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The boreal summer intraseasonal oscillation (BSISO) plays an important role in the

intraseasonal variability of a wide range of weather and climate phenomena across

the region modulated by the Asian summer monsoon system. This study evaluates

the strengths and weaknesses of 19 Coupled Model Intercomparison Project Phase 6

(CMIP6) models to reproduce the basic characteristics of BSISO. The models’ rainfall

and largescale climates are evaluated against GPCP and ERA5 reanalysis datasets.

All models exhibit intraseasonal variance of 30–60-day bandpass-filtered rainfall and

convection anomalies but with diverse magnitude when compared with observations.

The CMIP6 models capture the structure of the eastward/northward propagating BSISO

at wavenumbers 1 and 2 but struggle with the intensity and location of the convection

signal. Nevertheless, the models show a good ability to simulate the power spectrum and

coherence squared of the principal components of the combined empirical orthogonal

function (CEOF) and can capture the distinction between the CEOF modes and red

noise. Also, the result shows that some CMIP6 models can capture the coherent

intraseasonal propagating features of the BSISO as indicated by the Hovmöller diagram.

The contribution of latent static energy to the relationship between the moist static energy

and intraseasonal rainfall over Southeast Asia is also simulated by the selected models,

albeit the signals are weak. Taking together, some of the CMIP6 models can represent

the summertime climate and intraseasonal variability over the study region, and can also

simulate the propagating features of BSISO, but biases still exist.

Keywords: CMIP6, BSISO simulation diagnostics, intraseasonal variability, MSE, Southeast Asia

INTRODUCTION

In boreal winter, the Madden-Julian Oscillation (MJO; Madden and Julian, 1972, 1994) is
the dominant mode of tropical intraseasonal variability while boreal summer is dominated by
intraseasonal oscillation (e.g., Yasunari, 1979; Lee et al., 2013; Li and Mao, 2019). These oscillations
are characterized by eastward- and northward-propagation across the tropics and have a significant
effect on global weather and climate at different timescales (Straub and Kiladis, 2003; Lin et al.,
2006; Kim et al., 2009; Ahn et al., 2017; and references therein). However, the characteristic features
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(e.g., propagation, intensity, etc.) of the boreal summer
intraseasonal oscillation (BSISO) is more complex than that of
MJO (Annamalai and Sperber, 2005; Lee et al., 2013; Li and
Mao, 2016; Qi et al., 2019; and references therein). For example,
MJO is a dominant eastward propagatingmode along the equator
with a 20–100-day oscillation across the globe (e.g., Duffy et al.,
2003; Inness and Slingo, 2003; Waliser et al., 2003a; Jones et al.,
2004; Zhang et al., 2006; Kim et al., 2009; Alaka and Maloney,
2012; Yoneyama et al., 2013; Eyring et al., 2016a; Ahn et al.,
2017; Ling et al., 2019; Yang and Wang, 2019). BSISO, on the
other hand, has two dominant time scales, 10–20-day and 30–
60-day. The 10–20-day BSISO is characterized by westward
propagation over the Indian summer monsoon region and
northwestward propagation over the East Asia/western North
Pacific region. The 30–60-day BSISO, however, is characterized
by northward/northeastward propagation along the equatorial
Indian Ocean and northward/northwestward propagation over
the western North Pacific region (e.g., Mao and Chan, 2005;
Wang et al., 2005; Kikuchi and Wang, 2010; Li and Mao, 2019).
The BSISO is an important variability of the Asian summer
monsoon system and it is associated with fluctuations in the
onset and break of monsoons, droughts and floods, tropical
cyclone activity, and remote teleconnections including the El
Niño Southern Oscillation (Higgins and Shi, 2001; Waliser et al.,
2003b; Lin and Li, 2008; Ko and Hsu, 2009; Hsu and Li, 2011;
Li et al., 2015). In this regard, the intraseasonal variability and
life cycle of the BSISO can cause discomfort to the inhabitants
of the region; warranting a detailed understanding of the BSISO.
Knowledge of the impact of the BSISO on the weather at
a regional-scale, which is often rendered by the state-of-the-
art General Circulation Models (GCMs), could provide useful
information for weather-dependent operational decisionmaking.
Hence, it is important to assess the ability of climate models to
simulate the characteristic features of BSISO.

A body of literature exists on the studies of BSISO simulation
(e.g., Waliser et al., 2003b; Li and Mao, 2016; Hu et al., 2017;
Yang et al., 2020). In general, most climate models continue
to underestimate the intraseasonal variability of the BSISO and
associated monsoon variability. The shortcomings are attributed
to an inadequate understanding of BSISO mechanisms and
an inaccurate representation of the parameterized physical
processes, for example, cumulus convection, that are associated
with BSISO simulation in the climate models (Waliser et al.,
2003b; Hu et al., 2017; Qi et al., 2019). Using the Chinese
Academy of Meteorological Sciences coupled climate science
model (CAMS-CSM), Qi et al. (2019) evaluated the fidelity of
this model to capture some basic features of BSISO. They showed
that CAMS-CSM can reproduce the features of BSISO, but
underestimated the zonal and meridional propagation over the
Asian summer monsoon domain. This suggests that the model
failed to adequately represent the BSISO convection. The role of
vertical wind shear in the development of northward propagating
BSISO has also been confirmed in previous studies (Inness
et al., 2003; Jiang et al., 2004; Yang et al., 2019). This is further
illustrated by Yang et al. (2019) in a series of NESM3.0 model
experiments through lowering the Tibetan Plateau. The results
showed that lowering Tibetan Plateau reduced the vertical wind

shear, which in turn limited the BSISO northward propagation.
This echoes the result of Qi et al. (2019) and demonstrates that
accurate northward propagating BSISO is related to state-of-the-
art climate models’ ability to simulate the physical processes of
the vertical structure of BSISO.

Assessment of the low frequency tropical intraseasonal
oscillations (e.g., MJO and BSISO) and associated Asian summer
monsoon variability in climate models that have participated
in the Coupled Model Intercomparison Project (CMIP) appears
in several previous studies (e.g., Lin et al., 2006, 2008; Sperber
and Kim, 2012; Hung et al., 2013; Jena et al., 2016; Ahn et al.,
2017; Preethi et al., 2019; Konda and Vissa, 2021). Evidence
still abounds that many GCMs fall short at representing the
basic features of these oscillations, including the northward
propagating convection, because of resolution-sensitivity to
parameterizations, large-scale dynamics, and representation of
physical processes that vary from model to model (Sabeerali
et al., 2013; Konda and Vissa, 2021). However, there has been a
notable improvement in the robust simulation of intraseasonal
variability from CMIP3 to CMIP5, due in part to increases
in resolution and convective parameterization. Comparing the
simulated BSISO eastward propagating convective anomalies in
CMIP5 with those of the CMIP3, Sabeerali et al. (2013) noted
a modest improvement in BSISO simulation in CMIP5 models.
Ogata et al. (2014) applied Taylor’s skill metrics to assess the
performance of 20 CMIP3 and 24 CMIP5 models at capturing
the seasonal mean structures of the summer Asian monsoon and
reported an improvement in the skills of the CMIP5 multi-model
ensemble mean. This result echoed the findings of Sperber et al.
(2013) that CMIP5 models have good skill at reproducing the
northward propagation of convection. Despite this improvement,
simulation of the low frequency tropical intraseasonal oscillations
remains a challenge (Konda and Vissa, 2021; Yan et al., 2021).

A considerable amount of effort by modeling groups has
been devoted to improving their climate models. On average,
the CMIP5 models have higher horizontal resolutions than those
in CMIP3 and have improved subgrid-scale parameterizations
than those used in the CMIP3 version (Hung et al., 2013).
CMIP6 models are the newly released version of the CMIP
family with improvement in resolution and physical complexity
relative to other CMIPs (Taylor et al., 2012). Hence it is
important to evaluate how well the CMIP6 climate models
perform. A more recent study by Ahn et al. (2020) examined
how well the CMIP6 models perform in simulating MJO
propagation in comparison with CMIP5, with a focus on the
Maritime Continent during boreal winter (November–April).
This study concluded that MJO propagation is significantly
improved in CMIP6 models compared to CMIP5 models.
Several other studies have evaluated the performance of CMIP6
models to simulate the mean climate at both the global
and the regional scales (Pattnayak et al., 2017; Wu et al.,
2019; Xin et al., 2020; Khadka et al., 2021). There was
a strong agreement that CMIP6 models showed an overall
improvement in the skill scores of the climate patterns compared
with CMIP5 models. To the best of our knowledge, the
CMIP6 models have not been applied to study the summer
intraseasonal oscillation.
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This study focuses only on the period of May–October when
some regions of Southeast Asia, like Thailand, experience a
significant wet period. The ultimate motivation is to assess
changes in BSISO-rainfall connections in Southeast Asia under
climate change. This study represents the first step and the impact
of climate change will be reported in future publications. Hence,
this first part of our work aims to examine how well a subset
of CMIP6 models simulates the basic characteristic features of
BSISO. The remainder of this paper is organized such that the
selected 19 CMIP6 climate models, validation datasets, and the
diagnostic methods are introduced in section Region, Dataset,
and Methods. Results are presented in section Results and the
conclusions appear in section Conclusions.

REGION, DATASET, AND METHODS

Region of Study
Southeast Asia is the sub-region of Asia that stretches from about
10◦S to 20◦N and 100◦E to 140◦E including Cambodia, Laos,
Myanmar, Thailand, Vietnam, and parts of southern China. The
region is bordered by the Indian subcontinent in the west, the
Indian Ocean in the south, China in the north, and Australia in
the southeast. The climate of Southeast Asia is predominantly
tropical, with a monsoonal circulation system being the main
driver of the seasonal rainfall pattern (McSweeney et al., 2015).
This region is under the influence of the Southeastern Asian
summer monsoon system, and it is characterized by longer wet
seasons (between 120 to 160 days) in the Asian monsoon domain
(Misra and DiNapoli, 2014). The rainy season over this region
typically begins in May and subsides in October (Zeng and Lu,
2004).

Dataset
CMIP6 Climate Models
The historical runs of the Coupled Model Intercomparison
Project phase 6 (CMIP6; Eyring et al., 2016b) climate models are
used for the analysis of the BSISO variability in this study. The
selected 19 coupled general circulationmodels come from several
institutions and are available at different latitude and longitude
grid sizes on a daily timescale (Table 1). The first ensemble
member of each of the 19 CMIP6 models is selected based on
the availability and completeness of rainfall (Pr), sea surface
temperature (SST), top of the atmosphere radiation (outgoing
longwave radiation, OLR), and the atmospheric variables (zonal
and meridional winds; U and V). Also, these models offer
promising future simulation data to be used in future studies. The
atmospheric variables are provided on 8 pressure levels (1,000,
850, 700, 500, 250, 100, 50, and 10 hPa).

Observational and Reanalysis Datasets
The selected CMIP6 climate models are evaluated with an
observational dataset as a reference state. The atmospheric
datasets are obtained from the European Centre for Medium-
Range Weather Forecasts Reanalysis v5 (ERA5; Hersbach
et al., 2020). The daily dataset is obtained from the sub-daily
dataset, which is available on a spatial resolution grid of
0.25◦ × 0.25◦ from 1979 to 2014. In addition to the ERA5

TABLE 1 | 19 selected CMIP6 climate models used for the analysis in this study.

Number Institution id Source id Model Resolution (Lat x Lon)

1 CSIRO-ARCCSS ACCESS-CM2 1.25◦ x 1.87◦

2 CSIRO ACCESS-ESM1-5 1.25◦ x 1.87◦

3 AWI AWI-ESM1-1-LR 1.86◦ x 1.87◦

4 CCCma CanESM5 2.80◦ x 2.80◦

5 NCAR CESM2 0.94◦ x 1.25◦

6 NCAR CESM2-FV2 1.89◦ x 2.50◦

7 CMCC CMCC-CM2-HR4 0.94◦ x 1.25◦

8 CMCC CMCC-CM2-SR5 0.94◦ x 1.25◦

9 CMCC CMCC-ESM2 0.94◦ x 1.25◦

10 CNRM-

CERFACS

CNRM-CM6-1 1.40◦ x 1.40◦

11 CNRM-

CERFACS

CNRM-CM6-1-HR 0.50◦ x 0.50◦

12 CNRM-

CERFACS

CNRM-ESM2-1 1.40◦ x 1.40◦

13 EC-Earth-

Consortium

EC-Earth3 0.70◦ x 0.70◦

14 NOAA-GFDL GFDL-CM4 2.00◦ x 2.50◦

15 IPSL IPSL-CM6A-LR 1.27◦ x 2.50◦

16 MIROC MIROC6 1.40◦ x 1.40◦

17 MPI-M MPI-ESM1-2-LR 1.85◦ x 1.87◦

18 MPI-M MPI-ESM1-2-HR 0.93◦ x 0.93◦

19 HAMMOZ-

Consortium

MPI-ESM-1-2-HAM 1.87◦ x 1.87◦

OLR dataset, a comparison OLR dataset is obtained from
the National Oceanic Atmospheric Administration (NOAA)
National Centers for Environmental Information website
(www.ncdc.noaa.gov/cdr/atmospheric). The 1.0◦ × 1.0◦ daily
mean OLR data is available from 1979 to 2014. The OLR is
estimated from high-resolution infrared sounder radiance
observations for all-sky conditions. Further details of this dataset
can be found in Ellingson et al. (1989) and Lee et al. (2004).
The global observed daily precipitation data is obtained from
the Global Precipitation Climatology Project (GPCP) version
1.3 (Huffman et al., 2001). This product is a blend of rainfall
observations from gauge stations and satellite retrievals. The
GPCP used in this study is at a spatial resolution of 1.0◦ × 1.0◦

for the period 1997–2014.
All the datasets are regridded to the same 1.0◦ × 1.0◦ longitude

and latitude horizontal resolution for comparison with models.
We analyze data for the period 1997–2014 because the NOAA
OLR has some missing data in 1982, 1985, and 1994, which is
not acceptable in the algorithm for the computation of the power
and cross-spectrum.

Methods
Simulation Diagnostics and Statistics
Several diagnostics tools and statistics have been developed
and applied to evaluate the ability of the climate models in
reproducing the spatio-temporal characteristics, intensity, zonal
location, and propagation behavior of both winter and summer
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intraseasonal oscillations (e.g., Li and Mao, 2016; Hu et al.,
2017; Qi et al., 2019). The chief among the diagnostics statistics
includes the moist static energy that represents the intensity of
BSISO during summer, wavenumber-frequency power spectrum,
and the combined empirical orthogonal function (CEOF). These
statistics are used in this study and have also appeared in several
studies (for example, Jiang et al., 2004; Kim et al., 2009; Waliser
et al., 2009; Sperber and Kim, 2012; Li, 2014; Li and Mao, 2016;
Ahn et al., 2017; Fan et al., 2021; and references therein).

The column integrated moist static energy (MSE) has been
employed in previous studies to study the eastward propagation

of the MJO (Jiang, 2017; Wang et al., 2018). However, in this
study, we use this thermodynamic variable to examine the
propagation features of the BSISO. The vertically integrated MSE
(m) can be expressed as: 〈m〉 = 〈cpT〉 + 〈gz〉 + 〈Lvq〉, where
the angle brackets signify the mass-weighted vertical integral
from 1,000-hPa to 500-hPa level, T is the temperature, z is the
geopotential height, q is the specific humidity, cp is the specific
heat at constant pressure, g is the gravitational acceleration, and
Lv is the latent heat of vaporization. The first two terms on the
right-hand side of the equation are termed the dry static energy
(DSE) and the last term is the latent static energy (LSE).

FIGURE 1 | Variance of 30–60-day bandpass-filtered intraseasonal rainfall anomalies during the boreal summer (May–October) obtained from observations and

CMIP6 models for the period 1997–2014. The Spearman correlation (r) of filtered rainfall anomaly on (b; ERA5) and (c–u; CMIP6 models) is obtained against (a) GPCP

as the reference. The standard deviation of rainfall normalized by the GPCP standard deviation is shown at the bottom left of the plot. The blue contours represent the

ratio of the 30–60-day bandpass-filtered intraseasonal rainfall variance to the total rainfall multiply by 100 (%). Only the 10% isoline of the rainfall variability is shown

here. The dotted red boxes indicate the equatorial Indian Ocean and the Southeast Asia domain.
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BSISO Index
The observed and simulated BSISO characteristic features in
this study are assessed using the diagnostics developed by the
U.S. CLIVAR MJO Working Group (MJOWG; Kim et al.,
2009; Waliser et al., 2009). We obtain the BSISO index by
modifying the MJO diagnostics script1. We compute the BSISO
index by applying the combined empirical orthogonal function
(CEOF) analysis to the daily averaged 30–60-day band-pass
filtered OLR and U850 anomalies. The empirical orthogonal
function is a multivariate statistical tool often used in climate
studies to extract and study the characteristics of the dominant
spatial modes of climate variability (from large datasets), as
well as their temporal variability (aka, principal component).
The CEOFs are obtained by computing the eigenvalues (modes)
and eigenvectors (principal component) of the spatial covariance
matrix of the combined anomaly fields. Note that the eigenvalues
give a measure of the percentage variance explained by each
mode and the principal components of each mode are obtained
by projecting the eigenvectors unto the weighted combined
anomalies. Further information can be obtained fromNorth et al.
(1982) and the NCAR Climate Data Guide website2. For the
computation of the CEOFs and subsequent BSISO, we focus the
analysis over the Asian summer monsoon region (10◦S−40◦N,
40◦E−160◦E) during summer (May to October) for the period
1997 to 2014; for consistency with BSISO literature (Lee et al.,
2013; Yang et al., 2019). The band-pass filtered OLR and U850
anomalies are calculated by applying the bandpass Lanczos
filtered weights to the data series and then remove the effect of
the interannual variation by subtracting the climatological annual
cycle. Next, we normalize the OLR and U850 anomalies by their
respective area-averaged standard deviation after which the two
anomaly datasets are combined and CEOF analysis is applied.
Finally, the daily BSISO index and phase are obtained from the
principal component – time series of the multivariate BSISO
index denoted as CEOF1 (or PC1) and CEOF2 (or PC2) – of the
first two leading modes of CEOFs. These first two leading modes
are considered to represent the space-time evolution of the BSISO
(Abhik et al., 2016). This BSISO amplitude is given as (PC12 +

PC22)1/2 and the phase is given as arctan (PC1/PC2). The BSISO
life cycle is divided into eight phases of equal angular extent.
Given the BSISO amplitude and the phases, composites of the
spatio-temporal structure of large-scale features associated with
the BSISO life cycle that highlights the intraseasonal variability
and the extent of the BSISO northward/eastward propagation can
be determined.

To evaluate the spatio-temporal characteristics of the models
to reproduce the band-pass filtered climate variables and other
propagating features of the BSISO, we employ the usage of several
statistical metrics. These metrics include pattern correlation
coefficient (r), root mean square error (rmse), mean bias error
(mbe), mean (m; normalized by GPCP), standard deviation, east-
west ratio (E/W), and north-south ratio (N/S). These metrics are
calculated as appropriate for the figures presented in this study.

1http://www.ncl.ucar.edu/Applications/mjoclivar.shtml
2https://climatedataguide.ucar.edu/climate-data-tools-and-analysis/empirical-

orthogonal-function-eof-analysis-and-rotated-eof-analysis

RESULTS

Spatial Distribution of Intraseasonal
Variability
Previous studies indicated that maps of intraseasonal variance
offer an essential standpoint for climate model simulations
of the BSISO. To assess the spatial pattern of intraseasonal
variability, Figure 1 presents the intraseasonal variance of 30–60-
day bandpass-filtered rainfall anomalies from GPCP, ERA5, and
CMIP6 model simulations during the May–October season for
the period 1997–2014. TheGPCP data showweaker variance over
the land region of Southeast Asia and a large part of the Maritime
Continent (Figure 1a). However, a higher variance of rainfall
anomalies (≥ 8 mm2 day−2) is located over the Indian Ocean,
Bay of Bengal, the coastal regions of India and Myanmar, and
the East China Sea. This intraseasonal signal signifies the direct
impacts of BSISO characteristics on rainfall variability over those
regions consistent with previous studies (Waliser et al., 2009; Hu
et al., 2017; Qi et al., 2019). The structure of the intraseasonal
variance of 30–60-day bandpass-filtered rainfall anomaly in
ERA5 (r = 0.61; Figure 1b) is consistent with that of GPCP
and previous reanalysis study (Kim et al., 2019). The difference
between these two datasets lies in the magnitude of the rainfall
over the regions mentioned above where ERA5 shows higher
rainfall variance. This signifies the observational uncertainty,
which may be related to the differences in the data processing.
The 10% isoline of the rainfall variability accounted for by
the BSISO mode (30–60-day) is indicated by the blue contour.
The regions with maxima variance also exhibit a large percent
variance of rainfall anomaly indicating that BSISO accounts for
more than 10% of the intraseasonal rainfall variability over those
regions. Meanwhile, the impact of BSISO on the climate of the
Southeast region is smaller than 10% over the land region.

The CMIP6 climate models exhibit differences in the spatial
structure and magnitude of the intraseasonal variance of 30–
60-day bandpass-filtered rainfall anomalies as indicated by the
statistical metrics in Table 2 and Figures 1c–u. For example,
CanESM5 (Figure 1f), CMCC-CM2-SR5 (Figure 1j), CMCC-
ESM2 (Figure 1k), GFDL-CM4 (Figure 1p), and IPSL-CM6A-
LR (Figure 1q) show lower magnitude and thus missed the
pattern of the observed rainfall variance as indicated by both
the normalized mean (<0), rmse values (3.9 < rmse < 5.5 mm2

day−2) and weak pattern correlations (0.18< r< 0.39). ACCESS-
CM2 (Figure 1c), ACCESS-ESM1-5 (Figure 1d), CNRM-CM6-
1 (Figure 1l), CNRM-CM6-1-HR (Figure 1m), CNRM-ESM2-1
(Figure 1n), and MIROC6 (Figure 1r) capture the magnitude
of the observed anomalous rainfall, but with higher magnitudes
in some locations. The best performance of these models with
reference to the observed variance is evident in their high
pattern correlation (0.45 < r < 0.63), while their overestimate
is indicated by their high normalized mean (> 1.0) and high
rmse (> 6.0 mm2 day−2). Of these models, MIROC6 exhibits
the highest error because of its strongest simulated intensity.
Except for CESM2-FV2 and CNRM-CM6-1-HR, all the CMIP6
models in this study simulate the rainfall variance over the Indian
Ocean, although with differences in magnitude. Consistent with
the observations, 16 of 19 CMIP6 models can also capture the
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TABLE 2 | The statistical metrics to evaluate variance of rainfall from ERA5 and CMIP6 climate models relative to GPCP.

Data r rmse mbe sd mean

ERA5 0.61 4.6 0.5 1.5 1.06

ACCESS-CM2 0.50 6.4 0.8 1.9 1.12

ACCESS-ESM1-5 0.48 6.3 1.0 1.9 1.13

AWI-ESM1-1-LR 0.49 4.2 −2.3 0.9 0.66

CanESM5 0.26 4.8 −2.8 0.7 0.58

CESM2 0.51 4.6 0.9 1.3 1.13

CESM2-FV2 0.54 3.6 −1.2 0.9 0.81

CMCC-CM2-HR4 0.43 4.2 −1.5 0.9 0.78

CMCC-CM2-SR5 0.22 5.5 −2.4 1.1 0.63

CMCC-ESM2 0.29 5.1 −1.9 1.1 0.70

CNRM-CM6-1 0.58 6.3 0.8 2.0 1.10

CNRM-CM6-1-HR 0.45 7.4 −0.6 2.2 0.91

CNRM-ESM2-1 0.55 7.0 0.7 2.2 1.10

EC-Earth3 0.62 3.8 −2.0 0.9 0.69

GFDL-CM4 0.39 3.9 −0.8 0.8 0.88

IPSL-CM6A-LR 0.18 5.4 −2.6 0.9 0.61

MIROC6 0.63 7.4 1.7 2.3 1.23

MPI-ESM1-2-LR 0.52 4.4 −0.7 1.3 0.90

MPI-ESM1-2-HR 0.51 4.1 −0.6 1.1 0.90

MPI-ESM-1-2-HAM 0.49 4.7 0.1 1.4 1.01

percent variance of rainfall anomaly along the tropical rain-belt
(20–30◦ N).

Figure 2 presents the intraseasonal variance of 30–60-day
bandpass-filtered OLR (shaded) and U850 (contour) overlaid
with the 30–60-day bandpass-filtered 850-hPa winds (vector)
anomalies from ERA5, NOAA, and CMIP6 model simulations
during May–October season for the period 1997–2014. For
clarity, only a 4.0 (m s−1)2 contour line is presented. There is
only a slight difference between the spatial patterns of NOAA
and ERA5 OLR variances (r = 0.94; Figures 2a,b). ERA5
reanalysis shows a large variance of anomalous OLR >200 (W
m−2)2 over the Oceanic regions, with a core over the Indian
Ocean, Bay of Bengal, and the East China Sea, consistent with
previous studies (e.g., Lee andWang, 2016). Lower values ranging
from 80 to 100 (W m−2)2 are, however, observed over the
maritime continent, Thailand, and China, consistent with the
low rainfall (Figure 1a). The coexistence of maxima OLR and
rainfall variances indicates the relationship between convection
and rainfall over the region. However, the differences in the
magnitude of the rainfall variance over the Indian Ocean and
the East China Sea/Western Pacific Ocean indicate the different
interactions between rainfall and convection over the two basins.
This suggests that the seasonal cycle of BSISO may influence
the mean climate differently over the regions (Lee and Wang,
2016). There is a strong coupling between the convection and
low-level convergence as indicated by the associated 850-hPa
zonal wind component and the strong westerlies. This informs
that the effect of BSISO on intraseasonal rainfall variability
over the Southeast Asia region is a function of both the low-
level winds and convection. The CMIP6 climate models show

the ability to capture the intraseasonal variance of 30–60-day
bandpass-filtered OLR. The models capture the variance over the
oceanic regions, although with differences in spatial extent and
magnitude. It is noted that models with weaker rainfall variance
(Figure 1) also exhibit weaker OLR variance. In comparison with
other models, OLR variance in CNRM-CM6-1-HR (sd = 0.6;
Figure 2m) and IPSL-CM6A-LR (sd = 0.4; Figure 2q) is weak.
The 19 models also capture the relationship between convection
and low-level convergence as indicated by the coincidence of
the 850-hPa zonal wind component and the strong westerlies
over the regions where OLR variance is maxima. Notably, some
of the models, including AWI-ESM1-1-LR, CanESM5, CNRM-
CM6-1-HR, and IPSL-CM6A-LR underestimate the strength of
the westerly wind vectors, which will also negatively impact the
transport of the low-level moisture over the region. Also noted is
that the EC-Earth3 overestimate the strength of the winds over
the Indian region.

BSISO Simulation Diagnostics
Several BSISO diagnostics tools and statistics have been
developed and applied to evaluate the ability of the climate
models in reproducing the spatio-temporal characteristics,
intensity, zonal location, and propagation behavior of the
BSISO (e.g., Li and Mao, 2016; Hu et al., 2017; Qi et al.,
2019). The chief among the diagnostics statistics includes
the wavenumber-frequency power spectrum and the combined
empirical orthogonal function (CEOF). These statistics are used
in this study and have also appeared in several studies (for
example, Jiang et al., 2004; Kim et al., 2009; Waliser et al., 2009;
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FIGURE 2 | Variance of 30–60-day bandpass-filtered intraseasonal OLR and 850-hPa zonal wind (contour) overlaid with 30–60-day bandpass-filtered 850-hPa wind

(vector) anomalies during the boreal summer (May–October) obtained from observations and CMIP6 models for the period 1997–2014. The solid red contour is the 4.0

(m s−2)2 isoline of the bandpass-filtered 850-hPa zonal wind variance. The Spearman correlation (r) of filtered OLR anomaly on (b; NOAA) and (c–u; CMIP6 models) is

obtained against (a) ERA5 as the reference. The standard deviation of OLR normalized by the ERA5 standard deviation is shown at the bottom left of the plot.

Sperber and Kim, 2012; Li, 2014; Li and Mao, 2016; Ahn et al.,
2017; and references therein).

Wavenumber-Frequency Power Spectrum
The life cycle of BSISO over the Asian summer monsoon is
characterized by both the eastward and northward propagations.
To focus on the propagation behavior of the BSISO, we compute
the wavenumber-frequency power spectra of filtered OLR and
U850 anomalies. We use the power spectra averaged over the
latitudinal band of 10◦S−30◦N to depict the eastward/westward
propagation of the BSISO, while we use the power spectra
averaged over the longitudinal band of 100◦E−120◦E (southeast
Asia) and 70◦E−100◦E (equatorial Indian Ocean) to depict

the northward/southward propagation of the BSISO. For this
computation, the power spectra are obtained for an individual
half-year (180 days in length) and an averaged spectrum is
computed by averaging over all the periods of the data record.
Figures 3, 4 and Supplementary Figure 1 show the pattern of
this statistic.

In both NOAA and ERA5, the maximum eastward power
(positive frequency) of OLR is contained at a 40–60-day
period and zonal wavenumbers 1–3 (Figure 3a). The counterpart
westward spectra power (negative frequency) is much smaller
than that of the eastward power. This is evident by the strong
Eastward/Westward power ratio (E/W ratio). Consistent with
Lin et al. (2006) and Ahn et al. (2017), this skill metric is
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FIGURE 3 | Zonal wavenumber-frequency power spectra of the boreal summer (May–October) intraseasonal OLR (shaded) and 850-hPa zonal wind [blue contours;

(m s−1)2, with contours from 0.02 at an interval of 0.02] anomalies from observations (a; OLR and ERA5) and CMIP6 models (b–t) over 10◦S−30◦N domain. The cyan

dotted contour represents the 0.2 (W m−2 )2 isoline of OLR. Periods of 30 days and 60 days are indicated by the vertical dashed lines. Positive frequencies indicate

eastward propagating waves and negative frequencies indicate westward propagating waves. The ratio of OLR eastward propagating wave to westward propagating

wave (E/W) is shown at the top panel, while that of the zonal wind is shown at the bottom left (blue). The coherence-squared (Coh2) of OLR and 850-hPa zonal wind

averaged over 10◦S−30◦N is shown at the upper left corner of the plot.

obtained as the ratio of the sum of eastward power spectra to the
sum of westward power spectra over the 30–60-day band. The
observed E/W ratio is >1 (1.26 and 1.17 for NOAA and ERA5,

respectively), which signify the robustness of the BSISO eastward
propagation. As indicated by the blue contours in Figure 3a, the
observed eastward-propagating U850 spectrum is consistent with
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FIGURE 4 | Meridional wavenumber-frequency power spectra of the boreal summer (May–October) intraseasonal OLR (shaded) and 850-hPa zonal wind [blue

contours; (m s−1)2, with contours from 0.03 at an interval of 0.06] anomalies from observations (a; OLR and ERA5) and CMIP6 models (b–t) over 100◦E−120◦E

domain. Periods of 30 and 60 days are indicated by the vertical dashed lines. Positive frequencies indicate northward propagating waves and negative frequencies

indicate southward propagating waves. The ratio of OLR northward propagating wave to southward propagating wave (N/S) is shown at the top panel, while that of

the zonal wind is shown at the upper left corner of the plot (blue).

that of the OLR spectrum. However, the westward counterpart
of the eastward power of U850 is weak. Here, the E/W ratio is
1.88 for ERA5. Comparing the E/W ratio for OLR with that of

U850 shows that the BSISO eastward-propagating oscillation is
more robust in U850 than in OLR. The CMIP6 models exhibit
the spectra power of OLR over a wide range of frequencies and
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zonal wavenumbers. Also, the maximum power is concentrated
vertically across zonal wavenumbers 1–4 in most of the models
and outside the observed 40–60-day period. Although the
westward-propagating power in some of the models is weaker
than the eastward-propagating power, about 40% of the models
overestimate the observed westward-propagating power. The
simulated E/W ratio of OLR varies between 0.78 and 1.65. Four
of the models, CMCC-CM2-SR5, CNRM-CM6-1-HR, CNRM-
ESM2-1, and IPSL-CM6A-LR, have OLR spectra power lower
than 3 W2 m−4 (Figures 3i,l,m,p), while CESM, CESM2-
FV2, and EC-Earth3 have eastward-propagating signal that is
considerably greater in magnitude than the observed signal, and
the maximum power is located at wavenumbers 1–4 between 60
and 200-day period (Figures 3f,g,n).

Looking at the contour plot of the simulated U850 power
spectrum in the models (Figures 3c–t), we see that CMIP6
models can simulate the distribution of the observed zonal
wind power spectrum. However, there are differences in their
magnitude. While EC-Earth3 produces excessive power spectra
across wavenumbers 1–3, the models with weak OLR power
spectra also exhibit a very weak U850 power spectrum (< 0.02m2

s−2). Also, most of the CMIP6 models have a strong E/W ratio
of U850, which indicates that the BSISO eastward variance of
U850 dominates over the westward variance. In contrast to ERA5

and other models, EC-Earth3 produces too large U850 variances.
In addition to the E/W ratio, another statistic derived from the
wavenumber-frequency power spectra is the coherence-squared
(Coh2). This statistic shows the consistency between the OLR
and U850. To obtain this statistic, we compute the cross-spectra
to quantify the coherence relationship between the two variables
for the summer season on 180-day length segments, overlapping
by 130 days. The result of the ERA5 symmetric component of
the Coh2 spectrum between these variables, at the wavenumber-
frequency space that characterizes the BSISO, is about 0.49.
This shows the consistency between the low-level circulation
and convection. The CMIP6 models struggle to simulate this
coherence at the BSISO band. On average, the simulated Coh2

peaks at about 0.32.
The meridional propagation (northward/southward) of the

BSISO over Southeast Asia represented by the meridional
wavenumber-frequency power spectra of OLR and U850 is
shown in Figure 4. In both the observations and the models,
the meridional propagation of the power spectrum of these
variables (concentrated at wavenumbers 1 and 2) is dominated
by the northward propagating component as indicated by the
Northward/Southward power ratio (N/S ratio). This ratio is
>1 for both OLR and U850. The observed mean N/S ratio
for OLR is about 1.49, while the simulated OLR N/S ratio

TABLE 3 | Variance explained by the combined empirical orthogonal functions.

Data CEOF1 CEOF2

OLR U850 Total OLR U850 Total

ERA5 27.99 56.55 42.27 16.08 25.31 20.69

ACCESS-CM2 8.80 43.41 26.10 16.93 26.01 21.47

ACCESS-ESM1-5 11.93 34.64 23.28 8.02 34.25 21.13

AWI-ESM1-1-LR 6.37 36.75 21.56 8.28 26.14 17.21

CanESM5 5.97 38.08 22.02 8.71 28.59 18.65

CESM2 7.68 44.94 26.31 16.82 33.84 25.33

CESM2-FV2 17.02 33.53 25.27 8.87 36.32 22.59

CMCC-CM2-HR4 21.51 29.83 25.67 9.79 36.30 23.05

CMCC-CM2-SR5 15.51 32.25 23.88 6.83 40.45 23.64

CMCC-ESM2 14.27 34.70 24.49 7.94 36.50 22.22

CNRM-CM6-1 15.99 31.46 23.72 8.42 37.80 23.11

CNRM-CM6-1-HR 7.28 37.51 22.40 13.08 24.90 18.99

CNRM-ESM2-1 12.74 36.38 24.56 11.67 30.71 21.19

EC-Earth3 2.21 38.05 20.13 19.69 13.86 16.78

GFDL-CM4 17.04 41.08 29.06 15.91 30.30 23.10

IPSL-CM6A-LR 7.79 46.05 26.92 9.03 25.83 17.43

MIROC6 6.39 33.61 20.00 16.3 21.77 19.03

MPI-ESM1-2-LR 11.09 35.87 23.48 15.61 26.85 21.23

MPI-ESM1-2-HR 11.03 34.88 22.95 17.59 25.81 21.70

MPI-ESM-1-2-HAM 8.80 43.41 26.10 16.93 26.01 21.47

Multimodel statistics

Min 2.21 29.83 20.00 6.83 13.86 16.78

Max 21.51 46.05 29.06 19.69 40.45 25.33

Mean 11.15 36.83 23.99 12.19 29.79 20.99

Median 11.06 36.13 23.8 10.73 29.45 21.35
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FIGURE 5 | The normalized eigenvectors of the first two leading modes of the combined empirical orthogonal functions (CEOFs) of 30–60-day 10◦S−30◦N domain

averaged OLR and U850 for ERA5 (solid black line) and CMIP6 models (dashed color lines). (A,B) are for the first mode and (C,D) are for the second mode. The sign

and order of some of the simulated CEOFs are switched to resemble that of ERA5 (see section The CEOF and PC analyses for details).

ranges from 1.05 to 1.49. This metric is of the same order for
U850, where the observed mean N/S ratio is about 1.47 and
the simulated N/S ratio ranges from 1.08 to 1.45. Unlike the
zonal propagation (Figure 3), there is a strong correspondence
between OLR and U850 at the BSISO characteristic band.
Comparing Figures 3, 4, it is reasonable to state that the
meridional propagation of the BSISO is more robust than
the zonal propagation over the tropical domain between
5◦S−20◦N and 100◦E−120◦E. The structure of the meridional
propagation of the BSISO over the equatorial Indian Ocean
(Supplementary Figure 1) is similar to that of Figure 4. The
slight differences in magnitude and the value of the N/S ratio
between Figure 4 and Supplementary Figure 1 further confirm
the separate influence of the BSISO over the two regions.

The CEOF and PC Analyses
The first part of this section presents the statistics and the spatial
structures (normalized eigenvectors) of the first two leading
modes of the combined empirical orthogonal functions (CEOFs)
derived from the 30–60-day bandpass-filtered anomalies of OLR
and U850 variables. The second part focuses on the real-time
multivariate BSISO index.

Combined Empirical Orthogonal Function Analysis and

Statistics
The individual and total variances of OLR and U850 explained
by each CEOFs are presented in Table 3. In ERA5, the first two
leading CEOFmodes explain about 20% each of the total variance
of the combined variables, which indicates that they form a
pair describing a propagating signal. Looking at the variance
of individual variables explained by CEOF1 and CEOF2, OLR
explained variance is the least and U850 explained variance is the
most. The CMIP6 models show a wide range of the individual
and total variances explained by the CEOF. For OLR, on average,
the magnitude of the explained variance is smaller compared to
the observed, as well as in comparison to U850. This indicates
that models find it difficult to produce coherent OLR variability
associated with the BSISO. This disparity may be related to the
different convection parameterization schemes in the models.

Figure 5 shows the observed and simulated eigenvectors of
the CEOFs from which the above statistics are obtained. Pre-
analysis of the CEOFs shows that simulated CEOF2 leads CEOF1
in some of the models. Hence, for consistency with the structure
of ERA5, we switch the sign and order of some simulated CEOFs.
As indicated by ERA5, CEOF1 depicts positive OLR anomaly
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FIGURE 6 | The lag correlation between the first two leading PCs during the boreal summer (May–October) obtained from ERA5 and CMIP6 models for the period

1997–2014.

concentrated over the longitudes of the IndianOcean, with a peak
at about 70◦E, and negative OLR anomaly over the longitudes
of Southeast Asia (Figure 5A). This feature is associated with
weak easterlies and strong westerlies over most parts of the
Indian Ocean and the Pacific (Figure 5B). For the CEOF2, the
OLR is positive over both the Indian Ocean and the Pacific
region. However, the associated low-level wind is a strong easterly
and westerly wind component over the two oceanic regions,
respectively (Figures 5C,D). The similarity in the structures of
the simulated eigenvectors of the CEOFs with those of ERA5
indicates the ability of CMIP6 models in reproducing the spatial
patterns of BSISO. However, some of the models still struggle
with the magnitude of this statistic.

Principal Component (PC) Analysis
We present the observed and simulated lead-lag correlations
between the principal component time series (otherwise
known as the real-time multivariate BSISO index) of the
first two leading CEOF modes in Figure 6. Here the PCs
are calculated by projecting the filtered CEOF eigenvector
onto the bandpass-filtered daily anomaly fields. At a lag
of about 10 days, the maximum correlation between the
PCs is about 0.6, where PC1 leads PC2, and vice versa.
Consistent with the literature, the phase quadrature between

the PCs indicates the coherent northward-propagation of the
BSISO at the intraseasonal timescale (Lee et al., 2013). The
simulated maximum correlation ranges from about 0.3–0.7.
The models show the ability to capture the spatial pattern
of the observed lag correlation, but with biases in the lead-
lag days.

Are the filtered CEOF modes presented in Figure 5

distinguishable from a red noise? It is known that red noise can
sometimes masquerade as a distinct structure of the intraseasonal
variability of the leading CEOFs. To examine this, we compute
the power spectra and cross spectra (coherence squared) of
the PCs of the first two leading modes. Figure 7 shows the
patterns of the power spectra and equivalent variance red
noise spectra, with the ordinate axis as a ratio of variance to
frequency, superimposed with the coherence squared. Both the
observed and the simulated power spectrum are concentrated
at a 30–60-day period with a peak at about 40-day. The fraction
of the red noise within the BSISO intraseasonal time scale is
considerably lower, suggesting that CEOF modes are separated
from red noise. The contrast between these features increases
the confidence that the CEOF modes are physically based
and represent the associated BSISO intraseasonal frequencies.
Another important diagnostic tool to support the above
result is the coherence-squared. The similarities between the
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FIGURE 7 | ERA5 (a) and CMIP6 models (b–t) power spectrum (solid black line) and coherence squared (dashed blue line) of the filtered PC1 (EOF1) obtained by

projecting the 30–60-day filtered CEOFs onto 30–60-day daily anomaly data. The red noise spectrum (solid red line) and the 5 and 95% confidence limits (dashed

green lines) are also indicated.

structures of ERA5 Coh2 and the PC1 power spectra suggest
that fluctuations of the PCs in the intraseasonal band is very
coherent. Some of the CMIP6 models overestimate the observed
variability of the Coh2 while others underestimate it. Overall,
the models show the ability to capture the structure of this
statistic. The CEOF and PC analysis indicates that models can
simulate BSISO with a propagating rainfall pattern associated
with moisture convergence and with a distinct time scale of
30–60 days.

Composite of BSISO Life Cycle
A further diagnostic to evaluate how well the models can
represent the intraseasonal variability of the BSISO signal is
through the Hovmöller diagrams. Here we examine the phase-
longitude Hovmöller diagram of the composite of 30–60-day
bandpass-filtered OLR and U850 anomalies averaged between
10◦S and 30◦N during May–October (Figure 8). The zonal
signature of the BSISO is discernible in ERA5 (Figure 8a). The

convection propagates eastward with maximum centres located
over the Indian Ocean and the Southeast Asia region. The
enhanced convection over the longitude of the Indian Ocean
occurs during phases 1, 2, and 8, while it occurs at phase
3 over Southeast Asia. On the other hand, the suppressed
convection occurs during phases 3–5, and 6–8 over the two
regions, respectively. These tripole structures of the convection
signify the onset/break periods of the monsoon over the regions.
The structure of the low-level zonal wind is almost in quadrature
with the OLR, showing that the westerly (easterly) winds are
associated with negative (positive) BSISO convection. All the
CMIP6 models in this study capture the zonal structure and
orientation of the observed convection and low-level wind. The
magnitude of the simulated convection is weak in some of the
models. Also, the phases of the maximum convection are diverse.

Consistent with the zonal propagation, the meridional
propagation of BSISO averaged over the Indian Ocean is
characterized by strong negative (positive) convection at phases
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FIGURE 8 | ERA5 (a) and CMIP6 models (b–t) phase-longitude Hovmöller plot of composite May-October 30–60-day OLR (shaded) and U850 (contour) anomalies

averaged between 10◦S and 30◦N.

1, 2, and 8 (3–6), respectively (Figure 9). The signal starts from
the equatorial region and extends as far as latitude 25◦N. The
CMIP6 models also show the ability to reproduce the northward
propagation of the BSISO over the Indian Ocean domain. The
convection signal is weak in CNRM-CM6-1-HR, IPSL-CM6A-
LR, and MPI-ESM1-2-LR. When we repeat the analysis over
the Southeast Asia domain (Supplementary Figure 2), we find
a similar northward propagation consistent with that of the
Indian Ocean domain, although the propagation extends beyond
latitude 25◦N.

The Moist Static Energy
The relationship between rainfall and column MSE, DSE, and
LSE over the Southeast Asia region and Indian Ocean domain is
examined by lag-correlation. The simulatedMSE is computed for
11 CMIP6 models with complete data at surface and the required
atmospheric pressure levels.

Figure 10 shows the northward propagation of observed and
simulated BSISO convection signal represented by lag correlation
of 80◦E−100◦E averaged column integrated MSE and band-pass
filtered anomalous rainfall against anomalous filtered rainfall
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FIGURE 9 | ERA5 (a) and CMIP6 models (b–t) phase-latitude Hovmöller plot of composite May-October 30–60-day OLR (shaded) and U850 (contour) anomalies

averaged between 80◦E and 100◦E.

index. The index is obtained from the band-pass filtered rainfall
anomalies averaged over the equatorial Indian Ocean (5◦S
and 5◦N, 80◦E and 100◦E). The rainfall anomaly in ERA5
(Figure 10a; contour) shows a clear northward propagation that
transverse from about 10◦S reaching the northern limit at about
20◦N consistent with Figure 9a. The intraseasonal rainfall signal
is stronger along the equatorial region with maxima at three
lag days (−20, 0, and 20). This characteristic feature signifies

the active/break of the monsoon period (Straub and Kiladis,
2003; Fang et al., 2017). A similar pattern is displayed by the
column integrated MSE. The CMIP6 models can display a
northward propagation of the intraseasonal rainfall and column
integrated MSE consistent with ERA5. However, there are
two distinct biases. First, the magnitude of the lag correlation
between rainfall and column integratedMSE anomalies is slightly
weaker than observed. Secondly, the northward propagating
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FIGURE 10 | Northward propagation of observed and simulation BSISO convection signal indicated by column integrated MSE (shaded) and 30–60-day rainfall

anomalies (contours; starting from ± 0.2 to ± 0.6 at an interval of 0.2) averaged over 80◦E−100◦E by lag-correlation against 30–60-day rainfall anomalies averaged

over the equatorial Indian Ocean (5◦S and 5◦N, 80◦E and 100◦E).

signal is limited in some of the CMIP6 models (for example,
CanESM5, CNRM-CM6-1-HR, IPSL-CM6A-LR, and MPI-
ESM1-2-HR) with peak values between 5◦S and 15◦N. These
4 models also have slightly weak OLR and not well-organized
convection in comparison with other CMIP6 models as
indicated in Figure 9. The northward propagation of the
observed and simulated relationship between rainfall and column
DSE and LSE are presented in Supplementary Figures 3, 4.
The observed and simulated correlation between DSE and
rainfall (Supplementary Figure 3) is very small suggesting a
weak contribution from temperature and height variations to
column MSE. However, the column LSE dominates the column
MSE variation as indicated by Supplementary Figure 4. The
correlation shows a similar pattern consistent with Figure 10,
suggesting a strong relationship between rainfall and column
integrated moisture, as noted in other studies (Schiro et al., 2016;
Wang et al., 2017). The lag correlation between the column
integratedMSE and band-pass filtered anomalous rainfall against
anomalous filtered rainfall index over the Southeast Asia region
is presented in Figure 11. The observed patterns (both MSE and
rainfall) over this region are similar to those over the Indian
Ocean (Figure 10), although the correlation between MSE and
rainfall is weaker. Apart from producing a weak correlation,

3 of the models (for example, CanESM5, CESM2-FV2, and
MPI-ESM1-2-HR) struggle to capture the coherent northward
propagation of the relationship between MSE and rainfall. It
appears that the models perform poorly in this respect over this
region compared with over the Indian Ocean.

As in Figure 10, the eastward propagation of observed and
simulated equatorial (10◦S−10◦N averaged) column integrated
MSE and rainfall anomalies lag-correlated against anomalous
filtered rainfall index is presented in Figure 12. In ERA5, both the
intraseasonal rainfall and column integrated MSE show coherent
eastward propagation signal with a maximum correlation over
the Indian Ocean domain and a weak correlation over the
Pacific Ocean between 120◦E and 160◦E. The simulated eastward
features are consistent with ERA5, but all the models have
a weaker MSE correlation in comparison with that of ERA5.
The supporting Supplementary Figure 5 also confirms that the
contribution from the column DSE to the column MSE is
very small, while Supplementary Figure 6 shows the dominant
contribution of column LSE to the column MSE relationship
with rainfall.

The results show that the CMIP6 models can capture
the intraseasonal propagating features of BSISO with high
prominence in the northward propagation, a significant measure

Frontiers in Climate | www.frontiersin.org 16 October 2021 | Volume 3 | Article 716129

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Abatan et al. CMIP6 Simulation of BSISO

FIGURE 11 | Northward propagation of observed (a) and simulation (b–l) BSISO convection signal indicated by column integrated MSE (shaded) and 30–60-day

rainfall anomalies (contours; starting from ± 0.2 to ± 0.6 at an interval of 0.2) averaged over 100◦E–120◦E by lag-correlation against 30–60-day rainfall anomalies

averaged over the southeast Asia (5◦N and 20◦N, 100◦E and 120◦E).).

of the skill of the model to simulate BSISO. Also, the result
shows there is a strong relationship between MSE and rainfall,
with the largest contribution from LSE. This suggests that MSE
can be used as a proxy for propagating BSISO convective signal
consistent with MJO studies (Jiang, 2017).

The above analysis revealed the strengths and weaknesses
of CMIP6 climate models at simulating the boreal summer
intraseasonal oscillations over the SE Asia region. It shows that
some CMIP6 models underestimated the basic characteristic
features of BSISO. Several physical processes including the
vertical shear of zonal wind, variation of background mean
state, air-sea interaction, and boundary layer dynamics have
been suggested to play a key role in influencing the simulation
and propagation of intraseasonal oscillations (Fu and Wang,
2004; Benedict et al., 2014; Jiang et al., 2015; Fan et al., 2021).
To explore the deficiency in simulated BSISO, we examine the
distribution of some mean fields (rainfall, specific humidity,
and MSE). These fields are considered because they are directly
related to convection and also because the column LSE dominates
the distribution of the column MSE.

All the models show mean rainfall that is spatially similar
with each other as well as with the GPCP as indicated by
the pattern correlation that ranges from 0.45 to 0.74. Despite
the similarities in patterns, there are still local differences

in rainfall intensity with the rmse that ranges from 1.91 to
3.09 (Supplementary Figure 7). Some of the models show
clear weakness in simulating the mean rainfall over the
mountainous region of India and the Oceanic regions. For
instance, ACCESS-CM2 (Figure 13b), ACCESS-ESM1-5
(Figure 13c), and CanESM5 underestimate mean rainfall by
more than 2mm month−1. The models also overestimate
mean rainfall by more than 2mm month−1 over the Pacific
region. Considering the mean bias over the domains used to
examine the BSISO propagation, we note that the CMCC,
CNRM-CERFACS, and IPSL models on average underestimate
the mean rainfall over SE Asia, while other models overestimate
the mean rainfall with the highest mean rainfall bias (> 1.40mm
month−1) in 4 models (ACCESS-CM2, ACCESS-ESM1-5,
AWI-ESM1-1-LR, and CanESM5). These indicate that the
models’ convective parameterization schemes, respectively,
underestimate/overestimate the convective quantities including
the moisture convergence flux and the convective available
potential energy. Hence, the models may exhibit differences
in their moisture distributions. The spatial distribution
of mean specific humidity at 850 hPa level is shown in
Supplementary Figure 8. We note that the CMIP6 models
can simulate the spatial pattern of the mean specific humidity
(pattern correlation ranges from 0.69 to 0.93), relative to ERA5,
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FIGURE 12 | Eastward propagation of observed (a) and simulation (b–l) BSISO convection signal indicated by column integrated MSE (shaded) and 30-60-day

rainfall anomalies (contours; starting from ± 0.2 to ± (a) 0.6 at an interval of 0.2) averaged over 10◦S−10◦N by lag-correlation against 30–60-day rainfall anomalies

averaged over the equatorial Indian Ocean (5◦S and 5◦N, 80◦E and 100◦E).

but with some notable biases (rmse ranges from 0.70 to 1.87)
(Supplementary Figure 8). Consistent with the mean rainfall
bias, Figure 14 shows that some CMIP6 models are wet bias
while others are dry bias. A dipole moisture bias is also evident
where the land regions are deficient in moisture while the oceanic
regions are characterized by abundant moisture content, relative
to ERA5. The poor performance of the models in representing
the mean state is reflected in their inability to quantitatively
reproduce the intraseasonal oscillations (e.g., Figures 1, 2).
These suggest that the models’ sufficient moisture for rainfall.
Also, the dry biases over land suggest that the models do not
transport enough moisture northward, which may be related to
the land surface processes (e.g., evaporation) and the land-sea
temperature contrast. The spatial distributions of the simulated
biases of the vertically integrated MSE (Figure 15) are consistent
with that of the moisture biases (Figure 14), confirming the
close relationship between the MSE and the convection systems
producing rainfall. From the foregoing, we can infer that models’
inability to qualitatively capture the background mean states
may likely explain the inability to satisfactorily capture the
intraseasonal oscillations during summer.

CONCLUSIONS

How well the features associated with BSISO are represented
in 19 CMIP6 models is the focus of this study. This has

been achieved by employing the MJOWG diagnostic tools. The
simulated results are evaluated against GPCP, NOAA, and ERA5
data sets.

Analysis of GPCP and ERA5 rainfall shows that there are
observational uncertainties that are very important for model
evaluation. The maximum GPCP rainfall variance over the
East China Sea and the western Pacific Ocean are shown to
be consistent with other studies (Zhang et al., 2006). The
similarities in intraseasonal rainfall variance between the GPCP
and ERA5 indicate the usefulness of this reanalysis variable for
climate model evaluation. The two observed datasets agree that
BSISO can account for more than 10% of the intraseasonal
rainfall variability over the region. The intraseasonal variance
of bandpass-filtered rainfall anomalies is well-captured by most
of the CMIP6 models, while it is underestimated in others.
Some models including the CNRM group of models, ACCESS-
ESM1-5, andMIROC6 overestimate the rainfall variance over the
coastal regions. The overestimation suggests that the localized
convective systems in these models are too strong over the
coastal regions, while weak over the land region. This behavior
is consistent with the models’ rainfall failure over India (Mitra,
2021). Also, the difference among the models may be related to
the differences in their representation of hydrological processes
(Klutse et al., 2021). Considering the OLR variance, a close
relationship is seen between convection and rainfall, where low
(high) OLR variance coexist with low (high) rainfall variance over
Thailand and the maritime continent (Oceanic regions). This is
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FIGURE 13 | The bias in the simulated monthly mean rainfall (b–t) with reference to GPCP (a) during May–October 1997–2014. The mean pattern of GPCP rainfall is

indicated for reference. The pattern correlation (r) and the root mean squared error (rmse) values between the simulated patterns and that of GPCP in

Supplementary Figure 1 are indicated for reference.

supported by the intraseasonal low-level zonal wind associated
with the weak westerlies over land and strong westerlies over
the Ocean areas. The CMIP6 models simulate the intraseasonal
variance of bandpass-filtered OLR, but CNRM-CM6-1-HR and
IPSL-CM6A-LR underestimate the magnitude of the OLR over
the Indian Ocean.

As indicated by the variance analysis, some of the CMIP6
models can simulate the intraseasonal variability of the BSISO
with strong intensity over the tropical rain belt. However,
are these models also able to quantify the properties of the
BSISO including the wavenumber-frequency power spectra and
coherence squared? The equatorially averaged wavenumber-
frequency power spectra of observed convection and low-level
zonal wind circulation coincide at zonal wavenumber 1 within
the 40–60-day period. This is supported by a considerably weaker
mean westward power spectra. The strong ratio of eastward
to westward power signifies the robustness of the observed
BSISO eastward propagation feature. The CMIP6 models can

simulate the BSISO features, but with diverse power spectra over
a wide range of frequencies and zonal wavenumbers. Consistent
with observation, the simulated eastward power is higher than
the counterpart westward power. Some models overestimate
this statistic while others underestimate it. CMCC-CM2-
SR5, CNRM-CM6-1-HR, CNRM-ESM2-1, and IPSL-CM6A-LR
exhibit low OLR spectra power (< 3 W2 m−4), consistent with
their poor performance of spatial variance. The structure of
the meridional propagating BSISO at wavenumbers 1 and 2
over both the Southeast Asia and the Indian Ocean regions
is well-simulated by the CMIP6 models, but with bias in
intensity and location. This is indicated by the simulated N/S
ratio that encompasses the observed N/S ratio. Nonetheless,
some models still have weaker northward propagating BSISO
convection signals.

Considering the eigenvectors of the first two leading modes
of the CEOFs, it is shown that the models also capture the
longitudinal structure of these two indices, with PC1 leading
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FIGURE 14 | The bias in the simulated monthly mean specific humidity at 850 hPa (b–t) with reference to ERA5 (a) during May–October 1997–2014. The mean

pattern of ERA5 specific humidity at 850 hPa is indicated for reference. The pattern correlation (r) and the root mean squared error (rmse) values between the

simulated patterns and that of ERA5 in Supplementary Figure 2 are indicated for reference.

PC2 by about 10-days. The observed eigenvector is contained
within the spread of the models, with some models leading
(lagging) observation by about 5-days. The models also show the
ability to simulate the power spectrum and coherence squared
of the PC1. Also, the distinction between the CEOF modes and
the red noise is equally well-captured. The similarities between
the observed and simulated CEOFs, as well as the PCs, suggest
that CMIP6 models can capture the coherent intraseasonal
propagating features of the BSISO, in agreement with other
modeling studies of the BSISO. This attribute sheds light on the
future utility of some of the models to provide an understanding
of the impact of BSISO variability on climate variability (e.g.,
rainfall, temperature, etc.) at the regional scale.

As indicated by the Hovmöller diagram of the composite
of 30–60-day bandpass-filtered OLR and U850 anomalies, the
CMIP6 models can simulate the zonal propagation of the BSISO
with maximum centres located over the Indian Ocean and the
Southeast Asia region. Some of the models can simulate the

robust eastward propagation of convection and associated winds,
although the convection is weak. We note also that the CMIP6
models perform well at simulating the northward propagation of
BSISO signal over the aforementioned regions.

On the relationship between MSE and intraseasonal rainfall
anomalies, we show that MSE can be used as a proxy to
characterize propagating BSISO convective signal. However,
there is a wide inter-model variability in comparison with
observation, which is discernible over the Southeast Asia region.
Decomposing the MSE into separate components, we find that
most of the variations in MSE with rainfall are largely attributed
to the contribution from the LSE. The variations from the DSE
is negligible indicating the weak temperature gradient in the
tropics. Hence, the BSISO rainfall is mainly influenced by large-
scale processes controlling the atmospheric column humidity
over the region.

In summary, by applying the simulation diagnostics
developed by the CLIVAR MJOWG to 19 CMIP6 models, with

Frontiers in Climate | www.frontiersin.org 20 October 2021 | Volume 3 | Article 716129

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Abatan et al. CMIP6 Simulation of BSISO

FIGURE 15 | The bias in the simulated monthly mean vertically integrated moist static energy (b–l) with reference to ERA5 (a) during May–October 1997–2014. The

mean pattern of ERA5 vertically integrated moist static energy is indicated for reference. The pattern correlation (r) and the root mean squared error (rmse) values

between the simulated patterns and that of ERA5 in Supplementary Figure 3 are indicated for reference.

promising future simulation data, we examine the strengths
and weaknesses of these models at simulating the intraseasonal
variability of the basic features of the BSISO. In general, the
BSISO signal is stronger in the low-level wind circulation than
in convection in both the observation and the models. The
strong diversity in the intensity of both the simulated eastward
and northward propagation of BSISO convection indicates
that the CMIP6 models still struggle to simulate the physical
processes, including moisture asymmetry and vertical wind
shear, responsible for the BSISO propagating features (Liu and
Wang, 2017; Qi et al., 2019). Despite some limitations noted
in the CMIP6 models, some of the models still offer promising
utility for climate research. Hence, our forthcoming research will
investigate the impact of climate change on the BSISO and its
potential impact on rainfall over Southeast Asia.
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Supplementary Figure 1 | Meridional wavenumber-frequency power spectra of

the boreal summer (May–October) intraseasonal OLR (shaded) and 850-hPa zonal

wind [blue contours; (m s−1)2, with contours from 0.03 at an interval of 0.06]

anomalies from observations and models over 80◦E−100◦E domain. Periods of

30 days and 60 days are indicated by the vertical dashed lines. Positive

frequencies indicate northward propagating waves and negative frequencies

indicate southward propagating waves. The ratio of northward propagating wave

to southward propagating wave (N/S) is shown at the top panel.
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Supplementary Figure 2 | Phase-latitude Hovmöller plot of composite

May–October 30–60-day OLR (shaded) and U850 (contour) anomalies averaged

between 100◦E and 120◦E.

Supplementary Figure 3 | Northward propagation of observed and simulation

BSISO convection signal indicated by column integrated DSE (shaded) and

30–60-day rainfall anomalies (contours; starting from ± 0.2 to ± 0.6 at an interval

of 0.2) averaged over 80◦E–100◦E by lag-correlation against 30–60-day rainfall

anomalies averaged over the equatorial Indian Ocean (5◦S and 5◦N, 80◦E

and 100◦E).

Supplementary Figure 4 | Northward propagation of observed and simulation

BSISO convection signal indicated by column integrated LSE (shaded) and

30–60-day rainfall anomalies (contours; starting from ± 0.2 to ± 0.6 at an interval

of 0.2) averaged over 80◦E–100◦E by lag-correlation against 30–60-day rainfall

anomalies averaged over the equatorial Indian Ocean (5◦S and 5◦N, 80◦E and

100◦E).

Supplementary Figure 5 | Eastward propagation of observed and simulation

BSISO convection signal indicated by column integrated LSE (shaded) and

30–60-day rainfall anomalies (contours; starting from ± 0.2 to ± 0.6 at an interval

of 0.2) averaged over 10◦S−10◦N by lag-correlation against 30–60-day rainfall

anomalies averaged over the equatorial Indian Ocean (5◦S and 5◦N, 80◦E and

100◦E).

Supplementary Figure 6 | Eastward propagation of observed and simulation

BSISO convection signal indicated by column integrated DSE (shaded) and

30–60-day rainfall anomalies (contours; starting from ± 0.2 to ± 0.6 at an interval

of 0.2) averaged over 10◦S−10◦N by lag-correlation against 30–60-day rainfall

anomalies averaged over the equatorial Indian Ocean (5◦S and 5◦N, 80◦E and

100◦E).

Supplementary Figure 7 | The observed and simulated monthly mean rainfall

during May–October 1997–2014. The pattern correlation (r) and the root mean

squared error (rmse) values between the simulated patterns and that of GPCP are

indicated.

Supplementary Figure 8 | The observed and simulated monthly mean specific

humidity at 850 hPa during May–October 1997–2014. The pattern correlation (r)

and the root mean squared error (rmse) values between the simulated patterns

and that of ERA5 are indicated.
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