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The investigation of regional vulnerability to extreme hydroclimatic events (e.g., floods and

hurricanes) is quite challenging due to its dependence on reliable precipitation estimates.

Better understanding of past precipitation trends is crucial to examine changing

precipitation extremes, optimize future water demands, stormwater infrastructure,

extreme event measures, irrigation management, etc., especially if combined with future

climate and population projections. The objective of the study is to investigate the

spatial-temporal variability of average and extreme precipitation at a sub-regional scale,

specifically in the Southern Mid-Atlantic United States, a region characterized by diverse

topography and is among the fastest-growing areas in North America. Particularly,

this work investigates past precipitation trends and patterns using the North American

Land Data Assimilation System, Version 2 (NLDAS-2, 12 km/1 h resolution) reanalysis

dataset during 1980–2018. Both parametric (linear regression) and non-parametric

(e.g., Theil-Sen) robust statistical tools are employed in the study to analyze trend

magnitudes, which are tested for statistical significance using the Mann-Kendall test.

Standard precipitation indices from ETCCDI are also used to characterize trends in

the relative contribution of extreme events to precipitation in the area. In the region

an increasing trend (4.3 mm/year) is identified in annual average precipitation with

∼34% of the domain showing a significant increase (at the 0.1 significance level) of

+3 to +5 mm/year. Seasonal and sub-regional trends are also investigated, with the

most pronounced increasing trends identified during summers along the Virginia and

Maryland border. The study also finds a statistically significant positive trend (at a 0.05

significance level) in the annual maximum precipitation. Furthermore, the number of

daily extremes (daily total precipitation higher than the 95th and 99th percentiles) also

depicts statistically significant increases, indicating the increased frequency of extreme

precipitation events. Investigations into the proportion of annual precipitation occurring

on wet days and extremely wet days (95th and 99th percentile) also indicate a significant

increase in their relative contribution. The findings of this study have the potential to

improve local-scale decision-making in terms of river basin management, flood control,

irrigation scheme scheduling, and stormwater infrastructure planning to address urban

resilience to hydrometeorological hazards.
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INTRODUCTION

Precipitation is an essential component of Earth’s hydrologic
cycle, one that influences complex interactions among elements
of the biosphere, such as soil moisture (Sehler et al.,
2019), vegetation growth (Chen et al., 2020), and streamflow
(Goovaerts, 2000; Lobligeois et al., 2014). Therefore, investigating
precipitation variability in space and time is crucial for managing
sustainable water resources (Fowler et al., 2003), characterizing
extremes and their socioeconomic impacts (Howarth et al., 2019),
and policymaking based on the connection of hydroclimatic
hazards and long-term vulnerabilities (Raymond et al., 2020). At
the continental scale, extreme daily precipitation patterns in the
contiguous United States (U.S.) have shown variability (Hoerling
et al., 2016). During the period of 1910–1996, Karl and Knight
(1998) demonstrate that the intensity of extreme precipitation
events (top 10%) increased across the contiguous U.S. along with
a 53% increase in annual total precipitation. Additionally, many
studies examine variability at the hourly scale. One such effort by
Prein et al. (2017) suggests that short duration (hourly) events are
projected to increase along with temperatures in the contiguous
U.S., especially in areas with abundant moisture. Another study
by Brown et al. (2020) indicates a significant increase in the
90th percentile hourly accumulation at 36% of recording stations
across the southeastern U.S. from 1960 to 2017. Continued
rainfall increases in already wet regions and continuous drying of
dry areas are also expected to occur in a warming climate (Chou
and Neelin, 2004).

Analyzing the distribution of changes in extreme precipitation
at the local and regional scales is essential to quantify smaller-
scale changes in precipitation patterns that cannot be specified
when taking a synoptic view. Several studies focusing on regional
extremes report increasing intensity and frequency of extremes
in the northeast U.S. (DeGaetano, 2009; Kunkel et al., 2013).
Moreover, a significant increase in extreme precipitation has
been linked to warm and moist atmospheric conditions, which
are governed by the Clausius–Clapeyron equation (Trenberth
et al., 2003; Prein et al., 2017). Myhre et al. (2019) highlight
the increase in the frequency of extreme precipitation and a
doubling of future intense rain in Europe, the U.S., Japan, and
Australia. The authors also investigate historical trends and
suggest a doubling in the frequency of intense precipitation
events per degree of warming. Furthermore, Huang et al. (2017)
identify a statistically significant increase (6.8%) in annual total
precipitation and a higher increase in extreme precipitation
(41%) considering the historical record (1901–2014) over the
northeast U.S. The authors characterize the increase in annual
total and extreme precipitation as abrupt in the late 1990s and
early 2000s. Therefore, analyzing precipitation spatiotemporal
variability at the regional scale is essential for developing resilient
plans for extreme hydroclimatic events, such as flash floods,
landslides, etc. (Wyard and Fettweis, 2016).

Although ground-based gauges provide direct measurements
and are used in trend analysis in several studies (Kidd, 2001), they
are not continuous in space (Wang et al., 2019) and have limited
global and regional coverage. A common approach to generating
a continuous precipitation field is to interpolate spatially from

irregularly spaced weather stations, with interpolation errors
increasing where gauges are sparsely distributed (Xie et al.,
1996; Shi and Song, 2015). Satellite-based retrievals generate
spatially homogeneous estimates (Golian et al., 2019); however,
they are often available at coarse resolutions and subject
to systematic biases, sampling errors, sensor limitations, and
uncertainties in the retrieval algorithms (Yang et al., 2017).
Reanalysis precipitation products merge available observations
and models with physical processes (Sun et al., 2018) and have
consistent spatial and temporal coverage in a gridded form.
Spatial homogeneity and temporally consistent precipitation
estimates are essential to study precipitation variability (Pfeifroth
et al., 2013). Moreover, extreme precipitation analysis from fewer
weather stations does not represent the climatology of a region
(Sridhar et al., 2019). The reanalysis precipitation products such
as the North American Land Data Assimilation System, Version
2 (NLDAS-2) (Cosgrove et al., 2003) dataset used in our study
provides a valuable source for historical analyses.

Analyzing changes in extremes (frequency and intensity) has
been carried out by different groups using robust statistical
procedures, including extreme indices with specific relevance
to precipitation. Generally, the tail distribution of climatic
variables (representing extremes) is uncertain (Zhang et al.,
2011). The WMO (World Meteorological Organization) and the
WCRP (World Climate Research Program) collaborate to form
the Expert Team on Climate Change Detection and Indices
(ETCCDI), which paves the way to investigate regional and global
climatic extremes (Alexander et al., 2006; Tank et al., 2009; Yin
and Sun, 2018). While these indices have been applied to global
climate models (Sillmann et al., 2013) to understand changes and
trends in extremes, our study focuses on their use in the context
of higher resolution model reanalysis precipitation estimates.
This approach provides a comprehensive understanding of
precipitation trends and characteristics at the sub-regional scale,
such as the domain of our study, which includes Northern
Virginia and the adjacent states.

Heavy precipitation events continue to make Northern
Virginia and its surroundings more exposed to flood hazards.
Coastal storms (e.g., nor’easters and hurricanes) drive water
surges from the Atlantic up the Chesapeake Bay and into the
Potomac River, inducing tidal flooding in the lower Potomac.
Our study area includes the Central Appalachian region, where
orographic convective systems produce extreme flood producing
rainfall events (Smith et al., 2011). In addition, the rapid
population growth has made investigations into a sub-regional
precipitation hazards especially important. For instance, the
forecast growth between 2014 and 2040 depicts a 77% to
81% increase in four planning districts (including Northern
Virginia) in Virginia (Miller et al., 2016). It is expected to create
challenges at combatting the effects of multiple climate stressors.
Global mean sea level is also anticipated to rise (0.45–0.82m)
by late 2100 in the event of continued high emissions e.g.,
Representative Concentration Pathway (RCP 8.5) (Stocker et al.,
2014). Additionally, Knutson et al. (2013) demonstrate a robust
increase in the Atlantic hurricane rainfall rates using the Coupled
Model Intercomparison Project, Phase 3 (CMIP3), and phase 5
(CMIP5) projections. Therefore, extensive coastal inundations

Frontiers in Climate | www.frontiersin.org 2 January 2022 | Volume 3 | Article 799055

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Dollan et al. Spatiotemporal Precipitation Patterns of Southern Mid-Atlantic United States

FIGURE 1 | (A) Left: Mid-Atlantic region (www.worldatlas.com/geography/mid-atlantic) with the study area outlined by a black box. Right: regional topography in

terms of elevation above mean sea level; (B) NLDAS annual mean precipitation from 1980 to 2018; and (C) boxplots of 39-year monthly precipitation distribution

(1980–2018). In each box, the red line indicates the median, the box bottom and top edges indicate the 25th and 75th percentiles, respectively. The whiskers extend

to the most extreme data points not considered outliers, and outliers are shown with plus marker symbols.

from storm surge and extreme precipitation linked to riverine
flooding are expected to occur in the future (Li et al., 2020).
Thus, making the study of precipitation patterns in this region
especially important.

As previous studies show a substantial increase in extreme
precipitation in the northeastern U.S., this work attempts to
identify trends in past precipitation (1980–2018) in a region
inclusive of the administrative boundaries of Northern Virginia,
parts of Washington D.C., and extending into western Maryland
and northeastern West Virginia (Guttman and Quayle, 1996).
Both parametric and non-parametric statistical tools (Gocic
and Trajkovic, 2013) are used in trend analysis. The study
provides a comprehensive analysis of spatial and temporal
variability of precipitation distribution utilizing a reanalysis
gridded dataset available at a finer resolution. Specifically, this
work aims to: (1) identify significant temporal trends in annual
total and extreme precipitation; (2) quantify the spatial variability
in the distribution and magnitude of extreme precipitation
events (e.g., 95th and 99th percentile) and associated trends;
and (3) characterize seasonal variations in total and extreme

precipitation. A broader understanding of past precipitation
patterns is necessary for optimizing future demands on
stormwater infrastructure, particularly when combined with
future climate and population projections (Sokol Jurković and
Pasarić, 2013). The structure of the manuscript is presented
as follows. Material and methods introduces the study area,
precipitation data and sub-regional climatology, and statistical
procedures used in the study. Results shows results from
annual, seasonal, and extreme trend magnitudes. Discussion
provides insights into potential drivers of precipitation trends
and region-specific relevance of precipitation regime changes.
Finally, conclusion summarizes the key findings.

MATERIALS AND METHODS

Study Area
The study domain (37.75N to 40N, 77W to 78.65W) comprises
Northern Virginia (east of the Appalachian Mountains), west of
the capital region, and Maryland demarcated by the Potomac
River (Figure 1A). The area also covers the northeastern side

Frontiers in Climate | www.frontiersin.org 3 January 2022 | Volume 3 | Article 799055

http://www.worldatlas.com/geography/mid-atlantic
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Dollan et al. Spatiotemporal Precipitation Patterns of Southern Mid-Atlantic United States

of West Virginia adjacent to Northern Virginia, which all share
similar climates (Baechler et al., 2015). The North Branch of
Potomac traverses between West Virginia and Maryland and
merges at the border of Northern Virginia and Maryland.
The region captures variable topography ranging from low-
lying tidewater rivers in the eastern coastal plain to the
Appalachian Mountains in the west, which creates different
climatic zones in the domain (e.g., mixed humid). Also, the
study area encompasses densely populated counties to the west of
Washington D.C. Within the area, the Potomac, Rappahannock,
York, and James Rivers are the major regional tributaries,
draining into the Chesapeake Bay. A unique combination of
different topography with the Appalachian Mountains in the
west and lowlands in the east control precipitation production
and spatial distribution. Generally, higher elevation produces
enhanced precipitation (Kappel et al., 2015). The region receives
most rainfall resulting from frontal storms with storm tracks that
follow the Blue Ridge Mountains and Gulf Stream, moving from
the west in a northeasterly direction and paralleling the Atlantic
Ocean. Unlike frontal storms, hurricanes are formed within the
moist air layer over warm ocean waters, usually impacting the
region in early August and September. Major hurricanes such as
Isabel (2003), Irene (2011), and Sandy (2012) have made landfall
near the region in recent years, resulting in extreme flooding
from intense rainfall and coastal storm surges (Booth et al., 2016).
Hurricane track variability and mountainous terrain play a vital
role in determining the spatial distribution of excessive rainfall
in this region (Liu and Smith, 2016). The region also receives
heavy rainfall events due to convective process. According to the
Northern Virginia Regional Commission, summer precipitation
has increased in recent times (2006–2017) in Northern Virginia
(Fischbach et al., 2019). The combined factors of geographic
variability and warm moist air from the Atlantic influence the
precipitation variability in Northern Virginia and surrounding
areas. The region is expected to be threatened by the combined
effects of the predicted sea-level rise, the occurrence of intense
storms and nor’easters, and changes in precipitation intensity
and duration.

Precipitation Data and Climatology
To assess the average and extreme spatiotemporal trends in
precipitation, we use the NLDAS-2 reanalysis precipitation
product spanning from 1979 to 2018 and is available at
hourly temporal resolution and 1/8th degree spatial resolution
(Cosgrove et al., 2003). The National Weather Service Doppler
radar-based (WSR-88D) precipitation disaggregates the CPC’s
(Climate Prediction Center) daily gauge-based precipitation
into hourly precipitation. The disaggregation procedure
considers precipitation time to maintain the daily gauge-based
measurements (Ferguson and Mocko, 2017).

Annual average precipitation during 1980–2018 varies from
1,000mm in the eastern panhandle of West Virginia to
1,300mm along the Appalachian Mountains on a southwest-
northeast gradient, as shown in Figure 1B. The average
monthly precipitation illustrated in Figure 1C shows January and
February as the driest months, while May, July, and September
receive the maximum average monthly total precipitation. The

regional precipitation distribution in the eastern United States
shows a wet signal in June and August, according to NOAA’s
(National Oceanic and Atmospheric Administration) Climate
Prediction Center’s current precipitation outlook (Liberto, 2021).
For instance, the likelihood of the northern part of Virginia
experiencing wetter than average conditions throughout the
months of June and August is between 33 and 40% based on
the climatological period (1981–2010). To examine sub-regional
precipitation extremes, we evaluate spatial range of the 95th and
99th daily percentiles by aggregating hourly NLDAS-2 to a daily
scale within a given calendar day. Both 95th and 99th percentiles
are computed considering the 39-years daily precipitation at each
grid shown in Figure 2. Extreme daily precipitation distribution
in Figure 2 illustrates higher magnitude of extremes in the
northeastern and along the southwest-northeast gradient, with
higher elevations areas receiving larger daily totals. Higher
magnitudes can be expected due to the orographic effects.

Precipitation Indices
The study investigates the spatial and temporal changes of
average and extreme precipitation using several indices from
ETCCDI, among other derived indices based on daily rainfall,
detailed in Table 1 (Kim et al., 2020). The analyses include two
types of indices: (1) absolute indices, such as annual maximum
daily (RX1day) (Pfahl et al., 2017) and annual maximum
consecutive 5-day precipitation (RX5day). Several studies have
investigated these two indices on extreme precipitation as
RX1day represents an important input in flood risk assessment
(Westra et al., 2013), and RX5day, an extreme wet condition,
plays an important role in flooding and landslide studies
(Sun et al., 2021); (2) threshold-based indices, such as the
number of days exceeding the 95th (wet days) and 99th
(very wet days) percentile events (D95p and D99p), and the
total yearly precipitation contribution by these days (R95pTOT
and R99pTOT).

Trend Detection
Detectability of significant trends in time and space is
investigated using the non-parametric statistical Mann-Kendall
(MK) test (Mann, 1945; Kendall, 1948) from 1980 to 2018. MK
is a widely used trend detection method in precipitation studies
(Pujol et al., 2007; Pingale et al., 2014; Cooley and Chang, 2021),
which include analyses of extreme events (Donat et al., 2013).
Non-parametric tests have been proven efficient in analyzing
climatic trends as they are less sensitive to outliers (Zilli et al.,
2017; Haghtalab et al., 2020).

MK tests the hypothesis that either an increasing or decreasing
trend exists in the time series against the null hypothesis of no
trend. The hypothesis is tested at three alpha significance levels
(α), i.e., 0.01, 0.05, and 0.10 at each grid point. The standardized
test statistics Z at each grid point is estimated as follows, as
defined by Hirsch et al. (1982).

Z =











S−1
[Var(S)]1/2

if S > 0

0 if S = 0
S+1

[Var(S)]1/2
if S < 0
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FIGURE 2 | Extreme precipitation magnitudes in mm/day observed during 1980–2018 across the study region represented by the (A) 95th and (B) 99th daily total

percentiles at each gird point. State boundaries are shown as thick black lines, whereas county boundaries are presented as thinner black lines. Elevations above

500m are also shown in dark brown in the background.

TABLE 1 | Extreme Precipitation Indices introduced by ETCCDI

(www.wcrp-climate.org/etccdi).

Index Definition

D95p Number of days above 95th threshold in each year

D99p Number of days above 99th threshold in each year

RX1day Daily maximum rainfall each year

RX5day Maximum rainfall falling in 5 consecutive days

R95pTOT Contribution of annual precipitation from wet days

R99pTOT Contribution of annual precipitation from extremely wet days

A detail definition of the terms can be found on the website.

where the variance (Var) of S statistics function is defined as:

Var (S) =

[

n (n− 1) (2n+ 5) −
∑

t ft(ft − 1)(2ft + 5)
]

18

Var is adjusted when there are ties in the sequence of the
observation where ft represents frequency of rank t within a
tied group. In a timeseries sequence, a tied group is a set of
identical observations. Where n is the number of years within the
record (39).

The MK S statistics used in the calculation of Z is defined
as follows:

S =

n−1
∑

i = 1

n
∑

j = i+1

sign(yj − yi); j > i

where the function sign is:

sign
(

yj − yi
)

=







+1 if
(

yj − yi
)

> 0

0 if
(

yj − yi
)

= 0
−1 if

(

yj − yi
)

< 0

yj and yi denote observation at time j and i respectively, where j
is the latter period. The test statistics are calculated as the sum of
all the integer values (+1, 0, and −1). A positive S indicates that
observations toward the end of a time series tend to be higher
than the observations in the earlier period.

Trend Magnitude
The slope of the temporal trends (annual average and frequency
of extremes) is analyzed using linear regression (Han et al., 2021).
The least-square method in the traditional linear regression
provides the trend in the time series, e.g., annual average
precipitation, number of days above 95th percentile, and number
of days above 99th percentile. We also focus on trend seasonality
and changes in extreme precipitation magnitudes using the
non-parametric Theil-Sen (TS) slope estimator (Theil, 1950;
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Sen, 1968), used in several studies (Chandniha et al., 2017;
Slater et al., 2021). TS produces more accurate trend magnitude
predictions when applied on skewed datasets with several
extremes (Arora et al., 2017).

Sen’s non-parametric approach produces a robust estimation
of the trend magnitude in a time series. The slope estimator β is
calculated as follows.

β = median

(

Xj − Xi

j− 1

)

, j > i

where Xj and Xi are consecutive data points in temporal series at
time j and i (j > i). The possible number of combinations N for
one data point in each period is given by:

N = n(n− 1)/2

where, n is the number of years within the record (39).
β is calculated as the median of the combination of all pairs

of slopes in the annual average time series. The positive value of
β indicates an upward trend, and the negative value represents a
downward trend (da Silva et al., 2015).

The annual maximum daily precipitation (RX1day) is
calculated at each NLDAS-2 grid to find the maximum
precipitation range spatially. The TS test is then applied for the
RX1day 39-year time series to quantify the sub-regional trends,
while the MK test identifies the pixels with statistically significant
trends. The maximum 5-day total precipitation (RX5day) time
series extracts the maximum amount of rainfall falling in a
moving window of five consecutive days each year for the entire
period. The TS estimator is then used to compute RX5day trends.
In this study, the number of days exceeding the 95th and 99th
percentiles (values shown in Figure 2) are recorded annually and
then fitted into a linear regression model. This model predicts the
change in the number of very wet (exceeding 95th) and extremely
wet days (exceeding 99th) during the period of interest. The

annual contribution of both very wet days and extremely wet
days accumulated precipitation to the total annual precipitation
is calculated at each location. The contribution is mapped as
a percentage at each grid point, where high values indicate a
precipitation regime dominated by high intensity daily events.
Both the TS estimator andMK are used to investigate the fraction
of areas with a significant trend. The trend in seasonal total has
been analyzed using the TS estimator for both warm and cold
seasons, e.g., spring (March-May, MAM), summer (June-August,
JJA), fall (September-November, SON), and winter (December–
February, DJF). The precipitation distribution in the maximum
top 5% of daily precipitation in each season for two time periods
(1981–1999 and 2000–2018) is also analyzed to observe periods
contributing most to extremes.

RESULTS

Spatiotemporal Pattern in Annual
Precipitation
The analysis of average annual precipitation across the entire
region illustrates a positive linear trend (4.3mm per year, 1980–
2018), as illustrated in Figure 3A. However, the p-value (0.09)
derived from the linear model defines a non-significant trend at
the 95% confidence level. The regression model suggests a 16%
increase in annual average precipitation from 1980 (∼990mm)
to 2018 (∼1,160mm) across the area. In terms of annual
maximum precipitation at subregional scale, the results present a
statistically significant positive trend (α = 0.05, Figure 3B) with
a 1.6 mm/year average rate of increase. The yearly maximum
daily precipitation prediction from linear regression varies from
66mm to 128mm, representing larger variability in inter-annual
maximum precipitation.

As region-wide annual precipitation trends are not statistically
significant, the non-parametric MK test is applied across the
study area at the pixel scale to detect trends in annual average

FIGURE 3 | Linear trends during 1980–2018 in (A) annual mean precipitation in mm and (B) annual maximum precipitation in mm/day. Cross markers represent the

observed precipitation values for each year and the fitted least square regression line is shown as a solid black line. Dotted lines indicate the upper and lower 95%

confidence bounds of the regression model.
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precipitation at three different significance levels (i.e., 0.01, 0.05,
and 0.10). The spatial pattern shown in Figure 4 exhibits a
dominant positive trend in the northwestern portions of the
domain at the mentioned significance levels.

FIGURE 4 | Theil-Sen trends in annual precipitation average during

1980–2018. The size of the cross markers show the three significance levels

used to perform a Mann-Kendall test on the Theil-Sen trends. Markers are not

shown in grids with non-significant trends.

About 34% of the domain presents significant positive trends
at the 90% confidence level, but only 6% of the study area shows
significant positive trends at the 99% confidence level (Figure 4).
In general, most of the northeastern portion of the region
(such as Loudon, Fairfax etc. counties in Northern Virginia and
Frederick county in Maryland) presents a statistically significant
increasing trend in annual average precipitation (1980–2018).
Figure 4 shows that TS identifies the range of annual trends (5
to 7 mm/year) at alpha 0.05 significance level. At 0.1 significance
level the range falls within 3 to 5 mm/year which increases above
7 mm/year at alpha 0.01 for a limited region.

The number of extreme days exceeding the top 5% (above 95th
percentile) and 1% (above 99th percentile) daily precipitation
values considering the entire period is calculated. The number
of days above thresholds depicts statistically significant increases
at a 0.05 significance level, with a rate of +0.16 event/year
considering the top 5% of wet days (Figure 5A) and +0.04
event/year considering the top 1% (Figure 5B). The average
annual number of extreme precipitation days above the 95th
percentile is 15, whereas the number above the 99th threshold
occurring in a year is about five times less (between 0 and 4 events
per year). The frequency analysis of the top 5% and top 1% of the
linear model predicts six additional extremes in the top 5% in
2018 compared to 1980 and two additional extremes as defined
by the top 1% daily event.

Seasonal Variation
The seasonal analysis shows primarily a wetting trend during
spring (MAM). Specifically, increasing precipitation is prevalent
in the central and southern parts of the domain (most counties
in Northern Virginia) as shown in Figure 6A. However, only
a single cell indicates a significant (decreasing) trend (α =

FIGURE 5 | Linear trend in the number of days with precipitation rates above the (A) 95th and (B) 99th percentile. The 95th and 99th percentiles are calculated at each

grid during 1980–2018. The threshold used in the figure is the sub-regional mean derived by averaging the 95th and 99th percentiles across all the gird points from

Figures 2A,B (i.e., 16.5 and 34.7 mm/day, for the 95th and 99th, respectively). Cross markers represent the observed precipitation values for each year, and the fitted

least square regression line is shown as a solid black line. Dotted lines indicate the upper and lower 95% confidence bounds of the regression model.
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FIGURE 6 | Theil-Sen trends of seasonal precipitation totals (1980–2018) for

(A) spring (March–April–May), (B) summer (June–July–August), (C) fall

(September–October–November), and (D) winter

(December–January—February). Cold colors indicate a wetting trend, whereas

warm colors refer to drying trends. The size of the cross markers shows the

three significance levels used to perform a Mann-Kendall test on the Theil-Sen

trends. Markers are not shown in grids with non-significant trends.

0.10), whereas all positive trends are markedly smaller than
those observed in summer (JJA). Specifically, summer shows a
large variability in trend magnitudes with positive trends in the
northeastern counties of Northern Virginia along the western
side of Potomac River, north of DC, and west of Maryland
and slightly negative trends in the southwestern region near
the Shenandoah Valley (Figure 6B). About 30% of the area
shows a significant positive trend at the 0.05 significance level.
In the northeastern region, trend magnitude patterns during
JJA are similar to their corresponding annual average patterns
(Figure 4), demonstrating a large contribution of summer
precipitation to annual precipitation and associated trends.

Fall precipitation trends in the region are primarily positive
(Figure 6C), with ∼6% of the region showing a significant
positive trend (larger than 2.4 mm/year) at α = 0.1, clustered
in northern Maryland and southern Pennsylvania. Fall (SON)
precipitation follows similar spatial increasing trends as in
summer except for areas in the immediate Washington D.C.
metro region which are markedly lower. The cold season (DJF)
shows a higher positive trend in the northeastern (west of
Maryland) and central parts of the Northern Virginia region,
whereas, elsewhere, there is a general slight positive trend
(Figure 6D). Nevertheless, trend magnitudes in winter are not
deemed significant by the MK-test suggesting relatively small
changes in cold season precipitation events.

Extreme Precipitation Distribution Change
The probability density function of the top 5% daily extremes
aggregated to seasons reveals how daily extremes in the latter
period (2000–2018) are changing rapidly than in the previous
two decades in Figure 7. Spring shows the most significant
shift toward larger precipitation extremes, followed by fall and

FIGURE 7 | Probability density functions of the top 5% daily precipitation during (A) spring, (B) summer, (C) fall, and (D) winter across the entire study area. The time

series is broken into two periods: 1981–1999 (blue) and 2000–2018 (red).
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FIGURE 8 | Average percentage contribution of the top 5% [R95pTOT; (A)]

and the top 1% [R99pTOT; (C)] to the total wet day precipitation derived at

each grid point. Theil-Send trend magnitudes are presented for R95pTOT (B)

and R99pTOT (D) during 1980–2018. Results from the Mann-Kendall test at

0.01 (large crosses), 0.05 (medium crosses), and 0.10 (small cross)

significance levels are presented.

summer, whereas winter does not show any visible difference
between the two time periods. Summer total precipitation shows
a strong positive signal in trendmagnitudes (Figure 6B), whereas
the intensity of the top 5% daily extremes is relatively unchanged
in the latter period (2000–2018) during summer compared to
spring and fall (Figure 7B). The increasing seasonal totals in
summer are likely driven more by the increasing frequency of
events than by the increased rain intensity.

Extreme Precipitation Contribution
The percent contribution of extremes to the total precipitation is
analyzed for two extreme cases, i.e., 95th (wet days contribution)
and 99th (extremely wet days contribution) from 1980 to
2018. The contribution is calculated as the ratio of cumulative
precipitation that falls in the top 5% (95th percentile) and
top 1% (99th percentile) of daily precipitation to the total
cumulative precipitation in each year (R95pTOT, R99pTOT).
R95pTOT results in Figure 8A show that in the northeastern
region (Northern Virginia, Maryland), more than 50% of the

total precipitation comes from the top 5% extreme events. Such
contribution increases even further (55%) in the southwestern
region. Significant increasing trends in the percent contribution
from the top 5% events are identified over nearly the whole
region (Figure 8B). TS trend magnitudes are tested for statistical
significance using the MK test at three significance levels e.g.,
0.01, 0.05, and 0.1. Results show that the majority of the region
presents statistically significant positive trends even at the highest
confidence level.

The R99pTOT index in Figure 8C exhibits similar spatial
patterns as R95pTOT with contributions of the extremely
wet events varying from 15 to 30% of total precipitation.
TS trend magnitudes mostly fall in the range of 0.25 to
0.5%/year (Figure 8D). Similar to the trends shown in R95pTOT
results from the MK test indicate that the majority of the
area has experienced statistically significant increasing trends
in R99pTOT.

Both indices show their highest contribution (in percentage)
along higher elevations in the southwest gradient, and their
associated trends are significant for most of the region. The
maximum trend magnitude for R95pTOT is above 0.5%/year,
whereas for R99pTOT, the range is from 0.25 to 0.5%/year
(Figures 8C,D, respectively).

5 Day and 1-Day Maximum Total
Precipitation
The spatial variability of 5-day maximum total precipitation
per year is shown in Figure 9A. Figure 9A illustrates that the
average 5-day maximum total precipitation for the period (39
years average) varies from 75 to 130mm spatially. The histogram
shows a wide range of RX5day distribution above the median,
which implies even the spatial average is in the range of 75 to 130
mm/year, there are RX5day amounts above 130mm when taking
39 years distribution of all pixels.

The northeastern and most of the eastern part of the domain
show a higher magnitude of 5-day maximum total precipitation
(a maximum of +2 mm/year rate) illustrated in Figure 9B

(α = 0.05). The southwestern region, comprising only 1% of
the domain, shows negative trends of 5-day maximum total
precipitation, with no significant trend indicated by the MK test.
In contrast, around 1/5th of the domain shows an increasing
trend >1.5 mm/year in Figure 9B clustered in the Northern
Virginia and DC border and west of Maryland. This increase
is considerable, equivalent to 58.5mm in 5-day maximum total
precipitation when considered over the 39 years. Furthermore,
theMK test indicates that approximately 56% of the region shows
a statistically significant positive trend (α = 0.05) illustrated in
Figure 9B with markers overlaid. The MK analysis of the 5-
day maximum total precipitation trend agrees with the identified
positive trend derived from TS.

The average 1-day maximum total precipitation for 39 years
has a similar spatial pattern as the average 5-day maximum
total precipitation shown in Figure 10A, with magnitudes that
vary from 45 to 77 mm/year. The histogram shows a right
skewed distribution of RX1day with values above 77 mm/year
considering 39 years statistics at pixel scale. Higher 1-day
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FIGURE 9 | Spatial distribution of extremes and associated trends (1980–2018) for (A) average 5-day annual maximum precipitation with a histogram in the right

corner showing a right skewed distribution of the 5-day maximum precipitation; and (B) Theil-Sen 5-day maximum annual precipitation trend. Cold colors indicate a

wet trend, whereas warm colors refer to dry trends. The size of the cross markers shows the three significance levels used to perform a Mann-Kendall test on the

Theil-Sen trends. Markers are not shown in grids with non-significant trends.

FIGURE 10 | Spatial distribution of extremes and associated trends in extremes (1980–2018) for (A) average 1-day maximum annual precipitation with a histogram in

the right corner showing the right skewed distribution of 1-day maximum precipitation for all grids; and (B) Theil-Sen 1-day maximum annual precipitation trend. The

size of the cross markers shows the three significance levels used to perform a Mann-Kendall test on the Theil-Sen trends. Markers are not shown in grids with

non-significant trends.
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rainfall magnitudes are shown along a southwest gradient due
to orographic effects. The trend map in Figure 10B illustrates a
maximum trend value of 1.07 mm/year clustered in the northeast
(e.g., Fairfax), southeast (Stafford), and higher elevations (e.g.,
Madison) across a northeast to a southwest gradient. Most areas
(70%) have statistically significant trends above 0.5 mm/year
(>19.5mm increase in 1-day maximum total precipitation,
1980–2018). In general, around 75.5% of these areas present a
statistically significant positive trend (α = 0.05) identified by the
MK test. The MK test captures significant trends at both higher
and lower elevations.

DISCUSSION

The study investigates the spatial distribution of annual
average, seasonal total and extreme daily precipitation over
mid-latitude humid climate divisions comprising counties in
Northern Virginia, surrounding DC, Maryland, and West
Virginia, thus, illustrating an application of NLDAS-2 for the
detection of interannual precipitation changes at a sub-regional
scale. Changes in precipitation are reflected in the trends of
higher percentiles (e.g., 95th and 99th) contribution to the
total precipitation. The top 5% daily maximum precipitation
probability density function shows a shift in the density estimate
toward higher precipitation magnitudes for spring, summer,
and fall in recent decades. Moreover, strong trend signals are
prevalent in the northeastern (statistically significant, α = 0.1
in the annual average) and central parts of Northern Virginia,
while the southwestern topographic gradient is more associated
with extremes (RX1day, RX5day). A possible cause of strong
extreme trend signals in RX1day along the higher elevation
in the southwestern gradient is the influence of convective
storms favored by the Appalachian lee trough in between the
Appalachian and mid-Atlantic ocean (Thompson, 2012) and
by the formation of sea breeze boundaries from the difference
in air-water interface mainly occurs in Delmarva Peninsula of
Chesapeake Bay (Cullen, 2003).

The annual average precipitation shows a statistically
significant trend clustered in Northern Virginia. The finding
also corroborates with a study by Allen and Allen (2019)
that demonstrates an overall increase in the annual average
precipitation and frequency of heavy rainfall across 43 stations
using daily data from the Global Historical Climate Network
(GHCN) from 1947 to 2016. A case study by Kumar et al.
(2018) quantifies water yield trends of 10 watersheds (both
urban and rural) in the Washington DC region and illustrates
wetter conditions in the growing season (May-August) and
fall (1973–2012). Similarly, our study illustrates a noticeable
increase in past summer precipitation totals (Figure 6B)
clustered in the Northern Virginia and the west of DC
and Maryland areas. Another recent study by (Li et al.,
2021) evaluates the average and extreme summer precipitation
climatology from 2004 to 2017 for the mid-Atlantic region
(MAR). The authors quantify the contribution of four different
types of precipitation systems, namely tropical cyclone (TC),
isolated deep convection (IDC), non-convective (NC), and the

mesoscale convective systems average and extreme summer
precipitation. The authors identify that the IDC dominates
the summer precipitation in the southern MAR, whereas
the TC systems contribute to the coastal areas east of the
Appalachian Mountains.

Topography, proximity to the coastline and tropical cyclones,
regional variations in the frequency of convective systems, and
other factors can cause sub-regional differences in extreme
precipitation patterns. There is a strong signal of a positive
trend in the northeastern region of Northern Virginia and
adjacent D.C., Maryland, and West Virginia, in R95pTOT. The
clustered high magnitude of R95pTOT along the upper Potomac
River (likely from coastal precipitation events) and the central
region suggests an extension of the extremes exhibiting further
inland from the coastal track. A similar study by Howarth et al.
(2019) infers changes in the inland storm track in the top 1%
precipitation of the northeast United States. Another possible
explanation of the extremes occurring in the coastal parts is
the recent tropical events that have been linked to inland heavy
rainfall and flooding (Smirnov et al., 2018).

The hurricane season runs from summer to the end of
November, with September being the most active month.
During autumn, the high latitude atmospheric circulation shifts
southward, triggering mid-latitudes cyclones. These cyclones
provide moisture in the northeastern region (Henderson, 2000).
Our study has not distinguished hurricane-induced heavy
events; however, the spatial distribution of extremes, particularly
near coastal areas at lower elevations, can be attributable
to more frequent tropical cyclones in recent years (Kunkel
et al., 2010). The 1-day maximum total precipitation trend
strongly signals a positive trend in the southwest-northeast
gradient compared to the 5-day maximum total precipitation.
During spring, the magnitude of extreme events (exceeding
the top 5%) may be increasing in recent years but does
not necessarily lead to significant increasing trends in total
seasonal accumulations. Bishop et al. (2019) identify an increase
in daily total fall precipitation in the southeast (comprising
southern mid-Atlantic) from 1895 to 2018 using stations of the
Global Historical Climatology Network (GHCN). The authors
identify the non-tropical, mainly frontal systems precipitation
climatology, which dominates the fall precipitation trend during
the study period (1895–2018).

Detecting changes in extreme precipitation is essential to build
resilient infrastructure. This study seeks to bridge the gap of
detecting the trends and understanding the spatial variability
of the trends in precipitation estimates at subregional scale.
This comprehensive analysis can be linked to constructing
the Intensity-Duration-Frequency curves of the past extreme
events using high resolution gridded reanalysis to investigate
the short-term precipitation characteristics within faster growing
regions such as Northern Virginia and adjacent areas (i.e., D.C.,
Maryland). These curves transfer knowledge from the observed
changes of extremes into actionable information that can be
used to construct resilient infrastructures in the region over the
coming decades. Our findings are helpful in decision-making at
the watershed scale, such as applying similar methodologies to
assess trends in extremes (past heavy precipitation events) in
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the Chesapeake Bay. Furthermore, to address urban resilience
vulnerable to hydrometeorological hazards across the country,
the geographical distribution of extremes can be effectively
transmitted in flood control, irrigation scheme scheduling, and
stormwater infrastructure planning.

CONCLUSION

This study examines sub-regional changes in precipitation both
spatially and temporally across the southern mid-Atlantic region
using the gridded NLDAS-2 reanalysis precipitation product. A
comprehensive analysis of extreme precipitation characteristics
at a sub-regional scale is fundamental to designing water
resources infrastructure and increasing regional resilience to
extreme climatic events. Significant increases in annual total
precipitation were observed in the northeastern part of the
southern mid-Atlantic U.S. Positive trends were particularly
strong during summermonths in the northeastern, central region
of the domain, with a shift in spring maximum rain rates to
larger magnitudes. During the colder seasons, smaller trends
were detected, especially in the southwestern part of the study
area, where drying trends were observed. Studies investigating
future precipitation projections might be helpful to compare the
change in precipitation distributions observed in this work and
project these trends into the future.

Topography and climatology appear to drive heavy
precipitation events in the region, partitioning various
trend magnitudes across the area. The strong trend signal
is prevalent in the northeast-southwest gradient along the
Appalachian Mountains. Notably, as the study does not explicitly
investigate the drivers of the observed precipitation trends and
extremes, these extreme events may also be attributed to other
climatic factors such as tropical cyclones, hurricanes, increased
temperature, and intensifying convective precipitation in the
region. This study presented a widely applicable methodology
to better understand past precipitation extremes that can
be leveraged to effectively determine regional resilience to
hydroclimatic events (e.g., floods and droughts) with relevance
to policymaking and risk management.

If the trends identified in this study persist in the future,
the millions of people living in the region should expect
more frequent extreme weather events and their accompanying

socioeconomic consequences. Global climate models have been
used to project extreme precipitation trends (Akinsanola et al.,
2020) and have predicted considerable variability in summer
precipitation along the Atlantic coast of the U.S. (Singh
et al., 2013). Therefore, continued efforts to connect past and
future regional precipitation are crucial for improving climate
resiliency. Future studies should investigate how engineering
design standards may change based on future precipitation
scenarios. The expansion of the methodology presented here
across the U.S. and the world is a valuable step toward achieving
these goals.
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