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Many countries have indicated to plan or consider the use of carbon pricing.

Model-based scenarios are used to inform policymakers about emissions pathways

and cost-effective carbon prices. Many of these scenarios are based on the Hotelling

rule, assuming that a carbon price path increasing with the interest rate leads to a

cost-effective strategy. We test the robustness of this rule by using experiments with

plausible assumptions for learning by doing, inertia in reducing emissions, and restrictions

on net-negative emissions. Analytically, we show that if mitigation technologies become

cheaper if their capacities are increased, Hotelling does not always apply anymore.

Moreover, the initial carbon price is heavily influenced by restrictions on net-negative

emissions and the pathway by both restrictions on net-negative emissions and

socio-economic inertia. This means that Hotelling pathways are not necessarily optimal:

in fact, combining learning by doing and the above restrictions leads to initial carbon

prices that are more than twice as high as a Hotelling pathway and thus to much earlier

emission reductions. The optimal price path also increases less strongly and may even

decline later in the century, leading to higher initial abatement costs but much lower

long-term costs.

Keywords: climate change mitigation, carbon price, cost-effective pathways, inertia, negative emissions, learning

by doing, hotelling, carbon dioxide removal (CDR)

INTRODUCTION

The increased international concern about climate change has led to ambitious climate targets
in the Paris Agreement: countries have agreed to limit global mean temperature change to well
below 2◦C and pursue efforts to limit it to 1.5◦C. Achieving these targets requires strong policy
interventions. Carbon pricing is regarded as one of the main policy instruments available to reduce
greenhouse gas emissions. According to the UNFCCC1, two-thirds of all submitted Nationally
Determined Contributions (NDCs) consider the use of carbon pricing. Currently, 21.5% of all
greenhouse gas emissions are already subject to carbon pricing (World Bank, 2021), compared
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to 12% in 2015 (Kossoy et al., 2015). In 2021, a total of 64 carbon
pricing instruments have been implemented. However, the level
of the carbon prices implemented differs considerably, from <1
to more than 100 USD/tCO2eq. This raises the question of the
appropriate carbon price level, or, in other words, which carbon
price level is consistent with meeting the targets of the Paris
Agreement. This strongly depends on the timing of mitigation
action, which has been an important topic of research for many
years (Nordhaus, 1982; Ulph and Ulph, 1994; Hourcade and
Robinson, 1996; Peck andWan, 1996;Wigley et al., 1996; Grubler
and Messner, 1998; Goulder and Mathai, 2000; Lemoine and
Rudik, 2017) and is of key importance for defining least-cost
policy response strategies under the Paris Agreement.

Different approaches have been used to derive timing
profiles of emission reductions, ranging from rather stylized
mathematical rules to more refined economic methods. Most
commonly, model-based approaches apply some form of
cost-minimization over time, sometimes in combination with
specific constraints representing policy. One key element in
the discussion of least-cost emission profiles is the so-called
Hotelling rule. The Hotelling rule states that for exhaustible
resources, equalizing the marginal productivity of capital with
the growth rate of the resource’s marginal productivity leads
to an optimal shift rate (Hotelling, 1931). In other words, the
growth rate of the resource’s price must equal the interest
rate. For climate change, the CO2 holding capacity of the
atmosphere can be viewed as the exhaustible resource (Lemoine
and Rudik, 2017), especially as the climate problem can be
viewed as limiting cumulative emissions to a certain level
(Allen et al., 2009; Meinshausen et al., 2009). In this view,
the price (or tax) of carbon has to increase at the same rate
as the interest rate according to the Hotelling rule. Indeed,
many models show that least-cost carbon prices increase
exponentially over time (see Supplementary Material). Some
recursive dynamic integrated assessment models even use
the Hotelling rule to approximate intertemporal optimization
(Capellán-Pérez et al., 2014; Bauer et al., 2015).

An important distinction in the discussion on the optimal
carbon price trajectory is between cost-effectiveness and cost-
benefit studies. Cost-effectiveness studies focus on the least-cost
trajectory to achieve predefined carbon budgets or temperature
targets. Cost-benefit studies optimize the mitigation costs and
benefits over time. Contrary to cost-effectiveness studies, cost-
benefit studies also take the (avoided) damages of climate change
into account in determining the optimal carbon price pathway.
A pioneering study by Goulder and Mathai (2000) showed
that the Hotelling rule does not apply in a cost-benefit setting:
higher initial carbon prices than resulting from the Hotelling rule
lead to additional benefits, as it reduces damage from climate
change. Other studies have confirmed this result under a range
of different settings regarding initial oil stocks (Van Der Ploeg
and Withagen, 2014), carbon capture and storage (Lontzek and
Rickels, 2008), and discount rates and climate damages.

Cost-effectiveness studies, in contrast, focus on the least-
cost pathway in achieving exogenously set climate targets. Such
targets can, for instance, be based on the Paris Agreement,
which states the objective to limit global temperature change

to well below 2◦C and pursue efforts to limit it to 1.5◦C. The
Goulder and Mathai paper mentioned above concluded that
Hotelling applies for cost-effectiveness studies even if induced
technological change by either research and development (R&D)
and learning by doing is taken into account. Later studies
stressed that if technologies are represented in more detail in the
framework analysis, a Hotelling carbon tax, combined with other
policies, such as subsidizing clean technologies (either directly
or through R&D in renewables) is still optimal (Van Der Zwaan
et al., 2002; Kverndokk and Rosendahl, 2007; Fischer and Newell,
2008; Gerlagh et al., 2009; Acemoglu et al., 2012; Kalkuhl et al.,
2012, 2013; Mattauch et al., 2015; Prices, 2017). Some of these
studies conclude that if subsidizing R&D is not available or
feasible as a policy instrument, the second-best policy is to apply
a higher carbon tax, but still increasing over time according to
the Hotelling rule (Gerlagh et al., 2009; Acemoglu et al., 2012;
Mattauch et al., 2015).

However, all of the above studies do not consider how
real-world socio-economic and political barriers could affect
the shape of the carbon price pathway. Important economic
barriers include unstable macroeconomic conditions, missing
markets, distorted prices, and financial market imperfections
(Sathaye et al., 2001). Besides these economic barriers, political,
institutional, social, cultural, and psychological factors also can
slow the diffusion of new energy technologies and thereby
the speed by which emissions can be reduced. The speed by
which a complete transition to electric vehicles can take place,
for instance, depends on available infrastructure and how easy
certain habits can be changed. As already shown by Ha-Duong
et al. (1997) and Schwoon and Tol (2006), inertia in changing
the energy system, in combination with, respectively, learning
by doing and uncertainty in the climate target, may impact the
optimal emission abatement trajectory—but both did not analyse
its effect on the optimal carbon price pathway.

Moreover, socio-economic barriers can also influence the
level of net-negative emissions that can be achieved. Net-
negative emissions are possible by carbon dioxide removal
(CDR) technologies. While there are several promising CDR
technologies, such as enhanced weathering of rocks (Strefler
et al., 2018) and Direct Air Capture (DAC), the most important
ones currently included in long-term scenarios are bioenergy
combined with carbon capture and storage (BECCS) and large-
scale reforestation (Clarke et al., 2014), both requiring substantial
amounts of land. There is a heavy debate about these CDR
technologies, largely due to their possible impact on biodiversity
and food security (Anderson and Peters, 2016; Smith et al.,
2016; Van Vuuren et al., 2017; Fridahl and Lehtveer, 2018; Fuss
et al., 2018). Because of these risks, recent scenario analyses
have focused more on how the climate objectives of the Paris
Agreement can be achieved without (large-scale) use of CDR
technologies (Grubler et al., 2018; Van Vuuren et al., 2018; Rogelj
et al., 2019).

This paper introduces a simple and transparent model to
analyse how learning by doing and socio-economic barriers,
causing inertia in reducing emissions and restrictions on the
achievable levels of net-negative emissions, influence the optimal
carbon price pathway in a cost-effectiveness setting. We limit
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cumulative CO2 emissions to a certain level, given the almost
linear relationship between cumulative CO2 emissions and mean
global temperature change (Allen et al., 2009; Meinshausen et al.,
2009; Dietz and Venmans, 2019). As discussed above, this setting
is generally associated with a Hotelling carbon price pathway,
making it a good analysis framework for analyzing the hypothesis
that the Hotelling path is optimal.

MATERIALS AND METHODS

Below, we first provide a general overview of the set-up of the
experiments, followed by an explanation of the experiments and
optimization procedure.

General Settings
We use intuitive numerical experiments calibrated to ranges
found in the literature to show the impact of learning by doing
and socio-economic restrictions on least-cost carbon price and
emission trajectories. In these experiments, we vary the way in
which technology costs develop over time and impose different
restrictions on emissions abatement. In all the experiments, we
assume a quadratic marginal abatement cost (MAC) curve, where
a is the relative abatement level:

MACdefault (a) = learning factor · γ · aβ. (1)

Here, the learning factor is a factor between 0 and 1 used tomodel
technological progress and depends on either time or cumulative
abatement, depending on the experiment. The parameter γ is
used to calibrate the size of the MAC to match medium values of
the IPCC mitigation cost range (based on Figure 6.23 of Clarke
et al., 2014), and β is equal to 2 in our experiments to yield a
quadratic MAC.

We assume that a carbon price is the only instrument that
is applied, as climate change is the only externality considered
here (this is in line with most Integrated Assessment models
used to develop mitigation scenarios). The optimal carbon price
pathway is defined as the price path which minimizes total
discounted abatement costs between 2020 and 2100 to limit total
cumulative CO2 emissions (or carbon budget) to a predefined
level. The assumed carbon budget is set at cumulative CO2

emissions of the RCP2.6 emission pathway (van Vuuren et al.,
2011), equal to 25% of baseline cumulative CO2 emissions, and
consistent with a 67% probability to achieve the 2◦C climate
target. Our sensitivity analysis also looks at the impact of
reducing the carbon budget to cumulative emissions of the
RCP1.9 emission pathway (Rogelj et al., 2018), equal to about
10% of baseline cumulative CO2 emissions and consistent with
restricting median global warming to below 1.5◦C. Baseline
emissions follow a slightly concave, quadratic path that leads to
a doubling of CO2 emissions by the end of the century relative to
2020. This pathway strongly resembles the pathway of the SSP2
marker scenario (Riahi et al., 2017).

Experiments
Learning Over Time
As a reference, an experiment is conducted in which technical
change depends on autonomous trends and no restrictions on

the speed and level of emission reductions are assumed. In this
experiment, the costs of abatement technologies decrease only as
a function of time. The learning factor is given by:

learning factorLoT (t) =
1

(1+ rate)t−t0
. (2)

The default learning rate is set at 1.5%/year, based on typical
rates of autonomous energy efficiency improvement assumed in
macroeconomic environmental models (Grubb et al., 2002). The
value of the MAC is reduced by this factor:

MACdefault (a; t) = MAC (a) · learning factor (t) . (3)

Learning by Doing
In the second experiment, learning by doing, the MAC curve
decreases as a function of relative cumulative abatement RCA (t)
(equal to cumulative baseline emissions minus cumulative
emissions of the mitigation pathway, as fraction of cumulative
baseline emissions until 2100) to account for endogenous
technological growth. Again, no restrictions on the speed and
level of emission reductions are assumed. The learning factor in
this experiment is given by

learning factorLBD = (α · RCA (t) + 1)log2(ρ) . (4)

The value for the progress ratio ρ (i.e., the reduction in costs for
doubling cumulative capacity) is taken from van Vuuren (2006).
It represents empirical studies of endogenous technological
learning. This value amounts to ρ = 0.82.

The value of the calibration factor α is calibrated such that the
same level of learning is achieved in 2100 as in the learning over
time experiment. As shown in Equation (4), the learning factor
in 2100 in the learning by doing experiment only depends on the
carbon budget. By setting learning factor for learning by doing
(Equation 4) in 2100 equal to the learning factor from learning
over time in 2100, i.e., 1

(1+rate)2100−2020 = (1+ rate)−80, we obtain

the following expression for the calibration factor α:

α =
(1+ LoT rate)−80/ log2(ρ)

− 1

RCA (80)
. (5)

With the learning over time rate of 1.5%/year, the default progress
ratio of ρ = 0.82 and a RCA of 75% for a carbon budget of 25%
of baseline emissions, we obtain α = 84.1.

In the sensitivity analysis, we capture the uncertainty range in
the learning factors. We use the range from van Vuuren (2006)
for the progress ratio: from ρ = 0.65 for high learning to ρ =

0.95 for low technological learning. Using Equations (1) and (3),
we obtain the corresponding learning-over-time rates: 3.3%/year
and 0.4%/year for the high and low learning cases, respectively.

Socio-Economic Inertia
The socio-economic inertia experiment reflects that energy and
infrastructure systems need some time to change and adapt.
Consequently, emissions cannot be reduced at an unlimited
speed. Based on maximum reduction speeds of the scenarios
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FIGURE 1 | Example of the MAC curve of the socio-economic inertia and minimum emission level experiments.

in the scenario explorer for 1.5◦C pathways underpinning the
IPCC Special Report on Global Warming of 1.5◦C (https://
data.ene.iiasa.ac.at/iamc-1.5c-explorer), we assumed that when
annual reductions approach 5.5% of the 2015 emission level,
abatement costs increase sharply by adding an extra term to
the MAC curve (in the sensitivity runs, we also analyzed
annual reduction thresholds of 3 and 8% of the 2015
emissions level).

This is modeled as follows. We first determine an abatement
limit caused by inertia. We define inertia as a limit on the change
in emissions between two consecutive timesteps:

Et ≥ E(t−1t) − 1t · inertia rate. (6)

Since the emissions at time t depend on baseline emissions B (t)
and the relative abatement at :

Et = Bt · (1− at) , (7)

we find a relative abatement limit at∗ of:

a∗t = 1−
(

E(t−1t) − 1t · inertia rate
)

/B(t) (8)

As mentioned above, the inertia rate is set at 5.5% of the
2015 emission level. Given the abatement limit a∗t , the total
MAC becomes:

MACtotal (a) = MACdefault (a) +
1

2
γ · η(a−a∗t )/ǫ, (9)

where the scaling parameters η and ǫ determine the steepness
of the additional costs. By default, we use η = 1.025 and ǫ =

0.0003. These values are chosen so that the marginal costs begin
to slightly increase when the rate of emission change approach
half the inertia rate, after which it increases more strongly toward

four times themarginal costs at the abatement limit (see left panel
of Figure 1 for an example how the inertia constraint influences
the MAC curve). This follows a similar methodology as Schwoon
and Tol (2006). The main difference is that we use an exponential
term instead of a quadratic term, allowing us to let inertia
really have an effect at the abatement limit at∗. We also include
learning over time in this experiment to compare abatement
costs. The annual learning rate is set at the same level as in the
learning over time experiment.

Minimum Emission Level
The minimum emission level experiment reflects the difficulties
associated with CDR technologies. Like in the socio-economic
inertia experiment, these difficulties can be of economic (e.g.,
land becoming increasingly scarce or increased dependence
on very expensive storage sites) and socio-political (concerns
about biodiversity and food security) nature. We assumed
that net-negative emissions are not allowed in the default
setting, resulting in a MAC curve as depicted in the right
panel of Figure 1 (i.e., net emissions cannot go below zero).
Again, we include an annual learning rate of 1.5% in this
experiment. In the sensitivity runs, we also analyse the effect
of allowing some level of net-negative emissions based on
the minimum level of annual emissions of scenarios in the
same IPCC 1.5◦C degrees database as used for the socio-
economic inertia experiment, yielding values of 10 GtCO2 and 20
GtCO2 annually.

Solving the Optimal Control Problem
In all experiments, total discounted abatement costs are
minimized under the restriction that total cumulative CO2

emissions in the period 2020–2100 are limited to a predefined
level globally. This automatically means that overshoot of the
budget (and thus temperature) is temporarily allowed, but
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it is restricted in the minimum emission level experiment.
Emission reductions aremodeled by choosing a carbon price p(t).
Depending on the experiment, the MAC curve depends on either
time or cumulative abatement. Since we impose a constraint
on the total CO2 emissions through a carbon budget CB, we
consider the cumulative emissions CE(t) as state variable in our
minimization process. Every time step, the cumulative emissions

are increased by the instantaneous emission level E(t) (equal to
the baseline emission level B(t) minus the abatement level):

dCE (t) /dt = E (t)

: = B (t)
(

1−MAC−1
(

p (t)
))

, CE (T)≤CB.(10)

FIGURE 2 | Carbon price, emission, and abatement costs over time for different constraints and learning assumptions. (A) Learning by doing, (B) socio-economic

inertia, (C) minimum emission level, and (D) combination.
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FIGURE 3 | Carbon price pathways and abatement costs relative to the learning over time pathway. (A) Learning by doing, (B) socio-economic inertia, (C) minimum

emission level, and (D) combination.

The optimal price path is calculated by minimizing the total
discounted abatement costs. For every time step, the abatement
costs are defined as the area under the MAC. Therefore, the
following function is minimized:

minimize
p(t)

∫ T

0
e−rtAC (t) dt, (11)

where r is the discount rate (for which we use a value of 5%) and
the abatement costsAC (t) are defined as the area under theMAC
from 0 to the abatement level at :

AC (t) = B (t)

(∫ at

0
MAC (a) da

)

. (12)

The abatement level at is determined by the carbon price pt and
is equal to the inverse of the MAC:

at = MAC−1
(

p (t)
)

. (13)

The final optimal control problem is given by Equation (9),
subject to Equation (8). This can be solved analytically for the
experiments learning over time and learning by doing using
Pontryagin’s Maximum Principle (see Supplementary Material).
The other experiments are too complex to obtain closed-form
analytical results. These are solved numerically using the open-
source Python optimization modeling framework Pyomo (Hart
et al., 2011, 2017). The dynamical optimal control formulations
were programmed with Pyomo.DAE (Differential-Algebraic
Equations; Nicholson et al., 2018). The model is solved using
the Ipopt solver (Wächter and Biegler, 2006), widely used for
large-scale non-linear optimization. The full model code is
available at https://mybinder.org/v2/gh/kvanderwijst/Hotelling/
HEAD?filepath=Calculations.ipynb.

RESULTS

Figure 2 shows the optimal carbon price paths, and resulting
emission pathways and abatement costs for all experiments
and Figure 3 shows the carbon price pathways and abatement
costs relative to the learning over time experiment, which
makes it easier to see the differences with the Hotelling
carbon price pathway. The results of the sensitivity analysis
of the parameter settings and carbon budget are given in
section Sensitivity Analysis.

Impact of Different Learning Assumptions
Consistent with earlier studies, the reference scenario learning
over time results in a hoteling carbon price pathway, as proven
in the Supplementary Material.

In the learning by doing experiment, the initial optimal carbon
tax is about 25% higher than in the learning over time experiment,
after which it increases less strongly (this is shown analytically
as well in the Supplementary Material). The carbon price is
lower than the learning over time pathway from about mid-
century onwards. Carbon neutrality is achieved by 2080 in this
experiment, after which emissions decrease strongly to large
net-negative values. As a consequence, abatement costs increase
sharply from 2080 as well. However, the increase in abatement
costs is lower than for learning over time, even though the same
level of learning is achieved in both cases. This is because learning
over time shifts abatement to the present, and therefore less
abatement is needed by 2100.

This experiment shows that, with our simple model calibrated
to literature values for costs and carbon budgets, no restrictions
at all on net-negative emissions technologies or the reduction
speed lead to cost-optimal carbon price pathways with large
net-negative emissions and high abatement costs late in the
century. Learning by doing leads to only slightly less net-negative
emissions and lower abatement costs.
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FIGURE 4 | Carbon price pathways and abatement costs of the parameter sensitivity runs relative to the learning over time pathway. Parameter values: (A) Learning

by doing: rho = 0.65, 0.82, and 0.95. (B) Socio-economic inertia: 3, 5.5, and 8% of 2015 emissions. (C) Minimum emission level: 0, −10, and −20 GtCO2.

Interestingly, these results contradict the findings of Goulder
and Mathai (2000), who found that even with learning by doing,
the optimal carbon price follows the Hotelling rule. The reason
is that in the model of Goulder and Mathai, learning by doing
did not directly affect abatement costs but only indirectly via the
accumulation of knowledge, as explained in more detail in the
Supplementary Material. In this formulation, the accumulation
of knowledge does not affect the shape of the carbon price
trajectory. With our representation, learning by doing directly
impacts costs and therefore does have an impact on the carbon
price pathway.

Impact of Constraints on the Speed and
Level of Emission Reductions
The socio-economic inertia experiment shows the development
of carbon prices and abatement costs of socio-economic
inertia. Socio-economic inertia requires a higher carbon price
throughout the century, given the additional constraint. Until
about mid-century, the carbon price pathway closely follows
a Hotelling path. Around mid-century, however, the emission
reduction speed approaches the maximum possible level. This
leads to a steeply increasing carbon price, after which it decreases
just before the end of the century. This decrease is due to slightly
lower reduction speeds at the end of the century, for which the
carbon price is strongly sensitive. The annual abatement costs
are slightly higher than without inertia until 2085. After 2085,
abatement costs are lower than without inertia, as emissions

decline less rapidly. This experiment shows that inertia strongly
influences the carbon price pathway, with strong increases during
the century and a leveling off and even decreasing prices late in
the century.

If net-negative emissions are not allowed, the carbon price
pathway exactly follows a Hotelling path until emissions reach
net zero. The only difference with no restrictions is that the
carbon price is about twice as high, which is required to achieve
the same carbon budget with less abatement potential. This
higher carbon price leads to much higher abatement costs (about
a factor 3). After net-zero emissions are achieved around 2065,
emissions stay on this level, leading to declining carbon prices
and abatement costs due to technological learning.

Combining Restrictions
The carbon price pathway becomes irregular when combining
learning by doing, socio-economic inertia, and restrictions on
net-negative emissions. Initially, the carbon price is two to three
times as high as in the learning over time experiment without
constraints, as both learning by doing and the two constraints
lead to higher initial carbon prices. By 2070, the carbon price
shortly decreases as net-zero emissions are reached.

Sensitivity Analysis
Figure 4 shows the results of the sensitivity of learning by doing,
socio-economic inertia, and the minimum emission level on the
optimal carbon price pathway and abatement costs relative to
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FIGURE 5 | Carbon price pathways and abatement costs relative to the learning over time pathway: 1.5◦C budget (25% of cumulative baseline emissions) compared

with 2◦C budget (10% of cumulative baseline emissions). (A) Learning by doing, (B) socio-economic inertia, (C) minimum emission level, and (D) combination.

the learning over time experiment. Stronger learning and socio-
economic inertia lead to carbon price pathways that deviate more
strongly fromHotelling and vice versa. The carbon price pathway
is especially sensitive to assumptions on the maximum reduction
speed of emissions: if this is restricted to 3% of the 2015 emission
level, the carbon price strongly increases to a factor of more than
four times the level we found without restrictions by 2070.

If the hard assumption of disallowing net-negative emissions
is loosened, the carbon price is substantially lower. However, for
a maximum annual level of 20 GtCO2 net-negative emissions, the
carbon price is still 50% higher than the case with no restrictions
on net-negative emissions at all.

All the above experiments were based on a carbon budget
consistent with a 67% probability to achieve the 2◦C climate
target. The impact of the restrictions on the speed and minimum
level of emissions is higher for more ambitious targets, such as
a carbon budget consistent with a 50% probability of achieving
the 1.5◦C target. This is shown in Figure 5. Learning by doing
does not significantly affect the carbon price pathway under
this more restrictive carbon budget, but socio-economic inertia
and especially not allowing for net negative emissions does.
Under a 1.5◦C carbon budget, not allowing for net-negative
emissions leads to a five times higher carbon price until 2050,
when net-zero emissions are achieved. If combined with realistic
assumptions on the maximum speed of emission reductions,
the initial carbon price is even a factor 10 higher than without
these restrictions.

DISCUSSION

Our analysis has shown that the cost-effective carbon price
pathway is strongly influenced by realistic restrictions on the
speed by which emissions can be reduced. Not allowing for net-
negative emissions does not lead to changes in the pathway in
the short to medium term, but it does increase the initial carbon
price by a factor 2 for a 2◦C climate target to a factor 5 for a 1.5◦C
climate target.

This leads to the conclusion that an exponentially increasing
carbon tax (as suggested by the Hotelling rule) is not necessarily
the cost-effective outcome. In several situations, especially with
more stringent climate targets, a higher carbon tax early in
the century is cost-effective. Putting it in different words,
with ambitious climate targets, the carbon price depends
more and more on real-world restrictions, which affect the
maximum speed and level of emission reductions. This can
explain why some integrated assessment models, especially
ones in which the speed of emission reductions and the
level of net-negative emissions is implicitly or explicitly
constrained, show carbon price trajectories that do not follow the
Hotelling rule.

Therefore, we argue that minimization of mitigation costs by

setting only the initial carbon price and letting the pathway be

determined based on the Hotelling rule is too simplistic. Real-

world dynamics related to inertia, learning, and restrictions on
net-negative emissions, especially with the ambitious climate
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targets agreed upon in the Paris Agreement, have a strong
impact on the carbon price pathway. While full inter-temporal
optimization may for many models not be an alternative to
Hotelling, given the complexity of most integrated assessment
models, a possible alternative could be to approximate a cost-

effective pathway based on an iterative procedure in which the

carbon price pathway is slightly adjusted each time. Compared
to applying Hotelling, this will likely lead to carbon prices

which are higher in the short term and which increase

less rapidly.
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