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Model initialization is a matter of transferring the observed information available at the

start of a forecast to the model. An optimal initialization is generally recognized to be

able to improve climate predictions up to a few years ahead. However, systematic errors

in models make the initialization process challenging. When the observed information is

transferred to the model at the initialization time, the discrepancy between the observed

and model mean climate causes the drift of the prediction toward the model-biased

attractor. Although such drifts can be generally accounted for with a posteriori bias

correction techniques, the bias evolving along the prediction might affect the variability

that we aim at predicting, and disentangling the small magnitude of the climate signal

from the initial drift to be removed represents a challenge. In this study, we present an

innovative initialization technique that aims at reducing the initial drift by performing a

quantile matching between the observed state at the initialization time and the model

state distribution. The adjusted initial state belongs to the model attractor and the

observed variability amplitude is scaled toward the model one. Multi-annual climate

predictions integrated for 5 years and run with the EC-Earth3 Global Coupled Model have

been initialized with this novel methodology, and their prediction skill has been compared

with the non-initialized historical simulations from CMIP6 and with the same decadal

prediction system but based on full-field initialization. We perform a skill assessment

of the surface temperature, the heat content in the ocean upper layers, the sea level

pressure, and the barotropic ocean circulation. The added value of the quantile matching

initialization is shown in the North Atlantic subpolar region and over the North Pacific

surface temperature as well as for the ocean heat content up to 5 years. Improvements

are also found in the predictive skill of the Atlantic Meridional Overturning Circulation and

the barotropic stream function in the Labrador Sea throughout the 5 forecast years when

compared to the full field method.

Keywords: decadal climate prediction, initialization, drift, quantile matching, full field initialization

1. INTRODUCTION

Providing reliable climate information for the near-term future is of paramount importance for
many socioeconomic sectors, such as agriculture, energy, health, and insurance. Incorporating
this information in the decision-making process is a key goal for the climate service community
(Goddard, 2016; Otto et al., 2016). Decadal predictions cover 1-year to 10-year timescales.
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The information extracted from this timescale is involved in the
process of planning for adaptation strategies (Goddard et al.,
2012; Brasseur and Gallardo, 2016). There is an internationally
coordinated effort to produce and study predictions that cover
such a timescale known as the Decadal Climate Prediction
Project (DCPP, Boer et al., 2016), which contributes to the
Coupled Model Intercomparison Project Phase 6 (CMIP6,
Eyring et al., 2016).

Decadal predictability can arise from two main sources,
namely the radiative forcings and the internal variability.
Analogously to climate projections, decadal predictions are partly
considered a boundary value problem whose crucial goal is to
estimate the response of the system to variations in external
forcings (Meehl et al., 2009). Apart from the anthropogenic
contribution to changes in the external forcing (Booth et al.,
2012), there also exist changes of natural origins, such as solar
variability and volcanic eruptions, which are known to strongly
affect the natural variability in the North Atlantic (Borchert et al.,
2021; Mann et al., 2021).

The sources of interannual to decadal predictability
originating from the slow components of the internal climate
variability are associated mainly with the sea surface temperature
(SST) state and ocean heat content (Doblas-Reyes et al., 2013a;
Guemas et al., 2013; Merryfield et al., 2020). El Niño Southern
Oscillation (ENSO) is the main process that contributes to
the forecast quality in the Tropics as well as in large parts of
the world, thanks to its expanded remote impacts, known as
teleconnections (Doblas-Reyes et al., 2013b; Beverley et al.,
2019). Another source of predictability is the sea ice, which is
predictable 3 years ahead (Tietsche et al., 2014; Day et al., 2015)
and whose main source of predictability is given by its persistence
(Blanchard-Wrigglesworth et al., 2011). Climate predictability
over the extratropics is controlled by teleconnections with the
Tropics and the Arctic (Jung et al., 2015), as well as with soil
moisture and land snow (Bellucci et al., 2015a).

The leading modes of decadal variability that dominate
the Atlantic and the Pacific oceans are, respectively, the
Atlantic multidecadal variability (AMV) and the Pacific decadal
variability (PDV) (Kushnir et al., 2019). Although the processes
responsible for the AMV and its predictability are not fully
understood (Latif and Keenlyside, 2011; Cassou et al., 2018),
climate models suggest that this mode of variability is linked to
the variations in strength of the Atlantic Meridional Overturning
Circulation (AMOC) (Zhang and Wang, 2013), which in turn is
driven mainly by the convection activity that takes place in the
northern high latitudes (Ortega et al., 2015; Robson et al., 2016),
by a wind-dependent contribution (Mignot et al., 2006) and also
by volcanic eruptions (Borchert et al., 2021; Mann et al., 2021).
Since the AMOC exerts significant influences on the European
climate through its net northward heat transport in the Atlantic,
having good levels of prediction skill over the North Atlantic is of
crucial importance. TheNorth Atlantic upper-ocean heat content
has an impact on Atlantic hurricanes and inland temperature and
precipitation (Dunstone et al., 2011; Gastineau and Frankignoul,
2015; Buckley et al., 2019).

In order to capture the oscillations and the impacts of these
variability modes, an effective initialization is crucial. Initialized

predictions generally show improved forecast skill with respect to
historical simulations, which only respond to changes in radiative
forcings (Corti et al., 2015; Boer et al., 2016). Initializing a
climate prediction consists of incorporating into the model the
observed state information at the initial time of the forecast.
However, models have systematic errors, which are associated
withmisrepresentation of key processes that are unresolved at the
particularmodel grid and need to be parameterized (Nadiga et al.,
2019). The main consequence of model errors is the difference
between the model and observed mean state. Such a difference
complicates the initialization task and one open issue is how to
provide the model with the best estimate of the real initial state,
without introducing inconsistencies that could compromise the
prediction quality (Brune and Baehr, 2020).

One of the common initialization strategies is the full-field
initialization (FFI), where the initial state is the best estimate
of the observed climate state—the reanalysis (Pohlmann et al.,
2009). After initialization, the prediction drifts away from the
real-world attractor toward the mean model-biased state. To
account for such a bias, a posteriori bias correction needs to be
applied; various techniques that take into account the forecast
time, start date, or initial condition dependence of the bias have
been designed and implemented (Kharin et al., 2012; Fuĉkar
et al., 2014). The correction of the bias in interannual predictions
takes up the challenge of disentangling the small magnitude of
climate signal to be predicted from the initial drift to be removed
(Smith et al., 2013).

An alternative technique to limit the drift is the anomaly
initialization (AI) that aims at phasing the model variability
with the observed one by assimilating the observed anomaly
onto the model mean state (Smith et al., 2008; Pohlmann
et al., 2013). Previous studies have applied these initialization
techniques to different models to highlight the relative strengths
and limitations (Hazeleger et al., 2013; Smith et al., 2013; Bellucci
et al., 2015b; Marotzke et al., 2016). The results show that in
their standard implementation, at interannual time scales, the
differences in skill between these techniques are small and limited
to specific regions (Smith et al., 2013). The best strategy has been
suggested to be model dependent because models have different
biases (Magnusson et al., 2013; Polkova et al., 2014).

In this work, we present a new initialization method, the
quantile matching (QM) technique that aims at reducing the
drift and at limiting inconsistencies coming from the differences
between the model and the observed variability amplitude.
After performing the decadal hindcasts with EC-Earth3, we
explore the impact of the new initialization method on the
forecast skill by comparing the predictions initialized with QM,
with a set of predictions initialized with FFI and a set of
historical simulations. Section 2 introduces the initialization
method, its implementation, and describes the model set-up
in use. Section 3 is organized as follows: section 3.1 provides
an overview of the behavior of the decadal predictions based
on the new initialization method in terms of mean bias and
drift. The prediction skill of the surface and sub-surface fields
is presented in section 3.2, and the skill in the North Atlantic
region is explored in section 3.3. Finally, the main findings are
summarized in section 4.
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2. METHODS AND DATA

2.1. Quantile Matching as Initialization
Method
Predictions after initialization can experience two potential
problems that can affect the forecast skill. On the one hand, rapid
model adjustments known as initial shocks can occur (He et al.,
2017). They can be generated from different mechanisms, one
of them being the imbalance caused by the use of inconsistent
atmosphere and ocean reanalyses as initial states. Previous
studies suggested that the impact of initial shocks on the forecast
skill is negligible at seasonal timescale (Mulholland et al., 2015).
Nevertheless, this is not the case at longer timescales, where
initial shock plays an important role in sensitive areas such as the
North Atlantic subpolar region (Kröger et al., 2018; Bilbao et al.,
2021). On the other hand, the model tends to adjust toward its
biased mean climate after being initialized. Such a drift, which is
a common feature of predictions initialized with FFI, is known to
affect the forecast quality (Hazeleger et al., 2013).

While initial shocks can occur with both FFI and AI, the drift
is expected to be largely reduced in predictions initialized with
AI, as such technique employs an initial state that belongs to
the model attractor and only imposes the observed variability
(i.e., the initial state is the sum of the model mean climate and
the observed anomalies). However, the use of AI can introduce
observed anomalies whose amplitude does not belong to the
range of the internal variability generated by the model. Volpi
et al. (2017b) addressed this issue by weighting the observed
anomalies with the ratio between the model and observed
standard deviations. This technique of weighting, together with
the anomaly initialization of the ocean density, showed improved
skill in predicting the sea-ice variability, the AMV and the
SST in the Labrador Sea, in parts of the North Pacific and
Southern Ocean.

However, such refinement employed the standard deviation
to characterize the variability amplitude, although the statistical
distribution of variability might be skewed. The QM introduced
here, therefore, expands over the idea of weighting the observed
anomalies by respecting the distribution of the model variability.
The QM consists of initializing the prediction with the model
state whose percentile in the model distribution is the same as the
percentile of the observed state in the observed distribution at the
initialization time. The added value of this method is as follows:

• The initial state belongs to the model attractor (as any other AI
technique),

• By matching the cumulative distributions of the model and
observations, the observed initial state is effectively scaled with
respect to the model variability.

Since with the current version of the model we do not have
available an analogous set of decadal predictions as in Volpi
et al. (2017b), we cannot evaluate the impact of respecting the
distribution of the model variability. Therefore, the objective of
this study is to assess the relative benefits and drawbacks of
the novel method with respect to the state-of-the-art decadal
predictions initialized with FFI. The QM is applied to all the
grid-points of all ocean prognostic variables, which are the ones

that are directly predicted by the model. For the implementation
of the technique, the ocean reanalysis NEMOVAR-ORAS4
(Mogensen et al., 2012) is taken as the observational truth.
Although NEMOVAR-ORAS4 is subject to some uncertainties,
it has the advantage of providing observationally constrained
and physically consistent values for all the prognostic ocean
variables. At the time of this study, there was only one EC-Earth3
historical simulation available that stored the initial conditions
for November. Therefore, the model distribution of each variable
and grid point is computed using that historical simulation
(r4i1p1f1). Figure 1 illustrates an example of the implementation
of the QM method for sea surface temperature (SST) at one
grid point. The blue curve represents the cumulative distribution
function (defined as the probability of a variable to take a value
smaller than the value given in the x-axis) of SST calculated with
one member of the ocean reanalysis NEMOVAR-ORAS4, over
the period 1960–2014, for the grid point considered. Similarly,
the SST cumulative distribution function calculated with the
historical simulation of EC-Earth3 is shown in red, for the same
grid point. The circles in the NEMOVAR-ORAS4 distribution
indicate the value taken by the reanalysis on the 1st of November
of the years marked in the figure. Assuming November 1960 as
the target initial date, the model is initialized with the model
value (marked with a yellow star) whose cumulative distribution
function matches the observed one at the initialization time.

The ratio between the model and the reanalysis SST variance
is shown in Figure 2. Regions with the highest variancemismatch
(darkest colors in Figure 2) are the areas where the QM method
applies larger corrections to scale the observed variability onto
the model amplitude.

2.2. Model Description and Experimental
Set-Up
The model in use for this study is the CMIP6 version of EC-
Earth3 GCM (Döscher et al., 2021). Its atmospheric component
is the European Centre for Medium-Range Weather Forecasts
Integrated Forecasting System (IFS cycle cy36r4) in its standard
resolution, with 91 vertical levels and a T255 horizontal
resolution. The ocean component is the NEMO model version
3.6 (Madec and NEMO System Team, 2015), with ORCA1
configuration (about 1 degree with enhanced tropical resolution)
and 75 vertical levels. The sea-ice component is LIM3 (Rousset
et al., 2015) directly embedded into NEMO. The atmospheric
and ocean components are coupled via OASIS3 (Craig et al.,
2017). Information on the dynamic vegetation is prescribed from
a previous simulation with LPJ-GUESS (Smith et al., 2014).

The benchmark hindcasts are a full field initialized experiment
and an ensemble of 15 uninitialized CMIP6 historical simulations
(Histo), assessed by Bilbao et al. (2021). All the experiments,
including our QM, are carried out with the same model
version. In the FFI experiment, all the variables from each
model component are initialized with observational estimates
(reanalysis). The atmosphere and land surface initial conditions
are taken from the ERA-40 reanalysis (Uppala et al., 2005)
for start dates before 1979 and ERA-Interim (Dee et al., 2011)

Frontiers in Climate | www.frontiersin.org 3 June 2021 | Volume 3 | Article 681127

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Volpi et al. Novel Initialization for Decadal Predictions

FIGURE 1 | Example of the implementation of the quantile matching method: cumulative distribution function for the SST in one grid point of the Tropical Pacific in

blue for NEMOVAR-ORAS4 and in red for a historical simulation of EC-Earth3. The circles in the reanalysis distribution indicate the value on November 1 of the year

indicated in the figure. The prediction at that grid point will be initialized with the value from the historical simulation, which has the same cumulative distribution as

NEMOVAR-ORAS4 at the initialization time (the yellow stars indicate the value for the start dates of 1960 and 2010). This calculation is made for all the grid points and

all the ocean prognostic variables.

FIGURE 2 | Ratio of SST model variance over the NEMOVAR-ORAS4 variance calculated over the November 1960–2014 start dates. The NEMOVAR-ORAS4

variance is calculated concatenating the 5 ensemble members available, while for the model one EC-Earth3 historical simulation is used.

Frontiers in Climate | www.frontiersin.org 4 June 2021 | Volume 3 | Article 681127

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Volpi et al. Novel Initialization for Decadal Predictions

afterwards. The ocean initial conditions are taken from the 3D-
Var five-member ocean reanalysis NEMOVAR-ORAS4, while
the sea-ice initial conditions are produced with a NEMO-LIM
simulation driven by DFS5.2 forcing fluxes (Brodeau et al., 2009).
The DFS5.2 forcing data corresponds to a corrected version
of ERA-interim accounting for radiative and precipitation
observations in the Arctic. The solar irradiance, volcanic and
anthropogenic aerosol load, and greenhouse gas concentrations
are prescribed using the CMIP6 radiative forcing estimates up to
2014. After that date, the SSP2-4.5 scenario (O’Neill et al., 2016)
is used.

Both initialized experiments (FFI and QM) are composed by
10 ensemble members, initialized every November from 1960
until 2014 and running for 5 years. The ensemble is generated
using perturbations in the 3-dimensional temperature field in
the atmospheric component, and using the 5-member ensemble
from the NEMOVAR-ORAS4 reanalysis in the ocean.

The QM is applied to the ocean component and is performed
for all the ocean prognostic variables and grid points, by
matching the 5 members of NEMOVAR-ORAS4 separately, in
order to obtain 5 different initial conditions. The atmospheric

and sea-ice components of the QM experiment have identical
initial condition as the FFI.

2.3. Bias and Skill Estimation
The forecast time-dependent climatologies are computed for the
longest common period (1965–2014). For each forecast year
(from 1 to 5), a set of predictions is available within the 1965–
2014 period (e.g., 1965 is predicted at forecast year 1 for the
prediction starting in November 1964, and also as forecast year 5
for the prediction starting in November 1960). The forecast time-
dependent bias is calculated as the difference between the model
and the observed climatologies. The drift, i.e., the evolution of the
bias with forecast time, is estimated as the difference between the
first and the last forecast year climatologies for the model. This
estimate of the drift provides a simplistic picture but it already
highlights the main features of the model drift.

To measure the forecast quality, we use the anomaly
correlation (AC) and the root mean square error (RMSE). The
confidence interval is calculated with a t-distribution for the AC
and with a χ

2 distribution for the RMSE. The serial dependence
between the hindcasts is accounted for in the computation of

FIGURE 3 | Top left: SST bias of the QM experiment for the first forecast month calculated against NEMOVAR-ORAS4 reanalysis. Top right: forecast

time-dependent climatologies of the annual mean global SST, calculated as explained in section 2.3. The ensemble mean climatology is shown in red for QM, in blue

for FFI, in yellow for Histo, and in black for NEMOVAR-ORAS4. Bottom: drift calculated as the difference between the first and the last forecast year climatologies of

QM (left panel) and FFI (right panel).
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the confidence interval using the Von Storch and Zwiers (2001)
formula. The confidence interval also takes into account the
trend, that is not removed in the computation of the skill. The
skill scores are computed either on annual mean values, or after
smoothing the timeseries with a 1-year running mean in order
to filter out seasonal climate variability and focus on interannual
prediction skill. To measure the impact of the QM on the forecast
quality, we compute the differences of ACs between the QM and
FFI, and between QM and Histo. We use the method by Siegert
et al. (2017) to identify the statistically significant differences in
skill between the various experiments.

We have used several observational datasets for verification
purposes: the GISTEMPv4 (Lenssen et al., 2019) NASA gridded
surface temperature anomaly, the EN4 (Good et al., 2013) for
the ocean heat content, and HadISST (Rayner et al., 2003) for
the computation of the AMV. For the study of the initial SST
bias and drift, we have used the NEMOVAR-ORAS4 reanalysis
(as it represents the initial reference state for QM and the
initial condition for FFI). Since observations of the full AMOC
cell and the barotropic stream function are not available, they
are validated against the NEMOVAR-ORAS4 reanalysis. The

sea level pressure is validated against the ERA-40 and ERA-
Interim reanalyses.

3. RESULTS

3.1. Forecast Drift and Mean State Biases
Initializing the predictions with a state that belongs to the
model attractor implies that the mean state of the predictions
is biased with respect to the observations since the beginning
of the forecast. The top left panel of Figure 3 shows the SST
model bias with respect to the NEMOVAR-ORAS4 reanalysis
in the first forecast month. The model displays a widespread
warm bias over the Tropical Pacific extending toward the
extratropics in the eastern basin. An even more pronounced
warm bias appears in the Southern Ocean, while the Subpolar
North Atlantic region presents an intense cold bias. These
features are consistent with the ones found in the bias of
Histo (Supplementary Figure 1). The top right panel of Figure 3
shows the annual mean climatologies of the global SST as a
function of the forecast time. Consistently with the bias map, the

FIGURE 4 | Anomaly correlation for the surface temperature calculated against the GISTEMPv4 dataset. The first column represents the quantile matching (QM) skill

in the first forecast year (top) and the 2–5 forecast years (bottom). The middle column shows the difference between QM and Histo skill, and the third column the

difference between QM and full-field initialization (FFI) skill. The black dots indicate regions of significant anomaly correlation (AC) (first column), and regions where the

difference in AC is statistically significant with 95% confident level (second and third column).
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FIGURE 5 | The same as in Figure 4, but for the sea level pressure. The anomaly correlation (AC) is calculated against ERA-40 and Era-Interim reanalysis.

QM climatology (in red) results warmer than the NEMOVAR-
ORAS4 climatology (black line), and remains close to the Histo
climatology (in yellow) throughout the whole forecast period. In
contrast, the climatology of the FFI experiment starts closer to
NEMOVAR-ORAS4 but it drifts after the first forecast year. The
reason for which the FFI experiment drifts away from the Histo
climatologies is extensively investigated in Bilbao et al. (2021),
where it is suggested to be an effect of the initial shock that leads
to a collapse in Labrador Sea convection. This issue will be further
discussed in section 3.3. However, the global drift toward colder
temperatures is not occurring all around the globe as it is shown
in the bottom right panel of Figure 3. Although a positive drift in
SST is present in the Southern Ocean, the largest negative ones
occur in the North Atlantic, particularly in the subpolar gyre
region. Conversely, and as expected, the QM largely prevents the
model drifts, with values of even an order of magnitude lower
with respect to the FFI (bottom left panel of Figure 3).

3.2. Global Skill
We first evaluate the global skill in predicting the surface
fields. The QM experiment exhibits high forecast quality in
surface temperature (first column Figure 4) and sea level pressure
(first column Figure 5) as indicated by the AC against the

GISTEMPv4 dataset and ERA-40-ERA-Interim, shown in the
first columns of Figures 4, 5, respectively. The skill in surface
temperature in the first forecast year is globally significant, the
main exceptions being a few regions over Asia and the Southern
Ocean and a small region in the North Atlantic. At longer
forecast times (2–5 forecast years), the region of non-significant
skill in the North Atlantic expands, as well as in the Southern
Ocean, and a new region in the central Tropical Pacific loses
significance. Also the sea level pressure partly loses skill after the
first forecast year and the regions with significant skill remain
the subtropical gyre region in the Pacific and the Southern
Ocean, which are the regions with the highest model biases
during the first forecast month (Figure 3). When compared
to Histo, the QM predictions show significant improvements
over a predominant part of the Pacific and over the North
Atlantic subpolar region (NASP) as well as the Southern Ocean,
during the first forecast year for both the surface temperature
(middle column Figure 4) and the sea level pressure fields
(middle column Figure 5). The significant added-value with
respect to Histo in the NASP surface temperature is maintained
at longer forecast years (bottom panels of Figure 4). However,
the improvement is partially lost at forecast years 2–5 in the zone
of the inter-gyre position, where the subpolar and subtropical
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FIGURE 6 | Skill difference in the upper 300 m ocean heat content, computed against EN4 observational dataset. The first column shows the anomaly correlation

(AC) difference between quantile matching (QM) and Histo for the first forecast year (top) and the 2–5 forecast years (bottom). The second column shows the

difference between QM and full-field initialization (FFI). The third column is a zoom on the regional mean of the western subpolar North Atlantic sector (WSPNA;

50–65◦ N, 60–30◦ W) as indicated by the black box. The AC and root mean square error (RMSE) are calculated with yearly mean data along the forecast time and are

shown, respectively, in the top and bottom panel. In red is shown the QM experiment, in blue the FFI, and in yellow the Histo. The thin lines represent the 95%

confidence interval obtained with a t-distribution for the correlation and a χ
2 distribution for the RMSE.

gyres meet. The QM also outperforms the FFI in predicting the
NASP surface temperature and, more importantly, the improved
skill maintains significance throughout the whole forecast time
(third column Figure 4). However, analogously to what is shown
in the comparison with Histo, there is a degradation of skill
along the Gulf stream for the forecast years 2–5, which could
potentially be due to a wrong positioning of the current in
the QM predictions. Differences between QM and FFI or Histo
inland temperature are marginal. The AC results are broadly
consistent with the residual correlations computed according to
Smith et al. (2019), which are shown in Supplementary Figure 2

of the Supplementary Material.
The comparison of QM with FFI for the sea level pressure

(third column Figure 5) highlights a statistically significant
skill improvement in the Antarctic circumpolar current and
a degradation of skill in the Tropical Pacific and the Indian
Ocean during the first forecast year, while significance in the skill
difference is lost at forecast years 2–5.

We now focus on the upper layer ocean heat content (0–300
m) because of its crucial role in the ocean meridional transport:
Figure 6 shows the skill comparison between QM and Histo/FFI.
Similarly to what is shown for the surface temperature, the QM
significantly improves the skill in the Pacific and the NASP region
with respect to Histo, although there is not a clear improvement
over the Southern Ocean. Besides, skill over the Indian Ocean
is improved. Part of those improvements are also maintained at
longer timescales. When comparing with the FFI prediction, we

find that the added value of the QM is mainly located over the
NASP region, consistently with the surface temperature results.

We now zoom over the western subpolar North Atlantic
region (50–65◦ N, 60–30◦ W, WSPNA), as this is a region
in which SST and ocean heat content have been shown to
influence the temperature and precipitation over the neighboring
continents (Buckley et al., 2019). The third column of Figure 6
shows the AC (first row) and the RMSE (second row) over the
WSPNA region as a function of the forecast time. The highest
values of ACs and the lowest values of RMSE over the WSPNA
region and during the entire forecast time are obtained with the
QM (red lines). Conversely, the Histo simulations (yellow lines)
do not show significant AC in any of the forecast years, whereas
the FFI loses its skill after the first forecast year.

3.3. Skill in the North Atlantic
In the previous section, we have shown significant improvements
in the NASP region, specifically in the Western sector of QM
with respect to FFI. Bilbao et al. (2021) performed an assessment
for an analogous decadal prediction experiment based on FFI,
and highlighted the collapse of deep convection in the Labrador
Sea with a consequent weakening of the AMOC, subsequent to
initialization. This led to a lack of prediction skill for the upper
ocean heat content and the surface temperature in the NASP. We
therefore look at the deep convection activity in the Labrador Sea
in an attempt to explain the origins of the QM skill improvements
presented in the previous section. Figure 7 shows the ensemble
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FIGURE 7 | Evolution of the mixed layer depth ensemble mean for the February–March–April average in the Labrador Sea. The top row shows the Histo ensemble

splitted into members that exhibit a regular convection activity (left), from the three which show no convection throughout most of the historical period (right). The

second row shows, respectively, the QM (left) and the FFI (right) evolution. The different start dates are represented with different colors. The NEMOVAR-ORAS4 is

shown in black.

mean of the mixed layer depth in the Labrador Sea (55–65◦ N,
56–46◦ W), as a proxy for the deep convection intensity, for the
February–March–April mean, which are the months of deepest
mixing. In order to better understand the behavior of the Histo
simulations, we have isolated three members that show no deep
convection throughout most of the historical period (top right
panel of Figure 7), from the rest of the Histo ensemble (top
left panel). The Histo ensemble mean with regular convection
is representative of the response to external forcings only and
shows lower values than the NEMOVAR-ORAS4 reference. In
the experiments with FFI, deep convection collapses very quickly
with forecast time (bottom right panel of Figure 7) preventing
FFI to follow the NEMOVAR-ORAS4 variability, consistently
with what was found by Bilbao et al. (2021). In contrast, QM
(bottom left panel of Figure 7) is able to partly reproduce the
variability present in NEMOVAR-ORAS4: after initialization, it
shows a slight increase in convective activity during the two peaks
observed in the 1980s and in the 1990s. However, this does not
directly translate into an increase of forecast skill, as the QM does
not improve with respect to the Histo ensemble that preserves
the convection. While Histo has a constant skill throughout the
whole forecast time, QM presents statistically significant AC only

during the first year (top left panel of Figure 8). This is probably
due to the fact that the skill in predicting the mixed layer depth
is dominated by the external forcing changes that have induced
an increase in stratification hindering convection activity. The
additional model variability that attempts at capturing the
observed one rather constitutes an additional noise, which is
detrimental to the forecast performance. The results in terms of
RMSE (bottom left panel of Figure 8) are consistent with what is
shown by the AC.

We assess the skill in predicting the barotropic circulation by
looking at the barotropic stream function, which characterizes
the horizontal water transport integrated vertically in the
Labrador Sea (right column of Figure 8). We find that Histo do
not show any skill. The initialized predictions, on the other hand,
have similar skill at the beginning of the forecast. However, the
skill of FFI deteriorates with forecast time and is lost at forecast
year 3, while the skill of QM is maintained throughout the whole
forecast time.

In summary, we have shown that the QM avoids the Labrador
Sea deep convection collapse that occurs in the FFI experiment,
and improves the prediction skill of the barotropic stream
function with respect to both the FFI and the Histo simulations.
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FIGURE 8 | Anomaly correlation of the mixed layer depth (top left panel) and the barotropic stream function (top right panel) in the Labrador Sea (55–65◦N,

56–46◦W). The second row shows the respective root mean square error (RMSE). Quantile matching (QM) is shown in red, the full-field initialization (FFI) in blue, the

Histo with convection is shown in yellow, and in purple the Histo members with no convection. The skill are computed against NEMOVAR-ORAS4, using the

February–March–April mean for the mixed layer depth, and a running mean of 12 months for the barotropic stream function. The thin lines represent the 95%

confidence interval obtained with a t-distribution for the correlation and a χ
2 distribution for the RMSE.

We are now interested in investigating the effect of these
improvements on the AMOC. Since the AMOC skill depends on
the latitude range at which it is considered, we show the results in
a Hovmoller diagram of the AC (Figure 9). We have computed
the AMOC index as the maximum of the Atlantic meridional
overturning stream function in adjacent latitude-depth boxes
of latitude range of 2 degrees (from 20◦ to 60◦ N) and depth
range of 900–3,000 m depth. If we focus north of 40◦N, the FFI
starts with high skill that progressively deteriorates until the third
forecast year down to an AC smaller than 0.1, probably due to
the collapse in deep convection. This is largely improved by the
QM that shows high skill in predicting the AMOC, particularly
at subpolar latitudes, for the entire forecast time. The skill of
FFI at lower latitudes is marginally higher than the QM one
throughout the whole forecast time. One reason to explain this is
that the detrimental effect of the convection collapse might need
longer time to propagate at lower latitudes than the 5 years that
we have available. The skill of the Histo simulations is constant

with forecast time. This is consistent with the results in Borchert
et al. (2021), where the good representation of the NASP SST
in the CMIP6 historical simulations is attributed to the AMOC-
related response to the forcings (volcanic eruptions and partly
solar forcing).

Finally, we complement the North Atlantic analysis with
the assessment of the skill in predicting the AMV. The AMV
index is calculated as the difference between the regional SST
anomalies in the North Atlantic (0◦ to 60◦ N and 80◦ to 0◦

W) and the global mean SST anomalies (between 60◦ S and
60◦ N), following the definition by Trenberth and Shea (2006).
The ensemble QM predictions successfully capture the observed
warming trend (left panel of Figure 10). In terms of skill, both
the initialized predictions and the Histo simulations succeed in
predicting the AMV index with skill significantly different than
0 along the whole forecast period as shown by the confidence
intervals (thin lines in Figure 10). The prediction skill of FFI
starts close to the skill of Histo and it might be generated
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FIGURE 9 | Hovmoller diagrams of the AMOC anomaly correlation with NEMOVAR-ORAS4. The Atlantic Meridional Overturning Circulation (AMOC) is calculated as

the maximum of the Atlantic meridional overturning stream function over adjacent boxes of 2◦ latitude (from 20◦ to 60◦ N) and 900–3,000 m depth. The panels show,

respectively, the quantile matching (QM) (top left), the full-field initialization (FFI) (top right), the Histo (bottom left), and the difference between the QM and the FFI

skill (bottom right).

FIGURE 10 | Atlantic multidecadal variability (AMV) index for the quantile matching (QM) predictions (left). The index computed from HadISST is shown in black. The

different colors represent the different start dates. The anomaly correlation (AC) and the root mean square error (RMSE) of the AMV index are shown, respectively, in

the central and right panels. The skill scores are calculated against the HadISST dataset, applying a 2-year running mean to the data. As in previous figures, the thin

lines represent the 95% confidence interval obtained with a t-distribution for the correlation and a χ
2 distribution for the RMSE.
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by the AMV persistence. During the first two forecast years,
QM outperforms FFI, both in terms of AC and RMS (second
and third panel of Figure 10), although the difference is not
statistically significant.

4. DISCUSSION AND CONCLUSIONS

In this study, we have presented a novel initialization method for
decadal climate predictions, namely the quantile matching. This
method aims at tackling two major issues:

• The drift coming from initializing the predictions away
from the model preferred trajectories, similarly to any other
anomaly initialization method;

• The potential inconsistencies between the observed/model
distribution of variability.

The quantile matching method selects the initial condition
of the prediction as the model state, which is identically
located in the model distribution as the observed initial
state in the observed distribution. Therefore, the initial
state belongs to the model attractor, reducing the drift.
Moreover, matching in the observed and model statistical
distributions scales the observed variability toward the model
one, correcting any potential amplitude incompatibilities. The
forecast skill assessment of a decadal prediction with EC-Earth3,
initialized with the quantile matching method, has led to the
following findings:

• Surface temperature has high significant skill throughout the
forecast years, in agreement with other studies (e.g., Smith
et al., 2019).

• In the North Atlantic subpolar region, the quantile matching
enhances the surface temperature and ocean heat content
skill, compared to the historical simulations and the full field
initialized predictions.

• The quantile matching avoids a collapse of deep convection
in the Labrador Sea that occurred in the full field initialized
predictions. This could be due to the positive effect of
initializing the predictions on the model attractor. However,
initialization does not seem to have a direct impact on the skill
of the mixed layer depth, as no significant skill improvements
are detected compared to the historical simulations. This is
probably due to the fact that the skill in predicting the mixed
layer depth is dominated by the trend that the historical
simulations is able to capture.

• The skill of the barotropic stream function in the Western
subpolar North Atlantic sector for the quantile matching
predictions is significant throughout the whole forecast period
and is the highest compared to both the full field initialized
predictions and the historical simulations.

• The quantile matching has a positive impact on the Atlantic
Meridional Overturning Circulation, which is skillfully
predicted throughout the whole forecast time. The Atlantic
Multidecadal Variability is well-forecasted along the whole
forecast time by both the initialized predictions and the
historical simulations.

The effect of the reduced prediction drift
translates into an improved forecast skill of the
meridional and barotropic ocean transports in the
North Atlantic.

Considering that the ocean holds most of the memory in the
climate system, we have performed the quantile matching on
the ocean model component only. However, previous studies
have highlighted the importance of having a sea-ice initial state
consistent with the ocean state (Volpi et al., 2017a; Tian et al.,
2020). Therefore, the use of different initialization techniques
for the ocean and sea-ice components could have generated
some instabilities in the quantile matching decadal predictions.
A step further for this work would be performing the quantile
matching also in the sea-ice model component. Besides, the use
of more sophisticated atmosphere-ocean coupled initialization
technique (Counillon et al., 2014; Brune and Baehr, 2020) would
address the issue of the initial shock originated by the use of
disjoint reanalyses for the initialization of the model components
(Mulholland et al., 2015).
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