-Zeid, 2013). However, these elements were not considered
in our risk index.

The spatial identification of risk helps identify patterns of
drivers that increase the risk to tackle them through specific
strategies (Howden et al., 2007), like addressing adaptive
management for different regions based on specific contexts. Risk
characterization is linked to developing strategies to decrease
the negative impacts by increasing the resistance, resilience,
mitigation, and adaptation of the SES. Notably, the relationship
between risk and adaptation to climate change has been
extensively explored under the concept of double exposure
(O’Brien and Leichenko, 2000). This concept indicates how the
dynamic interrelationship of the social, economic, and political
spheres interact with climate.

Our findings highlight the variation of risk across regions
due to the combination of climate and socioeconomic factors.
We support that transformative adaptation actions should
be specific to each municipality to tackle the causes of the
vulnerability to climate change (Fedele et al., 2019). Risk
and adaptation related to agriculture are not only a matter
of increasing agricultural subsidies. Farm subsidies are only
one of many incremental actions, which works in the short
term because they are mainly used for fertilizer acquisition
and not to improve social and ecological conditions in rural
areas (Zarazúa-Escobar et al., 2011). Besides, subsidies have
adverse effects in the medium and long term, affecting the
ecosystem’s conditions (e.g., soil and water pollution) and
dynamics that generate negative feedbacks (e.g., erosion, pest
resistance), sometimes leading the SES toward an unsustainable
trajectory (Eriksen et al., 2011; Rivera-Ferre et al., 2013; Fedele
et al., 2020). Nevertheless, adaptation should be a combination
of transformative strategies like poverty alleviation, capacity
building to improve management and water use, sustainable
technification, and soil restoration. Moreover, considering that
Mexico has more than 59 races of maize (Perales and Golicher,
2014), the country could implement strategies to promote the
use of native resistant varieties in some regions, which will be
favored by climate change (Ureta et al., 2012). Also, adaptation
based on combinations of local and technical knowledge that use
traits that cope better with the heat and drought stress of native
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TABLE 6 | Municipalities in the category of very high-risk and high-risk, according to their regionalization.

Region Municipalities (%)

in very high and

high risk

Main drivers of risk Potential adaptation options

Northwest

Northeast

107 (49.5%)

47 (34.5%)

High temperature, low

precipitation, and high

temperature variability (+++)

High marginalization (++)

- Promoting maize native heat and drought

resistant varieties; crop rotation

- Promoting weather stress-tolerant crops

- Improving drought early warning systems

- Livelihood diversification (off-farm activities)

- Sustainable water management (special

attention to avoid overexploitation of water

tables, exploration of seawater desalination

through clean technologies)

- Subsidies to create and improve capacities of

vulnerable groups (indigenous and

smallholders’ farmers) through sustainable

agriculture

- Promoting of local/regional crop markets.

- Inclusion of local/traditional knowledge in

adaptation plans

North

Center

East

65 (31.7%)

123 (33.6%)

High temperature, low

precipitation, high temperature

variability (+++)

High marginalization (+++)

- Promoting maize native resistant varieties

(drought conditions)

- Opening and reinforcing local and regional

crop markets

- Sustainable water management (rainwater

harvesting)

- Subsidies focus on nature-based solutions

through EbA (agroforestry, forest

conservation); and creating and improving

the capacities of vulnerable groups

(indigenous and smallholder farmers)

South

Center

13 (7.3%) High temperature (+++)

Low precipitation, high

temperature variability (++)

High marginalization (++)

- Sustainable soil and water management

- Reinforced local and regional maize markets;

opening opportunities of organic farmers in

gourmet sectors

- Subsidies focus on nature-based solutions

through EbA (forest conservation,

reforestation, agroforestry, ecotourism)

Incremental adaptations Transformative adaptations

(attending root causes of
vulnerability)

West 37 (13.6%) High temperature (+++)

Low precipitation, high

temperature variability (++)

High marginalization (+++)

- Promoting maize native heat and drought

resistant varieties; crop rotation and

diversification

- Sustainable soil and water management

- Subsidies focus on nature-based solutions

through EbA (forest conservation,

reforestation, agroforestry, ecotourism)

- Subsidies for creating and improving the

capacities of vulnerable groups (smallholder

farmers) through sustainable agriculture

Southeast 101 (27.4%) High temperature (++)

Low precipitation, high

temperature variability (+)

High marginalization (+++)

- Promoting maize native heat and drought

resistant varieties; crop rotation and

diversification

- Promoting of stress-tolerant crops

- Sustainable soil management

- Livelihood diversification (off-farm activities)

- Subsidies focused on creating and improving

the capacities of vulnerable groups

(smallholder farmers) through sustainable

agriculture

- Subsidies focus on nature-based solutions

through EbA (forest conservation,

reforestation, agroforestry, ecotourism)

(Continued)
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TABLE 6 | Continued

Region Municipalities (%)

in very high and

high risk

Main drivers of risk Potential adaptation options

Southwest 325 (41.3%) High temperature (++)

Low precipitation, high

temperature variability (+)

High marginalization (+++)

High temperature (+++)

Low precipitation (+)

High marginalization (+++)

- Promoting maize native heat and drought

resistant varieties; crop rotation and

diversification

- Affordable irrigation technologies

- Subsidies focus on nature-based solutions

through EbA (forest conservation,

agroforestry, and ecotourism)

- Improving conditions for livelihood

diversification (off-farm)

- Inclusion of local and traditional knowledge in

adaptation plans

- Subsidies focused on creating and improving

the capacities of vulnerable groups

(indigenous and smallholders) through

sustainable agriculture

The main drivers of risk in the eight regions are shown and their respective adaptation options are linked. The last two columns, in orange and blue text, refer to the type of adaptation
(transformative and incremental, respectively).
EbA, Ecosystem-based adaptations.

races should allow to cope better with climate change (Bellon and
Hellin, 2011; Hellin et al., 2014). For example, transformative
adaptations like sustainable water management in the north of
Mexico could reduce the overexploitation of water tables or
programs to develop capacities for the most vulnerable groups
(indigenous and smallholder farmers) in the south of Mexico.
These social programs can integrate agricultural diversification
of crops through sustainable production to support an increasing
regional or international market (e.g., organic fertilizers, soil
improvement). These strategies can complement nature-based
solutions (Cohen-Shacham et al., 2016) through ecosystem-based
adaptations (i.e., forest conservation, reforestation, agroforestry,
and sustainable watershed management). It should be noted that
the actions at the municipal level cannot exclude the linking
strategies at regional or international policies and plans. If these
agendas remain isolated, the implementation of transformative
adaptations will be more difficult.

In Mexico, the national climate change policy currently
focuses on transformative adaptation programs through nature-
based solutions (e.g., Ecosystem-based adaptation, Community-
based adaptation) (INECC, 2019). These programs consider the
conditions and ecosystem characteristics of which individuals
could take advantage of to link social well-being (Jones
et al., 2012). Furthermore, at the same time is developing a
greater capacity and resilience of the SES to climate change
impacts. Moreover, it can improve their livelihoods or even
expand them in a sustainable way (Wamsler et al., 2016;
Scarano, 2017). We suggest that a way to promote adaptation
strategies is to link the distribution of risk to information
regarding the distribution and differentiation in environmental
conditions, land-use change rates, poverty, economic activities,
and areas with a high expansion urban-rural transition. Programs
should incorporate local and municipality characteristics to
complement adaptation and mitigation strategies. However,
there is a lack of linkage between the available information at

different levels that impose an extra challenge. There is not
yet a database that concentrates data on farms, farmers, and
environmental traits. These elements make it challenging to
evaluate a complete analysis of risk fully. We support that
gathering information at different levels will improve this kind
of evaluation.

CONCLUSIONS

We developed a municipality risk index using a socio-ecological
framework that integrates climatic and socioeconomic data
linked to maize production in Mexico. Our results show that
currently more than one third of the Mexican municipalities
are at very high and high-risk, and by 2070 this will
could increase to more than half of the country. The risk
in the north of Mexico is principally driven by climate
factors like high temperatures, high-temperature variability,
and low precipitation. However, in future scenarios, we found
that suitable areas for rainfed maize migth experience the
synergistic effects of climate change and the challenges of
poverty and marginalization. It means that incrementing the
agricultural subsidies is not enough to reduce the risk of
climate change. Impacts of climate change on agriculture
require adaptation plans to address adaptive transformative
strategies that consider the SES’s complexity, such as poverty
alleviation, native resistant varieties, capacity building to improve
management and water use, sustainable technification, and
soil restoration.
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