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Transitioning to a low-carbon electricity system requires investments on a very large

scale. These investments require access to capital, but that access can be challenging

to obtain. Most energy system models do not (explicitly) model investment financing

and thereby fail to take this challenge into account. In this study, we develop an

agent-based model, where we explicitly include power sector investment financing.

We find that different levels of financing constraints and capital availabilities noticeably

impact companies’ investment choices and economic performances and that this, in

turn, impacts the development of the electricity capacity mix and the pace at which CO2

emissions are reduced. Limited access to capital can delay investments in low-carbon

technologies. However, if the financing constraint is too relaxed, the risk of going bankrupt

can increase. In general, companies that anticipate carbon prices too high above or too

far below the actual development, along with those that use a low hurdle rate, are the

ones that are more likely to go bankrupt. Emissions are cut more rapidly when the carbon

tax grows faster, but there is overall a greater tendency for agents to go bankrupt when

the tax grows faster. Our energy transition model may be particularly useful in the context

of the least financially developed markets.

Keywords: agent-based model (ABM), energy transition, investment financing, investment decisions, electricity

system

INTRODUCTION

Global CO2 emissions from power generation have increased continuously from 7.6 Gt CO2 in 1990
to around 14 Gt CO2 in 2018 as a result of fossil fuel combustion (IEA, 2020). In order to reach the
internationally agreed climate goals, it is critical to rapidly shift from fossil fuels to low-carbon
technologies for power production.

Meeting climate goals requires mobilizing large amounts of investments to low-carbon
technologies (FS-UNEP and BNEF, 2019; IRENA, 2020a). Despite the fact that global investments
in new renewable capacity have grown significantly, the International Renewable Energy Agency
(IRENA) has estimated that to meet the 1.5-degree target, the current annual investment in
renewables has to be at least doubled in the 2016–2050 period (IRENA, 2020b). However, as
energy projects are typically capital intensive, with long pay-back periods, financing investments
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can be challenging, blocking the transition. This suggests a need
for a better understanding of the energy transition from the
perspective of financial factors such as accessibility to, risks and
costs of, and returns on, capital, in order to assess how these
factors impact investment choices and transition pace.

When studying the energy transition, a wide range of
computational models have been employed for assessing the
feasibility and consequences of different investment options in
light of the climate goals, for example, TIMES (Loulou et al.,
2005), GET (Azar et al., 2003, 2013), E3ME (Econometrics, 2019),
NEMS (EIA, 2019), PRIMES (NTUA and EMI, 2014), PowerAce
(Genoese, 2010), EMLab (Chappin et al., 2017), etc. Thesemodels
are useful as they may help decision-makers understand the
potential consequences of various policy proposals and make
wise decisions.

However, not all types of models are suitable for better
understanding how energy investments are made and financed
in a realistic way or for elucidating how individual investment
decisions affect the overall system and vice versa. For example,
in optimisation models, there is normally a “central decision-
maker” who assures all necessary investments will be made so
that the least-cost solution of the model is reached. In addition,
neither general equilibrium models nor macroeconomic models
are, in their current forms, well-equipped to assess important
financial and macroeconomic impacts such as bankruptcies,
stranded assets, and debt defaults (Pollitt and Mercure, 2018).

A recent paper published in Science highlights the importance
of including the financial system (and investors’ decisions) in the
Integrated Assessment Models (IAMs) (Battiston et al., 2021).
This study points out that IAMs assume companies have access to
capital at no cost and do not take into account the different levels
of risk aversion of investors, and this could distort the results of
costs and benefits of climate mitigation policies, and therefore,
argues that to better inform policy and investment decisions,
the feedback loop between the financial system and mitigation
pathways should be taken into account in the (IAM) models.

Agent-based models (ABMs), on the other hand, are able to
reproduce many stylised facts of modern economies and capture
the financial activity (Pollitt and Mercure, 2018). Previous
studies have demonstrated that ABMs are capable of explicitly
representing the financing mechanism of investments (in the
power sector). For example, their ABM models Gerst et al.
(2013) and Ponta et al. (2018) have applied the “pecking order
theory,” which says that when financing a project, firms prefer
to use internal funds first, and if internal funds are inadequate,
then external debt is issued, and external equity is used as
the last resort (Myers and Majluf, 1984). Other models put
constraints on access to loans. One example is the BRAIN-Energy
model (Barazza and Strachan, 2020), in which the authors have
implemented a limit on the amount of capital an agent can
borrow from the bank, with the interest rate depending on the
type of agent. This means that an agent must cover part of each
investment cost using its own financial means, and then paying
back loans in installments.

Some ABMs have implemented mechanisms that reflect how
a company’s previous profits impact its ability to finance future
investments. For example, Safarzynska and van den Bergh (2017)

implemented the debt-to-equity ratio of a company as the
criterion for whether the company can get a loan from a bank
to finance an investment. Another example is Kraan et al. (2018),
who implemented an adaptive discount method in their ABM,
where the agent goes bankrupt if its discount rate rises above a
given threshold.

In our previous work, we have developed an agent-based
model for an electricity system and studied the system transition
toward a low-carbon future (Jonson et al., 2020; Yang, 2021).
We focused on investment decisions by agents that had limited
foresight about future carbon, fuel, and electricity prices and that
applied varying hurdle rates in their investment analysis.

In this study, we present the HAPPI (Heterogenous Agent-
based Power Plant Investments) model, which is an extension of
the previous ABMwith a financial feedback module that includes
agent-specific details of economic components. We keep track of
each agent’s investment decisions, equity, cash flow, investment
return, and dividend. This extension enables us to study the
impact of different financial constraints that the companies face.

The overall aim of this paper is to study the transition toward
a low carbon future using our HAPPI model, while paying
particular attention to the financial flows of each agent. More
specifically, this paper aims to:

1. Introduce the financial module in our ABM and analyse
how the financing constraint and capital availability impact
a company’s investment decisions and economic performance
and, in turn, the transition toward a low carbon future.

2. Investigate, under different levels of financial constraints and
capital availabilities, which investment criteria, in terms of
different levels of expectation of future carbon price and in
terms of how risk averse companies are, more robustly avoids
(or reduces the risk of) bankruptcy while guaranteeing a
certain level of profitability.

In section Model description, we describe our model, focussing
on the development of the financial module, and in section Set-up
of the experiment, we present the different cases we investigate.
In sections Results and Sensitivity analysis we present model
results and sensitivity analysis. We conclude with the discussion
in section Conclusion.

MODEL DESCRIPTION

Basic Model Description
The HAPPI model consists of agents that are power companies
(in the rest of this paper, we use “agent” and “company”
interchangeably). They invest in new capacity and produce
electricity in an ideal electricity market. There are six types
of power plants in which an agent can choose to invest: coal-
fired, gas-fired, gas-fired with CCS (gasCCS), nuclear, wind and
solar PV power plants (see Supplementary Table 1 for parameter
settings of power plants). The gas-fired plant can be fuelled
by natural gas or biogas, depending on which has the lower
operating cost when the carbon tax is also taken into account.

Each year, plants that reach the end of their lifetime are
retired, and all agents evaluate all investment options and invest
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in the plants with the highest expected profits. Agents take turns
making investment decisions; the order is randomized.

In our current model version, agents are heterogeneous in
two attributes. The first attribute is the hurdle rate that an agent
employs, which reflects that agent’s risk management strategy.
The set of hurdle rates is [4.5%, 5%, 6%, 8%] per year. The
hurdle rate is chosen based on several studies. For example, IEA
reports the weighted average cost of capital (WACC) for major
power companies was around 8%/year in 2006 and dropped
to around 5%/year in 2018 (IEA, 2019); IRENA reports that
the WACC is 7.5%/year for OECD countries and China, and
10%/year for the rest of the world (IRENA, 2018). An EU study
reports that WACC varied across the EU Member States from
3.5%/year in Germany to 12%/year in Greece for onshore wind
projects in 2014 (DiaCore, 2016). The National Energy Modeling
System (NEMS) of the US Energy Information Administration
uses 6–7%/year in its WACC estimation (EIA, 2020).

The second attribute is the agent’s expectation of future carbon
prices. Agents have limited information about future carbon
prices. They know the true carbon tax of next year, and they
estimate the tax level 10 years ahead. Their expectation on the
future tax (at time t + 10), denoted Fb (t + 10), is given by the
tax in the next year T (t + 1) plus a factor b times the difference
between the true tax T (t + 10) in 10 years time and the tax in
next year,

Fb (t + 10) = T (t + 1) + b (T (t + 10) − T (t + 1)) (1)

We use a set [0, 0.5, 1.0, 1.5, 2.0] for b, which means that agents’
expectations on the rate at which the tax will increase range from
no increase to twice as high as the actual rate.

All combinations of the two attributes—hurdle rate r and
expectation parameter b–are possible, so there are 20 different
agents active in the electricity system.

Agents generate revenue by selling electricity from the plants
they own. A plant generates power as long as the electricity
price is greater than or equal to the running cost of that plant.
The electricity price is determined by an iso-elastic demand
function (see Supplementary Equation 1). In order to capture
the variability of demand, wind, and solar, we divide each year
into 64 slices with different numbers of hours. This means that
electricity price and production are calculated 64 times per year
(see Supplementary Table 2 for time slicing).

Model Development
Financial Feedback Module
We have extended our basic model with a financial feedback
module. This module keeps track of each agent’s financial status,
and this in turn is used to determine whether an agent can afford
to make further investments.

We use the following mechanism in our approach: First, an
agent is assumed to supply a certain fraction f of any new
investment from its own bank account; the remaining part of
the investment, (1 − f ), is paid by a loan from the bank with
an interest rate l. In the present version of the model, if the
agent cannot afford the payment to invest in the top NPV-ranked
power plant, then it will not invest in the current round. Second,

the own bank account can accumulate profit from the company’s
plant operations and a certain fraction fdiv of the capital can be
paid to shareholders as dividend d, provided that the planned
investments for coming years can be made, as described below.
There is no interest on the own bank account, but if the balance
on the account is negative, this is regarded as an ordinary loan
with interest l.

We add the following variables characterizing the state of a
company and the requirements for new investments:

1. The equity E of a company in our model is defined as the
total value of its plants, V , plus the bank account holdings M
minus its debt D to the bank. If the equity goes below zero, the
company is bankrupt.

E = M + V − D (2)

2. From 1 year to the next, the money in the bank account
changes due to net revenues Rnet (defined as revenues from
selling electricity less operating costs), investment costs I,
interest costs Cl,f , repayment of loans Ll,f , and dividend d paid
to shareholders,

M (t + 1) −M (t) =

Rnet (t) − f · I (t) − Cl,f (t) − Ll,f (t) − d (t) (3)

Note that, together, Cl,f and Ll,f are given by
(

1− f
)

A
l
, where

Al is the sum of all annualized costs of the standing plants, since
the fraction

(

1− f
)

of an investment is financed by borrowing.
Similarly, investment costs f · I are a fraction of full investment
costs, where I is the sum of full investment cost for plants
in a specific year. A company is not allowed to invest if the
money in the bank account goes below zero ahead of that year’s
investment round.

The dividend d is paid according to the following rules:

a. First, investments are made according to the company’s rules
of operation.

b. A given amount msave is reserved to allow for a future
(hypothetical) investment in the most expensive plant. This
means that dividends are not generally paid and especially not
in the initial years when the companies are in a growth phase.

c. Up to a fraction fdiv of the money in the bank account is paid
to the shareholders as a dividend, but not more than so that
msave is kept, i.e., d = Min

(

fdivM,M −msave

)

.

3. The total value of a company’s plants, V , changes due to new
investments I and capital depreciation of plants, Cdepr ,

V (t + 1) − V (t) = I (t) − Cdepr (t) (4)

Each plant has a value Vplant that initially is equal to its
investment cost and then equals the remaining debt that one
would have if one were (hypothetically) to have borrowed the
funds for the full investment at a loan interest l and paid the
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annualized capital cost every year. The value Vplant (tR) of the
plant with a remaining lifetime tR can then be expressed as

Vplant (tR) = Iplant
1−(1+rl)

−tR

1−(1+rl)
−tL

(5)

where Iplant is the plant investment cost and tL is the full lifetime.

4. The debt D changes due to new loans taken and repayment
of present loans Ll,f . New loans are taken to cover

(

1− f
)

of
investment costs, so the change in debt is then

D (t + 1) − D (t) =
(

1− f
)

I (t) − Ll,f (t) (6)

5. By combining Equations (2–4, 6), we get the change in equity

E (t + 1) − E (t) = Rnet (t) − Cl,f (t) − Cdepr (t) − d (t) (7)

Note that since we give a value of the plants according to
Equation (5), the capital depreciation equals the repayment of a
hypothetical loan for full investment costs.

Evaluation of Economic Performance
The economic performance is investigated ex-post both for
individual investments and individual companies. For the
individual investments, we use the internal rate of return (IRR),
which is the discount rate that makes the net present value of all
cash flows (including the investment cost) during the lifetime tL
of a project equal to zero (see Equation 7). This gives a measure of
the economic return on investment. The IRR is then the solution
to the equation

0 =
∑tL

t=1
rt−ct

(1+IRR)t
− Iplant (8)

where rt and ct are the revenues and operating costs in year t, and
Iplant is the investment cost of the plant.

In real life, when assessing the economic performance of a
company, several measures are used, e.g., profit, return on equity
(ROE), return on capital employed (ROCE), and equity ratio
(i.e., equity divided by company’s total assets as a measure of
indebtedness). In this paper, we will focus on return on equity.
It is a measure of the return an investor may get from investing
in the company. It should be noted that this can be significantly
higher than the return on a particular investment project, since
the investment in the project can be financed with borrowed
money. Here we use the return on equity ROE given by net
revenues Rnet (revenues from selling electricity less operating
costs) less interest Cl,f and depreciation costs Cdepr divided by
equity E,

ROE =
Rnet−Cl,f−Cdepr

E
(9)

i.e., net profit divided by equity. In case there is no dividend paid,
Rnet −Cl,f −Cdepr is the change in equity from 1 year to the next,
see Equation (7). ROE thus quantifies the equity growth (before
the dividend is paid).

We also evaluate an individual company’s performance
by its bankruptcy risk. We run the model multiple times
under different settings that reflect different levels of financing
constraints and access to capital (see section Set-up of the
experiment, below) and we measure the frequency with which an
agent goes bankrupt (equity goes below zero) as an indicator of
economic risk.

(A model description following the ODD (Overview, Design
concepts, and Details) protocol can be found online at https://
github.com/happiABM/HAPPI/blob/main/ODD-HAPPI_
model_description.docx).

SET-UP OF THE EXPERIMENT

Model Settings
Initial Capacity
For the present work, the model starts with a stationary state
with 64 GW coal and 2 GW gas in the system.1 Since we
focus on the decisions made by companies and the effect
of the financial feedback, we separate the initial coal and
gas plants from the analysis, and they are all placed in an
additional separate company that will not take part in the
investment process, but that will run the plants throughout
their lifetime.

Carbon Tax
We assume that the CO2 tax stays at 0 for the first 10 years
and then grows linearly by 2e/ton per year to 100 e/ton at
year 60 and stays at 100 e/ton per ton thereafter (We also
test different tax scenarios, see the sensitivity analysis in section
Sensitivity analysis).

Experimental Design
We first set up two experiments to test two variables,

1) f : the fraction of an investment financed by a company’s
own capital.

2) i: the initial capital (Me) in a company’s bank account.

These tests allow us to investigate how various financial
constraints and capital availabilities may affect agents’ investment
options, and how this in turn affects the overall transition to a
low-carbon electricity system.

In order to compare different cases, we use a base case as
the reference, where we set f = 30%, i = 400 M, and
there is no stochasticity in fuel price or electricity demand.
In all cases, the bank interest rate l is set to 4%/year, the
reserved amount msave is 1,500 Me, and the dividend fraction
fdiv is 50%.

Experiment 1: Varying f
We test six cases of parameter f (investment fraction financed
by a company’s capital), where f ǫ [0, 10, 20, 30, 40, 50%].
According to the IEA, the debt to equity ratio is 50:50 (IEA,
2019), whereas another study by FS-UNEP reports 60:40 to

1Were decisions to be made with parameters kept as in the base case, this would

correspond to a stationary zero carbon tax situation.
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80:20 (FS-UNEP and BNEF, 2020). The initial capital is set at the
reference level (i = 400Me).

Experiment 2: Varying i
We test five levels for the initial capital in a company’s bank
account i ǫ [2252,400, 900, 1,200, 2,000] Me. The fraction f is
set at its reference level (f = 30%).

RESULTS

Results for the Base Case
System Level

Aggregate Capacity
In the scenario with an increasing carbon tax, the system
transits from a coal- and gas-based to a low-carbon electricity
system (Figure 1); meanwhile, CO2 emissions drop continuously
(Figure 2). The wind is the first low-carbon technology that
starts to expand, followed by the gas-fired power plants (first
used with natural gas and then used with biogas, or with
natural gas and CCS), solar PV, and nuclear power plants. The
capacity of wind drops after around year 40 due to competition
from nuclear.

It is interesting to observe that nuclear power eventually
comes to take a large market share from wind even though the
levelized cost of wind is lower than that of nuclear. This can
be understood in the following way. First, when the carbon tax
increases, electricity prices go up and the wind starts to expand.
However, when the carbon tax is so high that coal is phased
out, electricity prices start to increase substantially when wind
output is low. This provides the incentive for investments in
nuclear power, and when nuclear power expands significantly,
it tends to be used most of the time (capital costs are high,
running costs are low), and this offers a downward pressure on
the electricity price throughout the year, which in turn reduces
the profitability for wind. In non-economic terms, one can say
that it is the fact that nuclear can provide electricity essentially
all the time whereas wind turbines only provide electricity under
windy conditions that gives nuclear the advantage over wind.
The factors that play here are of course more complex given that
there are also gas-fired power plants that can be used with natural
gas or biogas, as well as natural gas with CCS and solar PV. For
instance, assuming lower costs for biogas implies that biogas cost-
effectively can act as a complement to wind and the electricity
system that would strongly benefit the combination of wind and
biogas at the expense of nuclear (Sepulveda et al., 2018; Yang,
2021).

CO2 Emissions
In Figure 2, we can see that CO2 emissions are reduced by
half after about 25 years, when the CO2 tax has reached
30e/ton CO2. The emissions are then further reduced
to almost zero after 40–50 years (this is 30–40 years

2The reason we use 225 Me instead of 200 Me is that, with 200 Me initial capital

(and f = 30%), a company can only start by investing in a gas-fired plant. We

want to avoid this model artifact. With initial capital of 225 Me (and f = 30%), a

company can afford to invest in any kind of plant except nuclear.

after the tax was implemented in the model). This is a
rapid reduction, but it is roughly in line with the Paris
agreement targets, as well as the CO2 net-zero emission
targets adopted by the EU for 2050, and it illustrates the rapid
transition required.

Internal Rate of Return
Figure 3 shows the ex-post analysis of the internal rate of
return (IRR) of each investment made for each year. During
the early phase of the transition (around year 10–30), coal
plants gradually become unprofitable because of the increasing
carbon tax. Meanwhile, investments made in gas and gasCCS
plants also result in losses, while investments in the wind
are quite profitable, yielding returns as high as more than
5%/yr.

Later (around year 30–60), companies start to invest
in nuclear, and IRRs of different technologies converge
closely to around 4–5%/year, which means the return
on wind drops during this period while investments in
gas-fired power plants become profitable (after switching
to biofuels).

At the end of the simulation period (after year 60), IRRs
remain around 4–5%/year, which is the hurdle rate employed
by the agents making most of the investments during this
period (see Figures 4, 5 below); this means that these dominant
agents receive returns roughly in line with what they expected
(agents with a hurdle rate of 6% or more will get less than
what they expected). Note that for an investment to break even,
its IRR can be lower than the 4% bank interest rate, since
part of the funding for the project came from the company’s
own capital.

On the Level of Individual Agents

Investment Decisions
When we look at the installed capacity on the agent level,
we see that agents with different attributes (hurdle rates r

and expectations of future carbon prices b) invest differently.
Figure 4 illustrates that, firstly, in general, agents with relatively
low hurdle rates (r = 4.5%/yr and r = 5%/yr) are more
willing to invest, while agents with a high hurdle rate (r =

8%/yr) rarely make investments. This is because agents using
lower hurdle rates require a lower return on their investments.
Investments from these agents lower the overall electricity
prices and crowd out other agents that require a higher return
on investments.

Secondly, agents that expect low carbon prices (b = 0)
invest heavily in coal power plants in the beginning3, whereas

3Note that the agent with r = 4.5%/yr and b = 0 invested only in coal power

plants in the beginning but did not go bankrupt. The coal power plants receive

annual net revenues that covers the costs of loans (i.e., positive annual net profit)

for the first 20–25 years, but gradually the net profit of coal plants becomes negative

resulting in an IRR below the bank interest rate already around year 10. The annual

net profit during the later years of the coal power plants life time is compensated

for by both the accumulated profit up to around year 20 and the later profitable

investments in wind and nuclear. All this makes it possible for the company to

survive the bad investments in coal after year 10, keeping a positive equity level

avoiding bankruptcy.

Frontiers in Climate | www.frontiersin.org 5 December 2021 | Volume 3 | Article 738286

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Yang et al. Financing the Transition

FIGURE 1 | System installed capacity from year 0 to year 80 in the base case [f = 30% and i = 400Me. f is the fraction of an investment financed by a company’s

own capital and i is the initial capital in a company’s bank account].

FIGURE 2 | Emissions in the base case [f = 30% and i = 400Me. f is the fraction of an investment financed by a company’s own capital and i is the initial capital in a

company’s bank account].
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FIGURE 3 | Internal rate of return (IRR) in the base case [f = 30% and i = 400Me. f is the fraction of an investment financed by a company’s own capital and i is the

initial capital in a company’s bank account]. Each dot indicates the IRR of an investment made in a particular year. The horizontal dash line indicates the 4% bank

interest rate.

agents expecting high carbon prices (b = 1.5 and b = 2)
take earlier action investing in wind and gasCCS plants, but
gasCCS investments turn out to be unprofitable (see Figure 3).
Agents that expect a more correct carbon price (b = 1)
stop investing in coal, shifting investments to wind in a
timely manner.

Return on Equity
When assessing agents based on their return on equity, the
agents who apply low hurdle rates (r = 4.5% and 5% per
year) and have a more accurate expectation for the carbon price
(b = 0.5 or 1.0) are those that perform well, in general. See
Figure 5 where we plot the development of equity over time
and Figure 6 for the annual return on equity for all agents.
Figure 7 shows the average ROE for a 10-year period in the
expansion phase (years 30–40). The average ROE is obtained
from the geometric average of the factors (1 + ROE) that
contribute to the equity growth for the included years, with a
correction for dividends paid (in case that happens, which is
rare in the expansion phase). For details of this calculation, see
Supplementary Equation 2.

These more successful agents mainly invest in the wind early
on (around year 10–20) and accumulate profits from these
investments. They then move on to invest in nuclear and PV.
Later, around year 60, they also invest in gas-fired power plants
(used with biogas) and natural gas with CCS (see Figure 4).

Exploring the Impact of Financial
Constraints and Capital Availability
In this section, we explore how financial constraint and capital
availability affect agents’ investment decisions and performances,
which in turn affects the aggregate capacity mix and the pace of
emission reductions.

On the System Level–Capacity and CO2 Emissions
At the system level, we observe that different capital availability
levels and financing constraints result in different development
paths of the overall capacity mix (Figure 8). In the left column,
we vary the investment fraction f that has to be paid from a
company’s bank account, and in the right column, we vary the
initial capital i of the company. With a more stringent access
to capital (i.e., for higher values of f or lower values of i), the
coal phase-out is slower and there is a delay in investments in
low-carbon technologies such as wind, nuclear, and PV. This is
because wind, nuclear, and PV have high investment costs, and
since agents lack capital, especially during the early phases of the
transition period, these investments become more difficult with
less access to capital.

Due to the delayed shift to low-carbon investing, CO2

emission reductions also slow down when agents have less access
to capital (Figure 9).

Despite capacity mix development paths differing among
cases (during the transient phase), the mix reaches similar
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FIGURE 4 | Installed capacity of 20 individual agents in the base case [f = 30% and i = 400Me. f is the fraction of an investment financed by a company’s own

capital and i is the initial capital in a company’s bank account]. r is the hurdle rate agents use and b is the expected carbon tax parameter.

FIGURE 5 | Equity for the 20 companies in a base case run [f = 30% and i = 400Me. f is the fraction of an investment financed by a company’s own capital and i is

the initial capital in a company’s bank account]. Companies with lower hurdle rates r dominate, except those that expect the highest carbon tax, i.e., have the greatest

expectation parameter b. Companies that have accurate tax expectations perform well in this perspective for all hurdle rates.

levels in the end across all these cases. This is because the
(successful) agents (with low hurdle rates) become less capital-
constrained over time, and the carbon tax stabilizes after
year 60.

On the Level of Individual Agents

Investments
Results show that an agent’s capacity mix varies with different
levels of access to capital (f and i). Overall, we observe that first,
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FIGURE 6 | Return on equity (ROE) for all companies over the full-time period of 80 years in the base case [f = 30% and i = 400Me]. f is the fraction of an

investment financed by a company’s own capital and i is the initial capital in a company’s bank account. r is the hurdle rate agents use and b is the expected carbon

tax parameter.

when agents are required to finance the project with a very
low ratio from their own bank account (i.e., f = 0 or 10%),
the overall investment is dominated by the few agents who
apply low hurdle rates, while when a higher f ratio is required,
investments are more evenly distributed among agents (see
Supplementary Figures 1, 2, where cases of f = 10% and f =

50% are presented). This is because the greater f is, the more
money the agents have to provide from their own bank accounts,
whichmeans they aremore capital-constrained. Agents who have
already made plenty of investments have less cash and more debt
(to the bank), while some other agents who have invested less will
take the chance to invest. Second, our results show that, across
most cases, the agents with lower hurdle rates (r = 4.5%/yr and
5%/yr) are still more willing to invest.

Economic Performance
Figure 10 shows that agents experience different levels of risk
with different levels of access to capital. The change in capital
required from an agent’s own capital (measured by f ) greatly
affects the possibility of bankruptcy; meanwhile, the initial capital
level i is not a causative factor for bankruptcy (within the range
tested in this study).

Note that when agents have to provide a greater share of
the investment from their own capital (higher f ), agents are
less likely to go bankrupt. Primarily, this is due to a lower debt
burden of the companies that reduces the risk for bankruptcy.
In addition, when companies are more constrained by capital,
there are fewer investments before and during the transient phase
and the electricity price is higher compared to when agents are
less capital constrained (see Supplementary Figure 3), this leads
to a higher return on investments during the transient period.
Another reason is that when there is less access to capital, agents
also avoid making as many poor investments.

On the other hand, when the required investment payment
from agents is very low (i.e., f = 0% or f = 10%), agents are
more likely overall to go bankrupt. In these cases, agents are more
likely to overinvest, which leads to lower electricity prices than
expected, and agents end up not being able to pay back their
loans. The reasons why agents overinvest are first that agents have
limited foresight of future carbon prices, and some agents expect
much higher carbon prices than the actual development. For
example, in the case f = 0%, agents with high expectations for
the pace of the increase in the carbon price (b=1.5 or 2.0) invest
heavily in wind in the beginning (see Figure 14). The second
reason is that agents have limited information about other agents’
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FIGURE 7 | The average ROE over a 10-year period for the 20 agents during the expansion phase from year 30 to 40. Positive and negative values are depicted by

blue and red, respectively. Companies with more accurate expectations on tax changes perform better during this period. In the base case, we use f = 30% and i =

400Me. f is the fraction of an investment financed by a company’s own capital and i is the initial capital in a company’s bank account.

investment decisions. Since agents take turns making investment
decisions, agents do not have information about subsequent
investments made by other agents. An investment that initially
seemed profitable can become unprofitable when subsequent
investments are made.

Figure 10 also illustrates that agents with different
characteristics (r and b) perform differently in terms of the
likelihood of going bankrupt. Some agents are more prone
to go bankrupt, while some others do well, financially in
most situations.

When comparing agents in terms of hurdle rates, agents using
low hurdle rates are more likely to go bankrupt. Because these
agents make more investments (than agents with higher hurdle
rates), they face more risk as well, as each investment is associated
with risk.

Comparing agents in terms of their different expectations on
the development of the carbon price, the agents who expect
the lowest (b = 0) or highest (b = 2) carbon prices are
more likely to go bankrupt. Agents expecting the lowest carbon
price make unprofitable investments in coal plants because they
underestimate future carbon prices, while agents expecting the
highest carbon price go bankrupt as a result of their unsuccessful
investments in gas and gasCCS plants during the early years
of the transition (see IRR in Figure 3 above). The reason these
agents invest in gas plants is that they overestimate carbon prices

to the extent that they think that natural gas will be placed ahead
of coal in the merit order and hence think that gas plants will
become profitable. However, gas will in fact only be ahead of coal
in the merit order much later4.

Impact of Financial Module
In addition, we test the model without the financial feedback
module, which means that an agent will not go bankrupt when
its equity goes to zero, and it can get a full loan (100%) from the
bank regardless of its financial condition.

Figure 11 shows that overall investment is dominated by a
single agent who employs the lowest hurdle rate (r = 4.5%/yr)
and the highest carbon tax (b = 2). This agent is more
willing to invest than others by virtue of not only requiring
a lower return but also perceiving higher future electricity
prices by overestimating the carbon tax. Since bankruptcy is not
implemented, this agent can make as many investments as it
thinks would be profitable. These investments lower the overall
electricity price and crowd out other agents who either require a
higher return (i.e., apply higher hurdle rates) or expect a lower
future carbon tax. Only after the carbon tax starts to stabilize do

4We have also tested in a setting where gasCCS is not available, and then agents

with b = 2 perform poorly too and sometimes go bankrupt, so the result is more

general than the individual pathway described here.
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FIGURE 8 | Installed capacity in cases with different capital accessibilities. (A,B) Coal; (C,D) wind; (E,F) nuclear; (G,H) gas; (I,J) gasCCS; (K,L) solar PV. “f” is the

fraction of an investment financed by a company’s own capital and “i” is the initial capital in a company’s bank account. Dashed line is the base case.
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FIGURE 9 | Emission trajectories in cases with different levels of capital accessibility. (A) cases with varying f, which is the fraction of an investment financed by a

company’s own capital; (B) cases with varying i, which is the initial capital in a company’s bank account. The dashed line represents the base case (f = 30% and i =

400Me).
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FIGURE 10 | Bankruptcy frequency of agents grouped by hurdle rate r or carbon tax expectation b. (A) Cases with varying f, which is the fraction of an investment

financed by a company’s own capital; (B) cases with varying i, which is the initial capital in a company’s bank account.
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FIGURE 11 | Capacity mix of individual agents when financial feedback module is not implemented, which means an agent does not go bankrupt and can borrow

100% from the bank regardless of its financial situation.

the four other agents with the lowest hurdle rate (r = 4.5%/yr)
begin to invest similarly to the dominant agent, at that point
foreseeing the same future carbon prices, see Equation (1).

Comparing the case above with the regular case of f = 0%,
in which an agent can get a full loan from the bank (agent
pays 0% from its own capital) only if its bank account is not

negative, and the bankruptcy mechanism is implemented (an

agent goes bankrupt if its equity goes to zero), we see that
the dominating agent in the previous case goes bankrupt in
this case (Figure 12). This discrepancy illustrates that financial
mechanisms may strongly affect the agents’ performance results,
which accentuates that care is needed in the design of agent-
based models.

SENSITIVITY ANALYSIS

To test the robustness of the model results, we investigated
the impact of the growth rate of the carbon tax. We test
how the increasing rate of the carbon tax impacts agents’
investment patterns and the pace of emission reductions. Instead
of increasing the tax by 2e per ton CO2/year, here we test both
a slower and a faster growth rate. In the slow case, the tax starts

to increase by 1e per ton after 10 years, reaching 100e/ton in
year 110. In the fast case, the tax rises by 4e per ton CO2/year,
and reaches 100e/ton in year 35 and stays there. All other
parameters are the same as in the base case, see section Set-up
of the experiment.

As expected, emissions are cut more rapidly when the tax
grows faster but more slowly when the tax grows slower
(Figure 13). This is mainly due to agents investing earlier in low-
carbon technologies, and also invest more in gas plants with CCS
when the tax grows faster (see Supplementary Figure 4).

Looking at agent’s performances, with a faster tax increase,
there is overall a greater tendency to go bankrupt (Figure 14),
especially for agents expecting the carbon tax to increase rapidly
relative to this faster increase (b = 1.5 and b = 2). Meanwhile,
when the tax increases slowly at 1e per ton CO2/year, no agents
go bankrupt.

The four agents expecting the fastest increase in the carbon tax
relative to the actual development (b = 2) go bankrupt in 100%
of the 20 runs when the actual tax increase is fast, due to their
unprofitable investments in gas and gasCCS plants in the early
years (before year 30). In this fast tax-increase case, the IRRs of
gas and gasCCS investments (Figure 15) are even lower than in
the base case (Figure 3). The higher tax increases the fuel cost
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FIGURE 12 | The capacity mix of individual agents when the financial feedback module is implemented and f = 0% and i = 400Me. f is the fraction of an investment

financed by a company’s own capital, and i is the initial capital in a company’s bank account. The vertical red line indicates the year an agent goes bankrupt.

FIGURE 13 | Emission trajectories for three different carbon tax scenarios. In the base case the tax increases by 2e ton CO2/year, and the sensitivity analysis tests a

faster increase case (4e ton CO2/year) and a slower increase case (1e ton CO2/year).
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FIGURE 14 | Bankrupt tendency in three different carbon tax scenarios. Note that no agents go bankrupt in the slow tax-increase scenario (increase rate = 1e per

ton CO2/year), therefore, the bar is not visible in the figure.

FIGURE 15 | Internal rate of return (IRR) in the fast tax-increase case (increase rate = 4e per ton CO2/year). Each dot indicates the IRR of an investment made in a

particular year. The horizontal dash line indicates the 4% bank interest rate.
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of the gas-fired plant. In contrast, the return of wind investment
before year 30 is higher than in the base case. This is because the
higher tax level leads to higher electricity prices, which benefit
wind plants.

CONCLUSION

In order to solve the climate challenge, substantial investments
in low-carbon technologies are required. This raises the question
of how these investments should be financed. In most integrated
assessment models, including optimisation-based models of
the energy system, access to capital is never a problem
since the cost-effective solution by default is (most often)
implemented. However, in reality access to capital as well as
companies’ willingness to take risks by increasing their debt
financing—in particular in light of significant uncertainty in
future carbon, fuel and electricity prices—may be a critical
constraint on the transition to a low carbon society. For that
reason, there is a growing interest in the financial sector and
the role it may play to facilitate the transition to a low-
carbon society.

In this study, we introduce an agent-based model of
the electricity system called HAPPI (Heterogenous Agent-
based Power Plant Investments model), which includes
an explicit module of how investments are financed
and that keeps track of companies’ debt and equity
over time. If the bottom line of a company develops
poorly, it will face increasing difficulties in financing
new investments.

We examine the financial module’s effect on results
for the transition to a low-carbon electricity system
under an increasing carbon tax scenario. We pay special
attention to the impact of financial constraints and
electricity demand on the agents’ investment decisions and
financial performance and, in turn, on the transition of the
electricity system.

Our results show that, when agents are more constrained
by capital, there are delays in investments in the low-carbon
technologies with high investment costs such as wind, solar,
and nuclear, and this results in slower emission reductions
compared to when capital is more easily accessible. This suggests
that rapidly decarbonising the electricity sector could require
government incentives that reduce risks for investors.

Our results also show that during the transient period,
when the carbon tax is increasing, profits are rather high.
This is a non-equilibrium feature in the model: agents have
limited ability to make new investments because they have
not accumulated a sufficient amount of capital of their own
and access to capital is restricted since agents must supply
a certain fraction of any new investment from their own
bank account (the remaining part of the investment can
be borrowed as a loan from the bank). These constraints
lead to higher electricity prices and, therefore, higher returns
on investment.

Our model also illustrates that, in general, companies that
expect too low or too high carbon prices run a greater risk
of going bankrupt and their return on equity is in general
worse than companies that have a more correct expectation
of the future carbon tax. Results also show that a higher
tax growth rate leads to a higher risk of bankruptcy, while
companies are less likely to go bankrupt under a slow tax-
increase scenario. This implies a role for government to help
investors by giving clear signals regarding a steady increase in the
carbon tax.

Furthermore, our results illustrate the trade-off
between lower risk and higher returns. Agents that use
low hurdle rates invest more and take a larger market
share and tend to enjoy higher returns on equity. Our
results also show that agents overall are more prone
to going bankrupt when they are more exposed to
uncertainties, such as volatile fuel prices and fluctuating
electricity demand.

Finally, we want to draw attention to the following three
points in the context of agent-based modeling. The first point
is whether and how to include a financial module, as well as
the assumptions about parameter values for the financial module
have significant importance for the investment behavior among
the agents. This may not in itself be surprising, but since this
feature is most often neglected in energy systems studies, more
effort is needed to better model how financing conditions affect
energy investments at the individual agent as well as at the overall
system level.

Secondly, in optimisation models, the expansion of various
energy technologies is typically constrained by setting an
arbitrary maximum expansion rate. However, in our model the
expansion rate is partly constrained as a result of (limited) access
to financial capital. We think that the approach employed here
may provide a possible way to explore limits to the expansion
rate in an endogenous manner rather than through arbitrary
exogenous assumptions. But clearly, there is a long way forward
before clear-cut modeling answers can be provided to these
complex matters.

Thirdly, our results pertaining to the economic performance
of companies who believe the carbon tax will be higher than
it really turns out to be are interesting for the broad societal
and academic discussion about whether pro-active companies
may become more profitable than companies that only respond
slowly to environmental regulations. We found as stated above,
here that companies that assume that the carbon tax will grow
twice as fast as it eventually does perform worse economically
than those who have a more correct expectation. Also, companies
that do not think that the tax will increase at all perform
much worse. Although the answer to the question of how
companies may navigate the uncertainty about possible future
environmental regulation and changes in consumer demand
is complex and the answers provided here are not set in
stone, analyzing the energy system transition using agent-based
models rather than optimisation models is necessary if one
wants to understand the potential impact (economic return) of
different companies’ investments strategies. In an agent-based
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model, companies may make both wise and erroneous decisions,
whereas in an optimisation model there are typically only one
central agent and actors typically have perfect foresight and
make only optimal decisions. Hence, in the future, we hope
to analyse in more depth the impact of various strategies for
different companies.
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