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INTRODUCTION

Maize yields are highly dependent on meteorological conditions (Ray et al., 2015), and climate
change could lead to a significant reduction in yields, especially at tropical latitudes (Rosenzweig
et al., 2014). This is relevant in Mexico, where maize is by far the most widespread cultivated
crop, grown extensively by small-scale farmers with little-to-no access to technology, insurance,
or financial services (SAGARPA-FAO, 2014). The study by Haro et al. (2021; hereafter Haro21)
provides a much-needed assessment of the socioecological risks facing rainfed maize cultivation
in Mexico due to climate change. However, given the spatiaotemporal structure of maize yields in
Mexico and their machine learning modeling framework, additional justification and more robust
validations are needed to substantiate Haro21’s findings.

VALIDATING A MAIZE YIELD MODEL: BEYOND R2

Mexico is a very diverse country in social, economic, and ecoclimatic terms. These factors give way
to large geographic variability in rainfedmaize yields, wherein somemunicipalities exceed 8 ton/ha,
while others remain below 0.5 ton/ha (Figure 1). To deal with the complex problem of modeling
maize yields in Mexico, Haro21 trained a random forest (RF) tree-ensemble using socioeconomic
and climatic variables during the 2003–2018 period. They cross-validated their model by randomly
splitting the dataset into training (70% of the data) and a testing (remaining 30%) datasets. Their
model achieved R2 ≈ 0.65, which was interpreted as a robust criterion for validation. Nonetheless,
this R2 value is insufficient to validate the model for projections under climate change because
most of the variability in yields occurs geographically, a dimension that is highly dependent
on socioeconomic factors. More specifically, it is possible that Haro21’s model achieved high
R2 through its ability to fit the data geographically, while having a poor representation of yield
sensitivity to changing climatic conditions.
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FIGURE 1 | Map showing the 2003–2018 mean yield at the municipality scale for rainfed maize cultivated during the Spring-Summer cycle in Mexico, as indicated by

de label bar. Two graphs displaying yield timeseries are included to contrast a high-yielding municipality (Zapotlán del Rey, Jalisco) with a low-yielding municipality (Villa

García, Zacatecas). Clusters of municipalities with high (>4 ton/ha), moderate (between 1.5 and 4 ton/ha), and low (<0.7 ton/ha) mean yields are enclosed by the

green, blue, and red lines, respectively. With data from SIAP (2018).

To give an example, consider a “mean_model” that estimates
yields at the municipality scale with the mean yield of all
years available between 2003 and 2018. To cross-validate the
mean_model, 70% of the data is used for training, while the
remaining 30% is used for computing R2 (only municipalities
with at least 1 entry in the training set are considered). Using
this framework on the same dataset considered by Haro21 for
the Spring-Summer cycle (SIAP, 2018), mean_model consistently
attains R2 ≈ 0.77, despite having no temporal structure. The
skill of the mean_model lies in its ability to locate municipalities,
because yield variations are dominated by the spatial dimension.
Clearly, large R2 values do not guarantee a model’s suitability for
climate change projections.

METHODOLOGICAL LIMITATIONS FOR
MAKING FUTURE CLIMATE PROJECTIONS

The need for more detailed validations is further substantiated
by specific aspects in Haro21’s methodology, including the use
of bioclimatic variables for modeling maize yields under climate
change scenarios. In this regard, climatic impacts on maize
yields vary as a function of phenological stage (Tsimba et al.,
2013; Sah et al., 2020), and it is unlikely that yearly aggregated
variables can capture such effects throughout a country with
diverse planting/harvesting dates covering two cultivation cycles
(SIAP, 2018). Thus, it is unclear whether bioclimatic variables
offer increased predictive ability in varying climatic conditions,
or if they merely enhance the model’s skill by providing

environmental queues for locating a datapoint’s likely region
of origin.

Another relevant matter pertains to the spatial clustering
evident in Figure 1, wherein contiguous regions have similar
mean yields. RFs are not designed to account for such spatial
autocorrelations (Hajjem et al., 2014; Santibanez et al., 2015;
Hengl et al., 2018), and biases can arise due to interdependence
and non-identically distributed data (Darrell et al., 2015). For
instance, considering the RF training step of fitting a regression
tree (Hastie et al., 2004), spatiotemporal representations within
high-yielding regionsmight be prioritized over their low-yielding
counterparts, as larger variations in the former imply greater
impacts toward minimizing the sum of the square residuals
(SSR). Moreover, given that yield variability in Haro21’s dataset is
strongly dominated by the spatial dimension, SSR minimization
will primarily shape trees so they can determine yield levels by
associating inputs with a—herein loosely defined—geographic
cluster, with no guarantee that the model will have any temporal
predictive skill.

DISCUSSION: A PATH FORWARD

Observations presented herein make clear that temporal analyses
are crucial for validating a maize yield model. Indeed, the
primary means to establish the model’s ability to capture
climatic impacts is through its accuracy for representing
interannual yield variations. Many pertinent assessments exist,
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such as computing R2 over anomalies—yields minus the
municipality mean—, which removes the relationship between
yield levels and geography (e.g., see Müller et al., 2017). In
addition, pointwise (municipality-wise) linear correlations and
Nash-Sutcliffe efficiencies can help identify regions where the
model’s performance is satisfactory and those where it is poor.
Yet another alternative is to formulate the cross-validation
procedure as “leave-one-(year)-out” (Thorp et al., 2007), which is
commonly used in modeling applications with few years of data.
Any of these temporal validations could help Haro21 address
concerns about their modeling framework.

Abovementioned limitations in Haro21’s methodology
indicate possible areas of improvement. For example, the spring-
summer and autumn-winter cultivation cycles can be modeled
independently, and climatic variables could be reformulated
over relevant periods between planting and harvest. Haro21
could also benefit from using a machine learning framework
suitable for modeling spatiotemporal data, including alternatives
based on RF. The RF for spatiotemporal predictions of Hengl
et al. (2018) accounts for point interrelations based on spatial

proximity. Another option is to model spatial clustering as a
random effect via the mixed-effects RF of Hajjem et al. (2014),
which has shown improvements over traditional RFs in recent
crop modeling applications (Sahajpal et al., 2020a,b).

This commentary does not pertain to Haro21 as a whole.
Their socioecological systems approach holdsmuch promise, and
their goals are highly pertinent to the risks facing agriculture in
Mexico under climate change. But additional justification and
robust validations are needed to substantiate the suitability of
their maize yield model for future climate projections.
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