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Comparisons of emerging carbon capture and utilization (CCU) technologies with

equivalent incumbent technologies are necessary to support technology developers

and to help policy-makers design appropriate long-term incentives to mitigate climate

change through the deployment of CCU. In particular, early-stage CCU technologies

must prove their economic viability and environmental reduction potential compared to

already-deployed technologies. These comparisons can be misleading, as emerging

technologies typically experience a drastic increase in performance and decrease

in cost and greenhouse gas emissions as they develop from research to mass-

market deployment due to various forms of learning. These changes complicate the

interpretation of early techno-economic assessments (TEAs) and life cycle assessments

(LCAs) of emerging CCU technologies. The effects of learning over time or cumulative

production themselves can be quantitatively described using technology learning curves

(TLCs). While learning curve approaches have been developed for various technologies,

a harmonized methodology for using TLCs in TEA and LCA for CCU in particular is

required. To address this, we describe a methodology that incorporates TLCs into TEA

and LCA to forecast the environmental and economic performance of emerging CCU

technologies. This methodology is based on both an evaluation of the state of the art

of learning curve assessment and a literature review of TLC approaches developed in

various manufacturing and energy generation sectors. Additionally, we demonstrate how

to implement this methodology using a case study on a CO2 mineralization pathway.
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Finally, commentary is provided on how researchers, technology developers, and LCA

and TEA practitioners can advance the use of TLCs to allow for consistent, high-

resolution modeling of technological learning for CCU going forward and enable holistic

assessments and fairer comparisons with other climate technologies.

Keywords: carbon capture and utilization, technology learning curves, experience curves, learning rates,

prospective assessment, CO2 mineralization, techno-economic assessment, life cycle assessment

INTRODUCTION

Carbon capture, utilization, and storage (CCUS) can serve as an
important tool in emissions mitigation. Various sources indicate
that billions of metric tons of CO2 will ultimately be utilized
or sequestered every year [CO2 Sciences Global CO2 Initiative,
2016; Hepburn et al., 2019; International Energy Agency (IEA),
2019]. Carbon capture and storage (CCS) has high mitigation
potential due to the large number of CO2-emitting plants where
it can be applied (Mac Dowell et al., 2017; Hepburn et al., 2019).
Carbon capture and utilization (CCU) is attractive because of
its ability to substitute conventional carbon-intensive production
routes and offset high capture costs (Mac Dowell et al., 2017).
The production of building materials such as concrete, cement,
and aggregates offers particularly significant utilization potential
ranging from one to five billion metric tons of CO2 per year by
2050 (CO2 Sciences Global CO2 Initiative, 2016).

Despite CCU’s significant potential, one of themost significant
barriers to its large-scale deployment is the current low
technology readiness level (TRL) of most CCU technologies
(Hepburn et al., 2019). Due to the lack of available data
and high uncertainty at low TRLs, identifying promising CCU
pathways that scale well remains a challenge (Roh et al.,
2020; Zimmermann et al., 2022). Moreover, a lack of a
common analysis method that includes technological, economic,
environmental, and social aspectsmakes comparisons of different
CCU technologies difficult (Zimmermann and Schomäcker,
2017).

Identifying the best available technologies and developing
appropriate policy support is complex and requires advanced
assessment tools. As the goal of CCU development is to
displace carbon-intensive products in an economically and
environmentally viable manner (Mac Dowell et al., 2017), a
harmonized approach for evaluating CCU technologies through
the means of techno-economic assessment (TEA) and life cycle

Abbreviations: CCU, carbon capture and utilization (or use); TEA, techno-
economic assessment; LCA, life cycle assessment; CCUS, carbon capture,
utilization (or use), and storage (or sequestration); CCS, carbon capture and
storage (or sequestration); IEA, International Energy Agency; CO2, carbon
dioxide; TRL, technology readiness level; GCI, Global CO2 Initiative; R&D,
research and development; TLC, technology learning curve; GHG, greenhouse
gas; OFLC, one-factor learning curve; TFLC, two-factor learning curve; LBS,
learning-by-searching; LBD, learning-by-doing; MFLC, multi-factor learning
curve; LBU, learning-by-using; LBI, learning-by-interacting; NETL, National
Energy Technology Laboratory; FOAK, first-of-a-kind; NOAK, nth-of-a-kind;
IEAGHG, International Energy Agency Greenhouse Gas R&D Programme;
CapEx, capital expenditures; OpEx, operating expenditures; LR, learning rate;
MEA, monoethanolamine.

assessment (LCA) is necessary. To support this effort, the Global
CO2 Initiative (GCI) has published guidelines for conducting
such assessments (Zimmermann et al., 2020) along with guidance
on how to commission, understand and derive decisions for
CCU processes for practitioners, decision-makers, and research
commissioners (Cremonese et al., 2020). There are a couple of
other guidance documents covering LCA and cost estimation
for CCUS technologies as well (Skone et al., 2019; Roussanaly
et al., 2021). This study seeks to expand on this previous work
by offering a framework for improving the robustness of impact
forecasting for emerging CCU technologies.

New technologies such as CCU are often at a disadvantage
compared to incumbent technologies that have generally already
gone through a significant level of iteration and optimization.
Novel technologies and pilot plants do not have a high degree
of technological learning or experience. Some methods for
incorporating learning effects into economic and environmental
assessment have previously been proposed (Thomassen et al.,
2020; Roussanaly et al., 2021), and many involve assessing data
for similar technologies that have already been optimized. Given
data gaps and methodological limitations, current TEA and
LCA assessments offer limited value for informing projections
about the viability of CCU in climate mitigation pathways.
Not considering technological learning or using unfounded
assumptions associated with scaling and future research and
development (R&D) will likely lead to misleading predictions.
As CCU technologies generally include several process units
with different maturity levels and scalability challenges, there
is a need to develop granular technology learning curves
(TLCs) to improve assessments and subsequent projections
and planning. Furthermore, current learning curves are mostly
limited to projecting cost changes, and there has been little work
on forecasting greenhouse gas (GHG) emission performance.
Thus, there is a need to develop TLC approaches that can be
implemented with existing TEAs and LCA approaches using
consistent and harmonized methodologies.

To this end, this study evaluates the state of the art of
learning curve assessment in order to develop a harmonized
framework and high-level roadmap for CCU technology
assessments. After a short introduction to learning curves and
learning rates, we review the application of these principles
to relevant fields such as energy generation and storage. With
sufficient background information, we then integrate established
methodologies with the more nascent field of CCU to enable
fair comparison across TRLs. Finally, a case study on a CCU
mineralization pathway is implemented to demonstrate the
proposed methodology.
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LEARNING CURVES: BRIEF LITERATURE
REVIEW

Current Approaches
The concept of technological learning curves has been used since
at least 1899, when they were applied to telegraph operation
(William and Harter, 1899). More famously, learning curves
received their first significant quantitative treatment in 1936
when they were applied by Theodore Paul Wright (the namesake
of Wright’s law; unrelated to the Wright brothers) in the aircraft
industry to quantify the observation that labor time decreased
by 20% for every doubling of aircraft production (Wright,
1936). Since then, they have been applied to a wide range
of technologies and have guided companies and policy-makers
for strategic purposes. Simply put, learning curves refer to an
increase in performance per unit of a specific technology as
the cumulative production volume of that technology increases
(Zauner et al., 2019). Cost per unit and even other metrics that
derive from performance, such as energy use and emissions per
unit, can be used in place of performance. Cost will be used
throughout this section to demonstrate the concept of technology
learning, although it should be noted that changes in cost derive
from increased performance due to learning. Thus, performance
metrics for a given technology could be used in place of cost
variables in the formulas featured here. In its simplest form, the
relationship between cost and production is often represented by
a power law as shown in Equation (1).

ct = c0
∗

(

Pt

P0

)− α

(1)

Here, the unit cost (ct) and cumulative production (Pt) at time t
are related to the unit cost (c0) and cumulative production (P0) at
some initial time through the learning index exponent, α. When
plotted on a log–log scale, this learning index is represented
linearly and usually with a negative slope to indicate decreasing
costs over time (Rivera-Tinoco et al., 2012). Often, a learning
rate, LR, that represents the percentage cost reduction with each
doubling of cumulative production is derived using Equation (2).

LR = 1− 2−α (2)

Learning rates are often calculated for various industries
or technologies for comparison or projection purposes. For
example, the learning rate for solar PV is often cited at around
20% (McDonald and Schrattenholzer, 2001; Görig and Breyer,
2016) and the rate for aerospace industry generally has been
cited at 15% (Thomassen et al., 2020). Ultimately, learning rates
for different technologies arise from numerous factors including
labor efficiency, standardized manufacturing, optimization of
product design, and shared utilization of resources within the
company—all factors that lead to increased efficiencies in the
overall process (Zauner et al., 2019). Using the formulas provided
above, all of the factors contributing to technology learning are
aggregated into one factor, and therefore this process can be
referred to as a one-factor learning curve (OFLC) (Wiesenthal
et al., 2012). OFLCs benefit from leveraging easily accessible data

such as investment costs and production volumes and, as a result,
tend to be widely used when deriving learning curves (Rubin
et al., 2015). While relatively simple, convenient, and resistant
to overfitting, OFLCs have been criticized for not accurately
representing the dynamics of cost reductions from learning (Yeh
and Rubin, 2012; Rubin et al., 2015). Moreover, OFLCs are only
able to represent technology that has reached a degree of actual
commercialization, as cost data are generally either non-existent
or confidential at early TRLs (Elia et al., 2020).

Two-factor learning curves (TFLCs) were developed
in order to disaggregate some of the different learning
factors (Kouvaritakis et al., 2000). Specifically, the TFLC
separates learning into learning-by-searching (LBS, which is
also sometimes referred to as learning-by-researching) and
learning-by-doing (LBD). LBS describes cost reductions in
the technology as a result of research activities, while LBD
refers to cost reductions in the technology as a result of
experience gained during production (Elia et al., 2020). Explicitly
integrating a research variable can help withmodeling early-stage
technologies. The formula for the TFLC is shown below, where α

is the LBD index, KS is the knowledge stock from R&D activities
(potentially measured in R&D expenditures), and β is the LBS
index as shown in Equation (3).

ct = c0

(

Pt

P0

)−α
∗ (KS)−β (3)

Multi-factor learning curves (MFLCs) expand on TFLCs. In
MFLCs, LBD is just one component of learning-by-deployment
and is accompanied by learning-by-using (LBU), which models
cost reductions arising from user feedback, and learning-by-
interacting (LBI), which models cost reductions from knowledge
exchange through the supply chain (Elia et al., 2020). Each factor
seeks to delineate the effect of individual learning areas but
increases the complexity of the learning curve.

Previous studies have highlighted the importance of public
R&D in technological learning and correspondingly advocate
for the use of a TFLC (Wene, 2008; Wiesenthal et al., 2012).
Furthermore, studies have delineated the relative importance of
learning at various stages of the innovation process, with learning
being relatively high during the R&D stage, likely as a result
of LBS (Elia et al., 2020). Learning was found to be highest
during the pilot stage due to the combined effect of LBS and
LBD, after which additional effects such as economies of scale
and automation became the dominant factors in subsequent cost
reductions (Elia et al., 2020). Fluctuations in markets—often
leading to different costs for feedstocks, energy, or labor—also
frequently play an important role in changing costs over time
(Elia et al., 2020). It is important to acknowledge the difference
between endogenous and exogenous factors that affect costs.
Endogenous factors include technological learning, whereas
exogenous factors arise from market factors such as materials
and labor costs that are unrelated to the fundamental technology.
Exogenous factors can also be referred to as “spillovers” from
other industries. It can be challenging for statistical models to
separate endogenous and exogenous factors, which can lead to
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biased estimates of learning when analyzing past data (Nordhaus,
2014).

This article offers a framework for applying OFLCs to
carbon capture and utilization technologies to model how
capital costs and greenhouse gas emissions could change
with increased deployment. The OFLC approach focusing
only on deployment was chosen due to the lack of data on
both cumulative production and R&D funding. Therefore, the
approach offered in this study is only the first step in constructing
defensible projections of the total cost for carbon capture
and utilization technologies. A more comprehensive approach
would include other learning effects—such as LBS, LBI, and
LBU—coupled with economy-of-scale effects and projections
for important market costs like feedstocks, labor, and even
carbon taxes, which can complement learning effects through
market-pull mechanisms that accelerate innovation (Jordaan
et al., 2017). Expected changes in emissions of feedstocks and
energy sources should naturally be integrated into projections
of environmental impact. Importantly, projections should also
account for disconnects between R&D-level designs and large-
scale, commercial processes, as doing otherwise risks neglecting
design gaps that hinder scalability (Huang et al., 2018). For
high-level and rapid projections, general learning rates that have
been shown to cluster around 20% (Wene, 2008) could be
applied to CCU, although this study details approaches that can
allow for more precise calculations. Ultimately, creating granular
and fully-informed projection models for various low carbon
technologies will help identify gaps and therefore opportunities
for accelerating the mitigation of climate change.

Learning Curves for Relevant Technologies
Calculation of learning rates is widely performed in literature,
often for energy generation and storage (Jamasb, 2007; Rubin
et al., 2015; Schmidt et al., 2017; Elia et al., 2020; Thomassen
et al., 2020) butmore recently for CCS (Rubin, 2019; Zauner et al.,
2019) and hydrogen technologies (Schoots et al., 2008; Saba et al.,
2018). We reviewed the state-of-the-art approaches for different
technologies such as batteries, energy generation systems (e.g.,
solar PV, wind), fuel cells (solid oxide fuel cells in particular),
electrolysis, methanation, and CCS to understand the challenges
and benefits that come with these different approaches.

Assessing methods used to calculate learning for CCS is
particularly relevant for CCU as both of these technology classes
involve a capture component. Capture costs can vary from
tens of dollars per metric ton of CO2 to hundreds of dollars
per ton depending on the source and the plant (House et al.,
2011; Budinis et al., 2018), although learning will likely occur
for each individual capture technology. As CO2 capture can
significantly increase operating costs, future studies should be
standardized to include this component. Rubin et al. looked at
the use of learning curves to estimate costs and learning rates of
seven technologies relevant to power plants with CO2 capture
(Rubin et al., 2015). These learning rates are then combined
according to the required processes for four power plant types
with capture technologies: natural gas combined cycle, pulverized
coal, integrated gasification combined cycle, and oxyfuel. Our

approach incorporates an approach similar to Rubin et al. (2015)
to include these costs and consequent learning rates.

A report from the National Energy Technology Laboratory
(NETL) analyzed learning rates for estimating costs between first-
of-a-kind (FOAK) and nth-of-a-kind (NOAK) plants (2013). The
report provides a comprehensive list of suggested learning rates
for different processes in various energy systems derived from a
literature search. Notably, the report notes that Fischer–Tropsch
synthesis has a suggested learning rate of 5%, CO2 capture,
recovery, and compression has a suggested learning rate of 3%,
and CO2 transport and sequestration has a suggested learning
rate of 5% (National Energy Technology Laboratory, 2013).

Findings and Limitations
A 2020 review by Thomassen et al. provides an overview of
learning effects in new technology assessment and offers five
recommendations (Thomassen et al., 2020). These include: (a)
analyzing technologies using both component-level and end
product-level learning rates to understand drivers of learning;
(b) using technical, economic, and environmental learning rates
to develop a comprehensive learning model; (c) combining
projections from experts with extrapolated performance metrics
generated with learning curves; (d) considering LBS effects
using patent and experimental data when possible; and (e)
prioritizing the use of historical data and literature values (over
rates from similar technologies or derivations from current
projections) when calculating learning rates (Thomassen et al.,
2020). The authors also provide an extensive list of learning
rates—including rule-of-thumb rates—from literature in their
work (Thomassen et al., 2020). When rule-of-thumb values are
used, it is recommended that the underlying uncertainty of
these values be fully acknowledged to properly characterize the
learning curve of the technology under consideration. As a final
comment, the authors discuss the importance of harmonizing
data before calculating a learning rate, which includes adjusting
for inflation and scale.

Further review of existing literature on TLCs yielded the
following insights that complemented those from Thomassen
et al. (2020) during the development of our methodology.

• There is significant uncertainty when estimating learning rates
due to a lack of high-quality data, resulting in diverse estimates
across studies. Due to this variation, sensitivity analysis and
alternative model formulations are recommended (Yeh and
Rubin, 2012).

• If operational expenditures are included in cost projections,
the use of a cost or price floor is recommended to avoid
excessively low-cost estimates (Gross et al., 2014).

• The overall learning rate for a technological system is typically
larger than the learning rates of the system’s components
(Jamasb, 2007; Rubin et al., 2015).

• Learning occursmore slowly formature technologies that have
already had a significant degree of deployment and subsequent
optimization and LBD (Jamasb, 2007).

• For simplicity, it is essential to determine the factors most
responsible for the cost reductions. Disaggregating cost drivers
for CCU technologies may help provide more informed
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predictions of cost decreases moving forward (Rivera-Tinoco
et al., 2012; Elia et al., 2020).

• The influence of cost drivers such as learning (both by doing
and by researching, among others), economies of scale, and
markets (encapsulating feedstock, labor, and energy costs) are
often different at different stages of development (i.e., research
and development, demonstration, market formation, and
full commercialization). In the early stages of technological
development, learning, particularly LBS, is generally more
important, while at later stages market demand and economies
of scale take over (Rivera-Tinoco et al., 2012; Elia et al., 2020).

• Generating learning curves for components rather than entire
technology systems can provide more precise predictions
(Krishnan et al., 2020).

• Data availability is a concern for TFLC models, as R&D
investment is often not reported or not transparent. As a result,
LBS is often only used to qualitatively discuss the effects of
further research on technological progress (Rubin et al., 2015).

• For learning rates in general, the modeling approach is an
important consideration when projecting costs. Modeling
considerations include the choice of learning rate but also the
initial cost and experience level, shape of the learning curve,
consideration of a cost floor, correct measure of experience,
geographical limitations, and individual components of the
overall technology (Rubin et al., 2015).

• Uncertainty analysis is critical for generalizable models (Rubin
et al., 2015; Elia et al., 2020).

The authors of the aforementioned NETL report note that
there are limitations when using learning curves because they
cannot account for cost increases that may occur during the
early stages of plant development (2013). They also argue
that an S-shaped learning curve should be used, although
this has policy implications as the forecasted price reductions
vary widely from standard learning curves. Overall, the report
summarizes the methodology provided in the IEAGHG report
(Antes et al., 2005). This methodology includes the following
steps: (a) break each plant design into major technology sub-
sections; (b) estimate current plant costs and contributions of
each sub-section; (c) select an appropriate learning rate for
each sub-section/component; (d) estimate the current capacity
of major plant components; (e) set the start of learning (FOAK)
and ending (NOAK) period; and (f) perform a sensitivity analysis
(National Energy Technology Laboratory, 2013). These steps
informed the development of the methodology featured in
this study.

In recent studies by Roussanaly et al. and Rubin, the authors
propose a hybrid bottom-up/engineering-economic and top-
down/learning curve approach for cost estimation (Rubin, 2019;
Roussanaly et al., 2021). That is, the FOAK plant is estimated
using a comprehensive bottom-up approach that models the
costs of each component of the plant while the NOAK plant
cost is generated using learning curves applied to the calculated
FOAK cost (Rubin, 2019; Roussanaly et al., 2021). FOAK plants
are designed with over-sized and redundant equipment to reduce
risk of failure during operation. These designs tend to be
optimized in mature technologies. The study further discusses

several other uncertainties and contingencies typically found in
FOAK plant designs. The authors also emphasize that NOAK
plant costs should not be derived using a bottom-up costing
approach as it is not really possible to predict the exact costs
of future plants, so it is only possible to model high-level cost
behaviors deriving from original FOAK costs (Rubin, 2019;
Roussanaly et al., 2021). For nascent CCU technologies, an
approach such as the one defined here can also allow practitioners
to bypass uncertainty in future bottom-up cost estimates.

There is little literature on learning rates for CCU technology
in particular, as most CCU technologies are still at low TRLs. One
study created a framework for evaluating CCU technologies at
low TRLs (TRL 2–4) (Roh et al., 2020). Another discusses how
“apples-to-apples,” early-stage evaluation of CCU technologies
can help guide R&D investment (Zimmermann et al., 2021),
which could increase the rate of LBS. The following section
details this study’s approach to synthesizing these insights from
past literature on early-stage CCU technologies and on TLCs to
ultimately apply them in a consistent and harmonized manner to
CCU technology assessment.

PROPOSED TLC METHODOLOGY

To derive TLCs for CCU, we first investigate which method can
be applied depending on the data available. As CCU systems
generally involve multiple subsystems or components composing
the overall process, the hybrid method proposed by Rubin et al.
is applicable (Rubin et al., 2013). Here, the one-factor learning
rate is employed first, where LR is the learning rate and α is
the learning index. α can be derived from Equation (2) using
Equation (4).

− α =
log (1− LR)

log (2)
(4)

Either a historical learning rate for a given CCU pathway or a rate
for the same or a similar technology from literature should be
chosen and justified, based on their tier method from Thomassen
et al. (2020). The learning index can then be calculated for use in
the projection.

As learning generally occurs with equipment rather than
operational inputs such as materials or energy, learning rates are
most often applied to capital expenditures (CapEx) rather than
both CapEx and operating expenditures (OpEx). For example,
learning for solar PV technologies is often expressed in terms
of the change in dollars per kilowatt over time (de La Tour
et al., 2013; Görig and Breyer, 2016; Kavlak et al., 2018), with
dollars per kilowatt being a common metric when discussing
the capital expenditures associated with solar energy generation.
Here, CapEx are calculated using a series of steps to reach “total
plant costs.” First, the total direct cost (TDC) of the plant and
the factor for the indirect cost (findirect) must be calculated or
estimated from literature in order to calculate the engineering,
procurement, and construction (EPC) cost of the plant using
Equation (5).

EPC = TDC∗(1 + findirect) (5)
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Factors for process contingency (fprocess) and project contingency
(fproject) must then be used with the EPC cost in Equation (6) to
estimate the total plant costs (TPC) for a FOAKplant.TPC is used
synonymously with CapEx in the rest of this study.

TPCFOAK = EPC∗
(

1+ fprocess + fproject
)

(6)

Next, the previously-calculated learning index α and N, the
number of plants necessary to reach the desired NOAK plant, can
be applied to TPCFOAK using Equation (7) to calculate total plant
costs for the NOAK plant (TPCNOAK) (Rubin et al., 2013).

TPCNOAK = TPCFOAK∗N
−α (7)

In addition to the whole-system approach, a more granular
approach for estimating cost learning is presented where in
the first step the learning rate is estimated for each system
element individually [similar to what is recommended
by Roussanaly et al. (2021) and Rubin (2019)] and in
the second step a composite learning rate (LRcomposite) is
derived for the overall system as shown in Equation (8).

LRcomposite =

∑

i

[

LRsystem element i∗
TDCsystem element i∗

(

1+ findirect
)

∗(1+ fprocess + fproject)

TPCoverall system

]

(8)

This composite learning rate may be higher or lower than the
whole-system learning rate depending on the learning rates of
the system elements and the indirect and contingency factors
for each system element. Once the composite rate is calculated,
a learning index can be derived and applied to FOAK metrics
using the same method shown in this section.

For projecting GHG emissions, a similar approach is followed.
Emissions for the FOAK plant (GHGFOAK) must be estimated
and a separate learning rate and learning index for emissions
specifically may need to be calculated as well. Environmental
learning rates could be estimated based on historical data or using
CapEx learning rates as proxies. While emissions for a system
could technically go to zero if every part of the system were
fully decarbonized, in this approach there is a limit on emissions
decreases that can arise from learning alone. This methodology’s
projections of environmental learning are inclusive of factors
traditionally considered as OpEx, and this poses stoichiometric
and energetic limits on how efficient the process can be. Thus,
the minimum level of emissions of the foreground system—
which could be based on factors such as a 100% reaction
rate or 100% heat recovery—is represented in Equation (9)
as GHGmin.

GHGNOAK = MAX
{

GHGFOAK∗N
−α ,GHGmin

}

(9)

Any further progress after reaching GHGmin would need to
come from factors exogenous to the system under consideration
(i.e., from the background system), such as less emissions-
intensive electricity or feedstock materials. The CapEx learning

approach proposed here excludes any considerations of OpEx
as learning is traditionally only applied to capital expenditures,
but if OpEx were to be considered, then a similar principle
would apply. Costs for variable raw material and energy needs,
which would be considered as operating expenditures, would
set a cost floor, and from that point only exogenous changes
to the costs of these inputs could lower costs of the system
further. This methodology does not explicitly consider such
changes so as to focus on technological learning of the foreground
system alone.

The learning curve formulas above require an estimate of
N, which is the number of plants that need to be built to
reach NOAK. This number might be determined differently
depending on the overarching research question. Methods for
finding a suitable N could include: (a) calculating the cumulative
capacity that would need to be installed for a plant to break
even (Rubin et al., 2013); (b) finding the cumulative capacity
where the learning curve flattens out (Larson et al., 2020);
(c) using a number of plants that would translate into a pre-
defined market share; or (d) using a number of plants that
corresponds to those that would receive external subsidies.

CASE STUDY: DIRECT AQUEOUS
MINERALIZATION

Introduction
As one of the largest emitters of anthropogenic CO2 accounting
for ∼7% of global emissions, the cement industry in
particular needs solutions to move toward a sustainable
future [International Energy Agency (IEA), 2018; le Quéré
et al., 2018]. Around 50% of these emissions are direct process
emissions released from limestone during the calcination to
produce clinker (Hoenig and Schneider, 2002). Given that these
emissions will occur as long as limestone is used as a feedstock
for cement production, they cannot be mitigated by increasing
energy efficiency or switching to alternative fuels. Hence, many
believe that solutions such as CCUS will play a significant role
in decarbonizing the cement industry. The general idea is to
not emit CO2 directly but rather to store or use produced CO2

as a feedstock for products. One technological concept that has
been developed in this area is so-called “CO2 carbonation” also
often referred to as “CO2 mineralization.” With this technology,
CO2 reacts with activated minerals or industrial waste to form
carbonates (Gerdemann et al., 2007; Sanna et al., 2014; Eikeland
et al., 2015; Ostovari et al., 2020), which store CO2 permanently.
The obtained carbonates can be used as cementitious materials
for various purposes, such as for fillers, cement additives, or
clinker substitutes (Sanna et al., 2014; Romanov et al., 2015;
Kremer et al., 2019). Cement is a competitive commodity
market, and major hurdles for implementing CCU technologies
in the cement industry are their costs and economic viability
(Zimmermann and Schomäcker, 2017). Analyzing the effects
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FIGURE 1 | Direct aqueous carbonation unit operations and system adapted from Strunge (2022).

of technological learning is crucial for identifying the cost
reduction or environmental improvement that can be realized
when transitioning from a new technology (a FOAK plant) to a
widely used technology (a NOAK plant).

Process Description
Multiple processes for CO2 carbonation have been proposed,
and they can be categorized into direct and indirect processes.
Direct processes react minerals in a pressurized autoclave using
an aqueous slurry with additives in one step (Sanna et al., 2014).
In contrast, indirect processes extract alkaline earth metal oxides
and treat them in a first step and then react them with CO2

to form carbonates in a second step. Due to its simplicity in
design, we used data for a direct process based on a publication
by Ostovari et al. and Strunge et al. in this case study (2020, 2021).
For direct processes, multiple minerals feedstocks such as olivine-
or serpentine-bearing rocks have been proposed in the literature
(Geerlings and Zevenhoven, 2013; Sanna et al., 2014; Romanov
et al., 2015). Both mineral feedstocks require a pre-treatment
step; olivine-bearing rocks must first be crushed and ground for
activation whereas serpentines require an additional calcination
step for activation (Gerdemann et al., 2007; Sanna et al., 2014;
Stopic et al., 2018; Kremer et al., 2019). The CO2 necessary for
the carbonation reaction comes from flue gas or ambient air
and must first be captured and compressed. Post-treatment steps
such as separation might have to be added to reach commercial
specifications for supplementary cementitious materials (Sanna
et al., 2014; Kremer et al., 2019; Ostovari et al., 2020; Strunge
et al., 2022). Some of the separated material will then have to be
landfilled. The general process is shown in Figure 1.

Following previous work in Strunge et al. (2022), the case
study uses the process described by Eikeland et al. (2015) where
Mg-silicate rich minerals (i.e., olivine-bearing rocks) are ground
to 10µm in diameter and are reacted with captured CO2 in an
aqueous solution using the additives NaCl and NaHCO3 under
increased temperature and pressure (T = 185◦C, p = 100 bar).

TABLE 1 | TRL definitions of the relevant system elements.

Step Equipment Estimated

TRL

Comment

CO2 capture CO2 capture plant

(i.e., MEA)

6 Pilot trials

Compression CO2 compression 9 Commercially

available

Mineral

pre-treatment

Cone crusher 9 Commercially

available

Ball mill 9 Commercially

available

SMD mill 9 Commercially

available

CO2 carbonation Carbonation

reactor

4 Preliminary

process

development

Post-treatment Separation 9 Commercially

available

Dryer 9 Commercially

available

An overall product yield of 75–100% can be achieved (Eikeland
et al., 2015).

System Data
To begin estimating the technological learning of the process, we
first identify the TRL for each system element. These are located
in Table 1.

The simplest method to estimate the capital expenditure for
NOAK (CapExNOAK) is finding applicable existing learning rates
and applying them to the corresponding parts of the system.
Assumptions for the whole-system learning rate are based on the
estimations by Rubin et al. (2015) for energy generation using
coal-fired power plants with CCS (i.e., integrated gasification
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TABLE 2 | Assumed indirect costs, contingencies, and learning rates for system

(guidelines for deriving project and process contingencies are shown in Tables 3,

Table 4).

Description Value % References

LR system 10.55 Rubin et al., 2015

findirect 14 Anantharaman et al., 2018

fprocess 50 Electric Power Research

Institute, 1993; AACE

International, 2011

fproject 35 Electric Power Research

Institute, 1993

TABLE 3 | Guidelines for deriving process contingency (Electric Power Research

Institute, 1993; AACE International, 2011; Rubin et al., 2015).

Technology status Process contingency %

New concept with limited data >40

Concept with bench-scale data 30–70

Small pilot plant data 20–35

Full-sized modules have been operated 5–20

Process is used commercially 0–10

TABLE 4 | Guidelines for deriving project contingency (Electric Power Research

Institute, 1993; AACE International, 2011; Rubin et al., 2015).

Cost classification Design effort Project contingency %

Class I (similar to AACE Class 5/4) Simplified 30–50

Class II (similar to AACE Class 3) Preliminary 15–30

Class III (similar to AACE Class 3/2) Detailed 10–20

Class IV (similar to AACE Class 1) Finalized 5–10

combined cycle and pulverized coal combustion, both equipped
with post-combustion capture). The unit operations of both
of these processes feature similar equipment that allows for
grinding, gravity separation, post-combustion capture, and
CO2 compression, for example. Assumptions including process
contingencies are shown in Table 2.

Guidelines for deriving process and project contingencies are
provided in Tables 3, 4.

The system element assumptions are shown in Table 5. Using
solely the system elements for a bottom-up economic analysis
is useful if an overall learning rate for the whole system is
unavailable or if the technology learning is applied at a higher
level of detail (Rubin et al., 2013).

For the techno-economic part of the case study, capacity
and CapEx data for the FOAK plant were adapted from
Anantharaman et al. (2018) and Strunge et al. (2022), leading to
a TDCFOAK of around $150 per metric ton of mineral product.
This derivation assumes a constant plant capacity of 500,000
metric tons of product per year or 160,000 tons of CO2 stored
each year. Data from Ostovari et al. (2020) on emissions from
electricity and thermal energy consumption along with material
use and transportation data were used to calculate GHGFOAK

for the process, which was ultimately around 330 kg CO2-eq per
metric ton of themineral product. Full calculations can be viewed
in the file in the Supplementary Material.

Results
For the case study featured here, we assume that up to 5% of
the 193 cement plants in Western Europe1 will receive public
subsidies, translating to about 10 plants at the NOAK level. This
is only one way to estimate the number of NOAK plants, but
it can help determine whether a given CCU process will be
economically viable when external funding ceases. For the whole-
system approach, CapExFOAK are around $320 per metric ton
of mineral product per year and the estimated learning rate is
10.6%, resulting in CapExNOAK of ∼$220/t for the tenth plant.
The system element approach has CapExFOAK of around $290
per metric ton of mineral product per year (which is lower
than the FOAK cost in the whole-system approach due to lower
process contingencies for constituent processes) and estimates a
slightly lower composite learning rate of 10.5%. These estimates
result in CapExNOAK of approximately $200/t when using the
system element approach as shown in Figure 2. Results represent
projected gains from technological learning alone and do not
account for changes in the cost of factors external to the analysis,
such as changes in raw materials and energy costs, which will
also likely have significant effects on system costs. However, it can
be quite difficult if not impossible to fully separate the effects of
exogenous and endogenous factors on cost (Nordhaus, 2014).

Generally, technology learning is applied to capital
expenditures. However, as technology learning affects the
entire plant, it also influences other criteria and indicators.
Here, we apply the concept of technology learning to the GHG
emissions environmental indicator using the methodology
proposed in a previous section.

Greenhouse gas emissions in kilograms of carbon dioxide
equivalent were first calculated on a per metric ton of product
basis for the FOAK plant. An emissions floor was then calculated
using two proxy factors: recycling of additives and process
yield. The use of these proxy factors allows the results to
account for theoretical limits, as the recycling of additives and
process yield cannot exceed 100%. The GHG emissions for
the core processes in the foreground system cannot be further
improved if an ideal yield and additive recycling rate have
been reached, although emissions for the overall process can
decrease further due to changes in exogenous variables in the
background system, however, as discussed below. The general
approach for modeling the effects of learning on emissions can
be used with any life cycle inventory parameters of interest across
CCU systems.

An environmental learning rate of 4.35% was assumed based
on the average learning rate for operating and maintenance costs
for post-combustion CO2 capture facilities from Rubin et al.
(2007). This rate was used as a proxy due to the correlation
between energy consumption, energy-related operations costs,
and GHG emissions. Figure 3 shows the results of the analysis.
GHG emissions of the process alone (which exclude credits

1https://www.cemnet.com/global-cement-report/
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TABLE 5 | Assumed indirect costs, contingencies, and learning rates for system elements (guidelines for deriving process and project contingencies are shown in

Tables 3, 4).

CO2 capture and

compression %

Mineral

pre-treatment %

Reactor (CO2

carbonation) %

Utilities % Post-treatment

%

References

LR system element 10 5 15 5 5 Estimates based on TRLs

findirect 14 14 14 14 14 Anantharaman et al., 2018

fprocess 28 5 50 13 13 Electric Power Research

Institute, 1993; AACE

International, 2011

fproject 35 35 35 35 35 Electric Power Research

Institute, 1993

FIGURE 2 | Technology learning curve for mineralization capital costs. FOAK costs differ due to differences in how process contingencies are calculated. Total

number of cement plants in Western Europe is 193 (100%) (see text footnote 1).

from the mineral storage of the captured CO2) would be
reduced from ∼330 kg CO2-eq per ton of the mineral product
for the FOAK plant to 285 kg CO2-eq/t for the tenth plant.
Storage credits were excluded from these calculations to focus
exclusively on emissions arising from the core processes in
the foreground system; if these credits were included, the
mineralization process itself could be carbon negative depending
on the system boundary. The technological limit of additive
recycling and process yield is reached after building about
30 plants, and no further improvement of GHG emissions
from the core processes in the foreground system will likely
occur. However, there may be improvements in GHG emissions

due to factors in the background system, such as the de-
carbonization of heat and electricity as well as electrified
transportation of raw materials. It is important to emphasize that
the technology learning curves in this study apply to the core
processes in the foreground system rather than these external
factors in the background system, which would need to be
modeled separately.

Sensitivity Analysis
Sensitivity analysis can help demonstrate how sensitive final
results for CapEx and GHG emissions are to various inputs.
Such analysis can help identify what would have to be true
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FIGURE 3 | Technology learning curve for mineralization system emissions. Technological limit occurs when additive recycling and process yield are 100%; further

improvements to environmental performance would have to arise from improvements in the environmental performance of exogenous factors, such as feedstocks or

energy supplies. Total number of cement plants in Western Europe is 193 (100%) (see text footnote 1). Only process emissions are shown in the figure; overall

emissions per ton of product would be negative when accounting for the mineralization credit.

in order to meet certain targets, including economic and
environmental viability relative to the status quo. A simple, one-
way sensitivity analysis (i.e., where only one input parameter
is altered at a time) was conducted using the results in the
previous section. The results are shown in Figure 4. Two
input parameters for TLCs were altered: the learning rate and
number of plants required to reach NOAK relative to the
base values. The results demonstrate that the selection of the
learning rate has a significantly higher impact on the outcomes
relative to the estimated number of plants to reach NOAK.
As the sensitivity of the GHG emission calculations is lower
than for the CapEx, it also shows that the impact of changing
the learning rate decreases when the overall learning rate
is lower.

Case Study Conclusions
Being a significant emitter of greenhouse gases, the cement
industry has developed a series of new technologies for
the capture and utilization of carbon dioxide including
mineral carbonation, producing cementitious materials with
lower emission footprints. The economic and environmental
characteristics of these technologies can improve when
transitioning from a new technology (FOAK) to a mature
technology (NOAK) due to technological learning. The
methodology proposed in this study, if paired with sampling
of estimated baseline trajectories, can help determine the scale
of deployment necessary to meet target CapEx and greenhouse
gas emissions per unit of mineral product. Understanding this
necessary scale can assist with determining proper incentive

structures and making comparisons between different climate
mitigation pathways.

DISCUSSION AND CONCLUSION

In this study, we present how the concept of technology learning
can be applied to the estimation of capital expenditure and
greenhouse gas emissions for various CCU technologies. We
show the approaches for applying learning rates to CapEx
based on whole systems, to CapEx based on system elements,
and to GHG emissions based on proxy factors. As expected,
CapEx and GHG emissions decrease with deployment when
accounting for technology learning. Learning could be further
applied to additional criteria and indicators, such as operational
expenditure and costs of goods sold or even other technology
performance metrics. Furthermore, this analysis can help
determine the scale at which cost or emissions goals can be met,
which can in turn aid in the process of determining necessary
levels of government incentives or even carbon taxes to enable
proliferation of the technology in the marketplace.

The magnitude of technology learning is essential
information, potentially changing outcomes in economic,
environmental, or social criteria and leading to more informed
decision-making in technology research, development and
deployment. These considerations and modeling techniques will
help industry, policymakers, and academics alike identify and
accelerate economically viable pathways toward a sustainable
future. For example, policymakers can use learning curves
to help conduct cost–benefit analysis on particular policies
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FIGURE 4 | One-way, local sensitivity analysis calculating (A) CapEx and (B) GHG emissions altering the assumed number of plants and learning rates around their

base values. Base value for the number of plants is 10, and the base values for the learning rates for CapEx are 10.55% (overall system), 10.53% (system element),

and 4.35% for GHG emissions.

and determine the returns to society from subsidizing certain
technologies (Duke and Kammen, 1999).

However, the robustness of this forecast is limited due
to significant data gaps and general uncertainty. To improve
the quality of emerging CCU pathways assessments a more
coordinated effort in generating and building data inventories
at different scales and maturity levels is critical. Practitioners of
life cycle and techno-economic assessment of CCU technologies
should focus on transparently and accurately reporting relevant
data and indicators to enable more informed quantification
of TLCs over time. Previous comparative studies (Nagy et al.,
2013; Farmer and Lafond, 2016; Lafond et al., 2018) of
technological learning have relied heavily upon corresponding
product-level data recorded over several years, with much
of it recorded in the Santa Fe Institute Performance Curve
Database.2 A similar database devoted to CCU technologies
that is also inclusive of emissions performance over time
would be extremely useful in the development of increasingly
accurate learning curves, particularly as many TLC estimation
studies rely on hindcasting to develop relatively high-resolution
models. This is especially the case as measuring improvements
in emissions performance over time is becoming increasingly
important and there is currently very little data on environmental
learning rates.

Over time, updated TLCs for CCU technologies will
enable a more accurate understanding of cost and emissions
trajectories, ultimately enabling better decisions regarding
further investments of time and resources. When integrated with
theoretical minimum emissions and costs as determined by LCA
and TEA, respectively, TLCs will assist with determining if and
when a particular CCU pathway will be environmentally and

2http://pcdb.santafe.edu/

economically viable. Such information will help better inform
private investors about the potential impact and profitability
of their investments. More importantly, it will also inform
governments about further subsidies, taxes, regulations, or R&D
funding that may be required to increase the viability of CCU
technologies. CCU companies could also use these results to
understand whether further innovations, increased scale, more
favorable policies, or a combination are required for them
to succeed.

With a limited number of years to completely decarbonize
society to reach the global goal of limiting warming to
1.5◦C, understanding the progress and development of
climate technologies is more important than ever. Scholars,
technology developers, investors, and governments need
as much information as possible to compare all possible
portfolios of climate solutions and mitigate potential
innovation bottlenecks. Modeling technological learning
curves for carbon capture and utilization technologies will
help these stakeholders understand the potential promise
and pitfalls in CCU, allowing for more informed and
higher-impact decisions.
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