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We combine a machine learning method and ensemble climate predictions to investigate

windows of opportunity for seasonal predictability of European summer climate

associated with the North Atlantic jet stream. We particularly focus on the impact of

North Atlantic spring sea surface temperatures (SST) on the four dominant atmospheric

teleconnections associated with the jet stream: the summer North Atlantic Oscillation

(NAO) in positive and negative phases, the Atlantic Ridge (At. Ridge), and Atlantic Low

(At. Low). We go beyond standard forecast practices by not only identifying these

atmospheric teleconnections and their SST precursors but by making use of these

identified precursors in the analysis of a dynamical forecast ensemble. Specifically,

we train the neural network-based classifier Self-Organizing Maps (SOM) with ERA-

20C reanalysis and combine it with model simulations from the Max Planck Institute

Earth System Model in mixed resolution (MPI-ESM-MR). We use two different sets of

30-member hindcast ensembles initialized every May, one for training and evaluation

between 1902 and 2008, and one for verification between 1980–2016, respectively.

Among the four summer atmospheric teleconnections analyzed here, we find that At.

Ridge simulated by MPI-ESM-MR shows the best agreement with ERA-20C, thereby

representing with its occurrence windows of opportunity for skillful summer predictions.

Conversely, At. Low shows the lowest agreement, which might limit the model skill for

early warning of warmer than average summers. In summary, we find that spring SST

patterns identified with a SOM analysis can be used to guess the dominant summer

atmospheric teleconnections at initialization and guide a sub-selection of potential skillful

ensemble members. This holds especially true for At. Ridge and At. Low and is unclear

for summer NAO. We show that predictive skill in the selected ensemble exceeds

that of the full ensemble over regions in the Euro-Atlantic domain where spring SST

significantly correlates with summer sea level pressure (SLP). In particular, we find a

significant improvement in predictive skill for SLP, geopotential height at 500 hPa, and

2 m temperature at 3–4 months lead time over Scandinavia, which is robust among the

two sets of hindcast ensembles.
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1. INTRODUCTION

Seasonal predictability of European summer climate is closely
linked to the leading modes of atmospheric teleconnections
associated with the North Atlantic jet stream. In the Euro-
Atlantic region, the jet stream controls the location of the
storm track and modulates the occurrence of weather systems,
thus acting as a dynamical control for large-scale temperature
and precipitation regimes (e.g., Bladé et al., 2012; Dong et al.,
2013). Yet, current state-of-the-art seasonal prediction systems
often show biased representations of the jet stream strength
and position (Beverley et al., 2019), posing a constraint to the
skillful prediction of large-scale features of the summer climate
in the North Atlantic-European sector a season ahead (e.g.,
Dunstone et al., 2016). A further limitation is that dynamical
seasonal prediction systems tend to produce overdispersive
ensembles, for which the forecast uncertainty is higher than
the forecast error (Ho et al., 2013). In contrast, relatively small
forecast uncertainties presumably indicate more predictable
climate states, which in turn reveal windows of opportunity
for more skillful forecasts (Mariotti et al., 2020). Identifying
conditions that favor more predictable states—the aim of the
present study—is hence a crucial step to achieving improved
seasonal forecasts.

Here, we go beyond standard forecast practices by combining
an ensemble seasonal prediction system with the neural network-
based classifier Self-Organizing Maps (SOM) (Kohonen,
1984). This approach identifies a sub-ensemble in which
simulated North Atlantic sea surface temperatures (SST) at
the initialisation of the prediction system (i.e., April) are
linked to the seasonal predictability of the two dominant
modes of variability associated with the North Atlantic jet
stream: the summer North Atlantic Oscillation (NAO) and East
Atlantic Pattern (EA) (e.g., Folland et al., 2009; Bastos et al.,
2016).

Several studies suggested an influence of spring North Atlantic
SST on the predictability of NAO and EA. Neddermann et al.
(2018) showed that tropical North Atlantic SST in spring
can be a predictor for a zonal pressure difference mode that
resembles the EA, while (Ossó et al., 2018) found that the
source of predictability for the EA lies in the temperature
gradient between subpolar and subtropical gyres. Gastineau and
Frankignoul (2015) and Hall et al. (2017) suggested that a similar
temperature gradient may influence the predictability of NAO
as well. Going beyond these studies, we use North Atlantic
SST patterns in spring as predictors for both the NAO and
the EA.

Traditionally, NAO and EA are defined as the first two
empirical orthogonal functions (EOF) of summer sea level
pressure (SLP) in the Euro-Atlantic region (Barnston and
Livezey, 1987; Folland et al., 2009). Cassou et al. (2005) proposed
an alternative approach using k-means clustering (k = 4) and
defined four modes of summer variability: the NAO in positive
and negative phases, and the Atlantic Ridge (At. Ridge), and
Atlantic Low (At. Low). While the At. Low resembles the positive
phase of the EA (Barnston and Livezey, 1987), the At. Ridge
resembles the negative phase. NAO in a positive phase and

the At. Low are associated with warmer and drier conditions
in northern and central Euro-Atlantic regions and colder and
wetter conditions over the south. Generally, a negative NAO
phase and At. Ridge shows a reverse pattern (e.g., Cassou et al.,
2005).

In this study, we use SOM as an alternative tool to
EOF to identify the main atmospheric teleconnections.
We compare how well simulations with the Max Planck
Institute Earth System Model in mixed resolution (MPI-
ESM-MR) represent the spatial and temporal variability
of SLP and its co-variability with spring SST in the Euro-
Atlantic sector. Specifically, we use two different sets of
30-member hindcast ensembles initialized every May, one
for training and evaluation between 1902 and 2008, and
one for verification between 1980 and 2016, respectively.
We give particular focus to the influence of specific SST
patterns in spring on the seasonal predictability of the main
atmospheric teleconnections.

We adopt a SOM perspective over traditional EOF analysis
for two main reasons. First, a clear limitation for EOF is that
all decomposed basis vectors must be orthogonal, which may
lead to nonphysical or blended patterns (e.g., Reusch et al.,
2005). Second, an EOF analysis requires stationarity, which
cannot be assumed for a century-long analysis of the North
Atlantic jet stream, and likely neither to the SST-SLP relationship
investigated here (e.g., Woollings et al., 2015; Weisheimer et al.,
2019; Rieke et al., 2021).

Besides neglecting orthogonality and stationarity
assumptions, SOM provides advantages to visualize and
interpret spatial and temporal variability associated with the
data. It assumes that the data exist on a continuum instead of in
distinct categories, which are organized such that similar SOM
modes are displayed close together in the SOM map. This fine
classification allows for efficient application of SOM to explore
large-scale, slow varying processes, with several successful
applications for climate characterisation (e.g., Polo et al., 2011;
Johnson, 2013). Furthermore, SOM has been recently applied
as an assessment tool to pre-select both skillful models in a
multi-model ensemble (Mignot et al., 2020), as well as skillful
ensemble members in a single-model ensemble prediction
system (Oliveira et al., 2020).

In this study, we combine the concept of ensemble
subsampling (e.g., Dobrynin et al., 2018) with SOM, and evaluate
the potential of spring North Atlantic SST at initialisation
in predicting skillful ensemble members in MPI-ESM-MR.
We further assess to what extent this selection affects the
predictive skill of European summer climate, in comparison
to a traditional predictive skill analysis. The manuscript is
structured as follows: Section 2 describes our methodology, the
SOM algorithm and datasets used for training and evaluation.
We characterize the main observed and simulated summer
atmospheric teleconnections in the Euro-Atlantic domain in
Section 3.1. In Section 3.2 we perform SOM training to identify
regions in the domain with potential for skill improvement,
and in Section 3.3 we evaluate the hindcast skill. We present a
discussion of the results in Section 4, followed by conclusions in
Section 5.
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2. METHODOLOGY

We organize our methodology in four main parts: data
(Section 2.1), training (Section 2.2), evaluation (Section 2.3),
and verification (Section 3.4). In Section 2.1, we describe
the reanalysis and test ensemble used for training and
evaluation, an independent ensemble used for verification, and
the preprocessing methods adopted in our analysis. A brief
introduction to the SOM algorithm, the steps taken for training
SOM, and our predictor analysis are described in Section 2.2. We
characterize ensemble subsampling and hindcast skill analysis
in Section 2.3 and describe an independent verification in
Section 3.4. In Figure 1 we show a sketch representing the
workflow of our method.

2.1. Data
2.1.1. Reanalysis
We use monthly means of sea level pressure (SLP), geopotential
height at 500 hPa (Z500), air temperature at 2m (T2m), and SST
from ERA-20C (Poli et al., 2016) and ERA-Interim (Dee et al.,
2011) reanalysis products, spanning 1902–2008 and 1980–2016,
respectively. For the three atmospheric variables, we evaluate the
North Atlantic-European sector covering 70◦W-40◦E, 25◦-80◦N,
and for SST covering 90◦W-40◦E, 5◦-80◦N.

2.1.2. Ensemble simulations
We use two sets of 30-member hindcast simulations with the
MPI-ESM-MR setup (Dobrynin et al., 2018). The atmospheric
component ECHAM6 (Stevens et al., 2013) has a resolution
of T63L95, with an approximate horizontal resolution of 200
km (1.875◦) and 95 vertical layers up to 0.01 hPa. The oceanic
component MPI-OM (Jungclaus et al., 2013) has a resolution
of TP04L40, with an approximate horizontal resolution of 40
km (0.4◦) and 40 vertical layers. External forcing is taken from
CMIP5 (Giorgetta et al., 2013). The first set of hindcasts is used
for training and evaluation and covers the period 1902–2008
(hereafter: test ensemble), and the second is used for independent
verification (Section 2.4, refer to Figure 1) and covers 1980–2016
(hereafter: independent ensemble).

The test ensemble is initialized on the 1st of May every
year from 1902 to 2008, with initial conditions taken from
an assimilation experiment. The assimilation experiment is
performed using the MPI-ESM-MR with full-field nudging by
Newtonian relaxation toward all atmospheric and ocean levels
except in the boundary layer. The atmospheric conditions
of vorticity, divergence, three-dimensional temperature, and
two-dimensional pressure are taken from ERA-20C. In the
ocean, three-dimensional daily mean salinity and temperature
anomalies are nudged at a relaxation time of approximately 10
days. The ocean state is derived in an ocean-only simulation
performed with MPI-OM forced with the atmospheric variables
from ERA-20C. The three-dimensional atmospheric and ocean
fields of the assimilation experiment form the initial conditions,
and ensemble members are generated by small perturbations of
the atmospheric state by disturbing the diffusion coefficient in the
uppermost layer.

Similarly, the independent ensemble is initialized in 1st ofMay
every year from 1980 to 2016 by an assimilation experiment in
which ERA-Interim data (Dee et al., 2011) is assimilated into the
atmospheric model component, and ORA-S4 data (Balmaseda
et al., 2013) and National Snow and Ice Data Center observations
(Comiso, 1995) are assimilated into the ocean/sea ice component.

We use July and August monthly means (3–4 months lead
time) of SLP, Z500, and T2m from test and independent
ensembles. At every gridpoint, we compute anomalies by
removing the mean seasonal cycle and linear trend, in order
to eliminate the centennial-scale climate change signal. We use
July-August seasonal means (JA) to focus on the low-frequency
dominant summer atmospheric teleconnections. In addition,
we calculate spatial averages weighted by the cosine of latitude
to take into account the dependence of the gridpoint density
on latitude.

2.2. Training
2.2.1. Pattern Identification and Labeling
We use monthly JA SLP fields from ERA-20C reanalysis to
train Minisom, a Python implementation of Self-Organizing
Map (SOM) (Vettigli, 2019). SOM is a non-linear method
based on unsupervised learning with two-layer neural networks
(Kohonen, 1984). SOM’s architecture allows for a reduced and
ordered representation of high-dimensional datasets by a smaller
set of variables. In a typical two-layer SOM, the input layer
corresponds to feature vectors from the training dataset, while
the output layer is the SOM map. The SOM map is a topological
ordering of neurons usually in the 2D grid (denoted SOMij,
where i and j are the grid indices of the SOM map). This
layer is fully connected to the input layer via weight vectors
with the same dimension as the feature vectors. The lattice
structure of the layers permits to calculate a measure of distance
(here Euclidean distance) and identify the shortest path between
neurons of both layers, thereby assigning as Best Matching
Unit the respective closest neuron in the SOM map, iteratively.
A fundamental property of SOM is the topological ordering:
neighboring neurons SOMij represent similar neurons in the
input data space and therefore share similar properties. Hereafter,
we adopt mode as terminology to refer to neurons in the SOM
map. For details on the SOM algorithm, refer to Kohonen (2013).

We train a 3 x 4 rectangular lattice of neurons (i.e., SOM34)
and choose training parameters as a compromise to keeping low
quantisation and topological errors while achieving a detailed
view on the representative SOM modes associated with the
summer atmospheric teleconnections defined in Cassou et al.
(2005). We find that optimum parameters are (i) initial spread
of the neighborhood function σ (0) = 0.01 (Gaussian) and (ii)
learning rate 0.8, for a maximum of 100,000 iterations in batch
training mode. Our tests with larger SOM sizes (e.g., 4x4, 5x5)
showed qualitatively similar modes to the chosen 3x4 lattice,
although showing duplicate patterns. Hence, a 3x4 SOM lattice
balanced the need to represent the main summer atmospheric
teleconnections with the least number of modes possible. The
final output of the SOM training is a 12-mode SOM map
(hereafter: SOM master). In addition to the SOM master, we
perform a similar SOM training for each individual ensemble
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FIGURE 1 | Sketch of workflow. A.1: We use Self-Organizing Map (SOM) to identify atmospheric teleconnections dominating the large-scale variability over the

Euro-Atlantic region in 1902–2008. The final SOM output is a map consisting of twelve SOM modes. We train SOM with monthly July and August (JA) sea level

pressure (SLP) in the reanalysis data. This same data is used to train a k-means clustering (k = 4) to be used as a reference, whose centroids are labeled NAO+,

NAO−, At. Ridge or At. Low as proposed in Cassou et al. (2005). A.2: We calculate pattern correlation between SOM modes and the k-means centroids to associate

each summer SOM mode to a summer atmospheric teleconnection. We repeat this process with the k-means centroids to label each JA SLP field of the reanalysis

and the hindcast. Finally, we identify sea surface temperature (SST) predictor patterns by calculating composite April SST patterns in the reanalysis with respect to

SOM modes. Those SST predictor patterns are used to classify each North Atlantic April SST field in the pre-forecast data using pattern correlation. Given that each

SST predictor pattern precedes a summer SOM mode associated with NAO+, NAO−, Atlantic Ridge (At. Ridge) or Atlantic Low (At. Low), we are able to define a

summer atmospheric teleconnection “first guess” before each initialization. B.1: Using the test ensemble, we evaluate the hindcast skill for 3–4 month lead time

considering the full ensemble to calculate the ensemble mean. B.2: We perform ensemble subsampling to re-calculate the ensemble mean by selecting only

ensemble members whose labels agree with the “first guess,” and comparing it with the full ensemble. C.1: We label, classify, and subsample the independent

ensemble as verification of our method.

member of the test ensemble to allow comparison betweenmodel
and reanalysis.

Next, we label each SOM mode as either At. Ridge, At. Low
or NAO in positive or negative phase to allow comparison with
other studies using EOF or k-means. Labelling is achieved by
calculating pattern correlation between each SOM mode and the
four centroids of a k-means clustering of ERA-20C JA SLPmeans,
previously labeled according to Cassou et al. (2005), Cattiaux
et al. (2013). We obtain similar labels if classifying the SOM
modes with hierarchical agglomerative clustering using ward
dissimilarity (Jain and Dubes, 1988). Note that during learning,
each observation in the training dataset is associated with only
one mode SOMij in the SOM map. In other words, this analysis
assigns one dominant atmospheric teleconnection per summer
each year.

2.2.2. Define Predictor
We derive a set of 12 SST predictor patterns by calculating
monthly April North Atlantic SST composites in the reanalysis

with respect to the SOM master. That is, each SST composite
pattern is a mean over the years associated with the input
vector connected to a specific SOM mode in summer. We
assume that each pattern is a potential predictor for one of the
four atmospheric teleconnections (At. Low, At. Ridge, NAO+
or NAO−). To test this in the model, we classify each April
North Atlantic SST field in the pre-forecast data according
to the SST predictors via maximum pattern correlation. Thus,
the most similar SST predictor defines a summer atmospheric
teleconnection “first guess” before each initialization, which we
use as subsampling criteria in Section 2.3.

2.3. Evaluation
2.3.1. Hindcast Skill Analysis and Ensemble

Subsampling
The hindcast skill of MPI-ESM-MR against reanalysis data
is assessed using point-wise detrended anomaly correlation
coefficient (ACC) (Collins, 2002), which describes the model’s
ability to reproduce the reference anomalies.
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For single-model initialized ensemble prediction systems,
ensemble subsampling consists of a post-processing technique
that pre-selects potentially skillful ensemble members prior to a
predictive skill assessment, giving a statistical link to sources of
high predictability (e.g., Dobrynin et al., 2018). We perform an
ensemble subsampling with the aim of leveraging the MPI-ESM-
MR ensemble prediction system before calculating the ensemble
mean and assessing the hindcast skill. This procedure retains
only ensemble members anticipated by the SST predictor to re-
calculate the ensemble mean, i.e., selects a subsample of potential
skillful ensemble members per year. That is, it allows us to
investigate the conditional predictability of the SST predictor on
the summer atmospheric circulation. This selection of ensemble
members is used to re-calculate the ensemble mean of SLP, Z500,
and T2m.

2.4. Verification
We use the independent ensemble (Section 2.1.2) to evaluate the
robustness of our spring SST predictors in selecting potential
skillful ensemble members at the initialization of summer
predictions for the period 1980–2016. Even though “test” and
“independent” ensembles derive from completely independent
seasonal prediction systems, we acknowledge that an overlapping
period (1980–2008) is present in the verification, implying that
the conclusions drawn in this section must be taken with care.
We stress, however, that excluding this overlapping period would
lead to a very limited statistical analysis of the model predictive
skill covering only the 8-year period from 2009 to 2016 and,
thus, preventing us from reproducing the analysis performed in
Section 2.3. Once more observed and predicted years become
available, it would be relevant to perform this analysis without
overlap with the training period.

To perform the verification, we firstly label the independent
ensemble as described in Section 2.2.1. Next, using the
assimilation experiment as our pre-forecast data, we classify SST
as described in Section 2.2.2. Finally, we perform a hindcast skill
analysis and ensemble subsampling (Section 2.3), comparing to
ERA-Interim (Dee et al., 2011) reanalysis.

3. RESULTS

3.1. Dominant Summer Atmospheric
Teleconnections
We use a 3x4 SOM to represent the summer (JA) SLP variability
spanning 1902–2008 in the Euro-Atlantic region using the
reanalysis (Figure 2 shows the labeled SOM master, where the
position of some modes differ from the original SOM map, refer
to Supplementary Figure S1). We group together SOM modes
associated with the same main atmospheric teleconnections
(i.e., NAO+, NAO−, At. Ridge, or At. Low) and identify two
main groups based on the meridional position of cyclonic and
anticyclonic pressure centers. The first group comprises SOM
modes 1–6, with NAO+ and At. Ridge modes, the second group
comprises SOM modes 7–12, with NAO- and At. Low modes.
In terms of the preferred jet stream position, the first group of
atmospheric teleconnections is usually associated with northerly
or central positions, while the second with southerly or central

(e.g., Woollings et al., 2010; Trouet et al., 2018). For simplicity,
we refer to the former as the northern jet group and the latter as
the southern jet group.

North Atlantic Oscillation modes in positive (SOM modes
1–3) and negative (SOM modes 7–10) phases are located
in opposite corners of the original SOM master, showing
the highest topological distance and, therefore, the least
level of similarity (c.f. Supplementary Figure S1). Clear spatial
asymmetries revealed by the non-linear method can be observed
between the two phases. SOM modes 4–6 and 11–12 cover a
range of wavy patterns related to At. Ridge (SOM modes 4–
6), and At. Low (SOM modes 11–12). While NAO modes show
significant moderate correlation to the correspondent first EOF
of SLP (e.g., SOM mode 1: 0.36, p < 0.05 and SOM mode
10: –0.54, p < 0.05), no significant pattern correlation can be
found with the second EOF of SLP. Yet, some modes bear high
similarity with At. Ridge (SOM modes 4–6) and At. Low (SOM
modes 11–12), reported in Cassou et al. (2005).

Next, we assess the agreement between atmospheric
teleconnections in the reanalysis and those simulated by MPI-
ESM-MR in the test ensemble (Figures 3A,B). As opposed to
a traditional evaluation using the ensemble mean, we instead
analyse each ensemble member separately to assess the intra-
ensemble variability. Spatially, we find overall moderate pattern
correlation values, with At. Low modes (SOMmodes 11–12) and
one NAO+ mode (SOM mode 3) differing the most between
model and reanalysis. In contrast, At. Ridge modes SOM 4–5
show the best agreement. While pattern frequency results
(Figure 3B) show high intra-ensemble variability, the model fails
at times to encompass the observed frequency (e.g., SOM modes
1, 6, 8). The model tends to underestimate the frequency of
At. Low (SOM modes 11–12), and overestimate NAO+ modes
(SOM modes 1–2). We hypothesize that these limitations in
the model representation of the observed summer variability
pose a constraint on the credibility of summer predictions
in the Euro-Atlantic region one season ahead based on this
prediction system.

3.2. Target Regions for Skill Improvement
and Link to SST
In this section, we evaluate the relationship between spring
SST and summer SLP to target regions for potential skill
improvement in the model. The set of spring SST predictors
(Figure 4) show reasonable agreement with previous studies
(e.g., Gastineau and Frankignoul, 2015). Preceding summers
dominated by At. Ridge (hereafter: pre-At. Ridge), we find
SST tripole patterns with warm SST anomalies in the tropical
North Atlantic and western subpolar gyre off Newfoundland, and
mostly cold SST in the subtropical western North Atlantic. At.
Low summers follow major North Atlantic basinwide cooling,
with a warming pattern near Greenland and off Newfoundland
(hereafter: pre-At. Low). In contrast, negative NAO summers
mostly follow horseshoe-like SST patterns with warm anomalies
except over the subtropical gyre (hereafter: pre-NAO-). One case
stands out, however, showing instead a SST predictor similar to
the At. Low ones (c.f. Figure 4, pre-SOM mode 8). Finally, we
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FIGURE 2 | Self-Organizing Maps master representing the dominant summer atmospheric teleconnections in the North Atlantic European sector during 1902–2008,

trained with ERA-20C JA SLP. Note that some modes were re-positioned with respect to the original SOM map to facilitate the interpretation of results.

FIGURE 3 | Model agreement with reanalysis: (A) Pattern correlation between observed and simulated SOM modes (per ensemble member). (B) Associated

frequency of observed and simulated SOM modes (per ensemble member). X markers and dashed lines represent observed frequencies.

find no consistent mean SST pattern preceding positive NAO
summers, but a set of three different SST tripole patterns with
a common cooling over the North Sea and off the coast of
northwest Africa (hereafter: pre-NAO+).

We evaluate the linear relationship between April North
Atlantic SST predictors and JA SLP using the reanalysis
(Figure 5). Areas of significant correlation indicate where
the specific SST predictor might influence the summer
circulation and, thus, a serve as reference to interpret any
skill improvement in the model. We find that SST predictors

have a significant influence on JA SLP in At. Ridge (pre-
SOM modes 4–6) and At. Low cases (pre-SOM modes 11–
12), and in less extent to NAO+ (pre-SOM modes 1–2) and
NAO- (pre-SOM modes 8–10). We find reasonable agreement
with correlation results for the SST predictors and JA T2m
or JA Z500 (not shown). From Figure 5 we might expect
to find skill improvement only for the summer circulation
over Greenland, Scandinavia, central Europe, and a region
over the ocean west of the Iberia Peninsula using our
SST predictors.
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FIGURE 4 | Spring sea surface temperature (April SST) predictor patterns in the reanalysis with respect to the SOM master (Figure 2), for the period 1902–2008.

Each pattern of SST precedes a summer SOM mode, as labeled.

FIGURE 5 | Summer sea level pressure (JA SLP) point-wise correlated to timeseries associated with April SST predictor patterns for the reanalysis over the period

1902–2008. Stippling represents correlation significant at the 95% level.

3.3. Windows of Opportunity for
MPI-ESM-MR Based on SST
First, we use the test ensemble to evaluate whether the SST-SLP
relationship found in the reanalysis holds in the model. Next,
we use the independent ensemble to test the robustness of this
relationship and to assess the potential of skill improvement for
other variables.

We evaluate the predictive skill at 3–4 months lead time
for JA SLP in the test ensemble, for SST predictors of each of
the four main summer atmospheric teleconnections separately

to distinguish the contribution of SST (Figure 6). As a first
step, we analyse ACCs before subsampling in the ensemble
space, considering the full ensemble (Figures 6A,D,G,J). We find
distinct predictive skills for each group of SST predictors, with
SST predictors for At. Ridge (i.e., pre-At. Ridge) showing highest
skill off the Iberian coast but no skill over land. The remaining
groups show very limited skill overall.

We perform ensemble subsampling by selecting ensemble
members according to the April SST classification in the pre-
forecast data in predicting northern (At. Ridge or NAO+) or
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FIGURE 6 | Evaluation of a SST as predictor in the test ensemble. Anomaly correlation coefficients (ACC) for SLP, comparing the test ensemble to the reanalysis in

1902–2008. On the first row (uppermost) ACCs are calculated for years where April SST months in the pre-forecast data are classified as preceding NAO+, i.e.,

pre-NAO+. Similarly, the remaining three rows show ACCs for the case of pre-Atl. Ridge, pre-NAO− and pre-At. Low, respectively. Column-wise, ACCs are presented

as follows: (A,D,G,J) the ensemble mean is taken over the full ensemble; (B,E,H,K) the ensemble mean is taken over the selected ensemble; (C,F,I,J) differences in

ACC between the full and selected ensemble mean. Stippling represents correlation significant at the 95% level.

southern jet (At. Low or NAO-) groups. For example, Figure 6B
shows the ACC calculated for the ensemble mean over members
which predict either NAO+ or At. Ridge, for those years where
April SST in the pre-forecast data classifies as pre-NAO+. A
more strict selection allowing only one dominant atmospheric
teleconnection per summer leads to a weak improvement. We
include difference plots to illustrate the effect of performing
ensemble subsampling on the predictive skill, in comparison to
the traditional analysis using the full ensemble mean. Physically,
a positive difference in correlation (selected minus full ensemble)
thus represents the model predictive skill that could be achieved
by this prediction system, if corrected using our method. In
contrast, a negative difference in correlation suggests that the
SST predictor is not sufficient to perform the first guess, or
that the model is unable to accurately simulate the atmospheric
teleconnection under the circumstances given.

Comparing selected and full ensemble in Figure 6, we find
significant regional improvement in the predictive skill of JA SLP

for SST predictors of At. Ridge and Low. Improvement is highest
for At. Ridge over Greenland and Scandinavia, reaching ACCs
above 0.6. These regions of improvement in skill agree with the
expectation based on Figure 5, SOM modes 4–6. This finding
further agrees with Figures 2B,C, which shows that At. Ridge is
the atmospheric teleconnection best represented by MPI-ESM-
MR, thus, having the potential to benefit the most from a physics-
informed subsampling. For NAO+ and NAO−, improvement is
limited to the region over the ocean off the Iberian Peninsula,
insignificant at the 95% level. We speculate that this is partly due
to the less accurate representation of some NAO SOM modes by
MPI-ESM-MR (refer to Figures 2B,C), in addition to a weaker
SST-SLP relationship than for At. Ridge and Low modes (refer to
Figure 5).

To contribute to the interpretation of predictive skill
improvement, we test the benefit of refining the model
ensemble with a "perfect" selection using the test ensemble. The
"perfect" ensemble selection assumes that the dominant summer
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atmospheric teleconnection in the Euro-Atlantic domain is
known each year in advance, thereby estimating the potential
skill if such atmospheric teleconnection would be perfectly
predicted by the model. We stress that, as opposed to the
"selected" ensemble, such an analysis is only possible in hindcast
mode, thus, not being reproducible in real forecast mode.
We analyse northern and southern jet groups separately to
distinguish the effect of subsampling for SLP. In Figure 7, we
select only ensemble members which agree with the atmospheric
teleconnection label predicted by the reanalysis in a given year to
calculate the ensemble mean. We find major skill improvement
in the Euro-Atlantic sector for SLP predictions at 3–4 months
lead time, with about half of the ensemble members selected
to re-calculate the ensemble mean (Figure 7G). The main area
of improvement fairly agrees with the position of the jet: over
Scandinavia for the northern group and over south-western
Europe for the southern group. This suggests that the area of skill
improvement depends on the skill of the model in simulating the
relationship between predictor and target.

3.4. Test With the Independent Ensemble
Next, we use the independent ensemble to test whether these
findings hold for an independent hindcast dataset covering
the period of 1980–2016 (Figure 8). In addition to SLP, we
test how the selection of ensemble members based on the
SST-SLP relationship impacts the predictive skill of T2m and
Z500. We analyse two groups and calculate ACCs for SST
predictors for the northern jet (pre-At. Ridge or NAO+) and
southern jet (pre-At. Low or NAO-), similarly to Figure 7.
Analyzing the full ensemble (first column), we find for both
SLP and Z500 that the northern jet group (Figures 8A,G)
shows a higher skill for northern Europe in comparison
to the southern jet group (Figures 8J,P). Still, improvement
for SLP and Z500 skill (Figures 8C,I,L,R) takes place in
similar areas as for the independent ensemble (Figure 6 and
Supplementary Figure S3), albeit less pronounced. For T2m in
the selected ensemble (Figures 8D–F), we find skill improvement
for north-western Europe, with ACCs over Scandinavia reaching
significant values above 0.5 (at 95% level) for spring SST
indicating northern jet group (pre-At. Ridge/NAO+). We find
no significant T2m skill improvement for the southern jet group
(Figures 8M–O). Despite not reaching statistical significance,
correspondence in the spatial pattern improvement for SLP,
Z500, and T2m (Figures 8C,F,I) alludes that the ensemble
subsampling based on the spring SST - summer SLP relationship
influences the predictive skill of Z500 and T2m. This suggests the
effect of the large-scale atmospheric circulation as a dynamical
driver of temperature variability at the seasonal timescale
and illustrates the importance of improving the simulation of
summer atmospheric teleconnections within the ensemble as a
step to achieve skillful predictions of European climate.

4. DISCUSSION

Dynamical seasonal forecasts of European summer climate
have until recently mostly shown negligible skill (e.g., Mishra
et al., 2019), presumably a consequence of model errors in

representing important drivers of summer climate variability
(e.g., Beverley et al., 2019; Ossó et al., 2020). While recent
work has shown evidence for skillful European summer
rainfall predictions (Dunstone et al., 2018), model skill
seemed to stem primarily from thermodynamical drivers.
Identifying processes and predictors that provide forecast
opportunities for skillful long-lead predictions is hence of
paramount importance.

In this article, we use SOM to enable the identification of
dynamical predictors for a pre-defined set of SOM modes. These
SOM modes represent 12 stages of the four main atmospheric
teleconnections driving the large-scale summer variability in the
Euro-Atlantic region (Cassou et al., 2005). While defining these
discrete samples is a clear limitation of our approach, using SOM
allows us to distinguish spring SST patterns that can be used to
indicate conditions of potentially high summer predictive skill at
prediction start. Conversely, we were unable to find skillful SST
predictors for composites based on a k-means clustering (k= 4),
possibly due to the blending of patterns and loss of information
(not shown).

We show in this study that April North Atlantic SST patterns
can be used to select potentially skillful ensemble members for
MPI-ESM-MR summer hindcasts over specific target regions.We
find that these regions depend on the dominant atmospheric
teleconnection in a given summer and the strength of its
relationship with spring SST. Based on these two criteria, we find
that spring SST precursors for At. Ridge summers correspond to
conditions under which the MPI-ESM-MR seasonal predictions
may be expected to have particularly high skill over target regions,
thus, representing forecasts of opportunity (Mariotti et al., 2020).

We identify spring SST precursor patterns for At. Ridge
summers which show reasonable agreement with results reported
by Ossó et al. (2018) using Maximum Covariance Analysis.
The authors described a pattern consisting of a spring SST
dipole between subpolar and subtropical North Atlantic that
persists into summer, forced by anomalous winter atmospheric
circulation. Ossó et al. (2020) showed that this SST pattern
drives a poleward displacement of the jet stream through changes
in the background baroclinicity. Ossó et al. (2018) suggested
that the summer atmospheric response to this oceanic forcing
is imprinted at the surface as an anticyclonic anomaly that
resembles the At. Ridge.

Identifying SST initial conditions that are linked to summers
dominated by At. Ridge 3–4 months ahead is an important
step toward skillful European seasonal summer predictions. At.
Ridge has been associated with northerly wind anomalies over
western Europe (Craig and Allan, 2021), leading to a widespread
below-average surface temperature distribution (Cassou et al.,
2005; Comas-Bru and Hernández, 2018). We find a similar
imprint on the surface climate for SOM modes associated with
At. Ridge (Supplementary Figure S2), illustrated by composites
of summer air temperature anomalies. In combination with
cyclonic conditions over the Mediterranean region, At. Ridge
has been additionally associated with easterly wind anomalies,
thereby influencing the occurrence of dry spells and drought
conditions over western Europe (Haarsma et al., 2009; Rousi
et al., 2021).
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FIGURE 7 | “Perfect” model approach. ACC for SLP, comparing the test ensemble to the reanalysis in 1902–2008. On the upper row, ACCs are calculated for years

where the observed dominant summer atmospheric teleconnection is classified as either At.Ridge or NAO+. Conversely, in the lower row, ACCs are calculated for At.

Low or NAO− cases. ACCs are presented as follows: (A,D) the ensemble mean is taken over the full ensemble; (B,E) only members whose classification matches the

observed are selected to calculate the ensemble mean; (C,F) differences in ACC between full and selected ensemble mean. Stippling represents correlation significant

at the 95% level. (G) Bar plots show the fraction of ensemble members selected per year: red bars for observed At.Ridge or NAO+, blue bars for At. Low or NAO-

cases. Horizontal lines show the mean fraction for each case.

In addition to At. Ridge, our analysis of the relationship
between spring SST and summer SLP (Figure 5) suggests
that spring North Atlantic SST precursors for At. Low could
predict potentially skillful ensemble members for MPI-ESM-MR
summer hindcasts (e.g., Figure 5, pre-SOM mode 12). While
we find improvement in skill over large areas of central Europe
and off the coast of England, the improvement does not reach
significance (95%) over most areas, except over southeastern
Europe. We speculate that this is due to the more limiting
representations of this atmospheric teleconnection in MPI-ESM-
MR (Figures 3A,B), which might imply a model limitation
for early warning of warmer than average summers. This
finding agrees with Neddermann (2019), which shows that a
teleconnection pattern similar to At. Low in MPI-ESM-MR

shows a different structure of the centers of action in comparison
to the reanalysis.

In contrast to At. Ridge and Low, only a few studies have
suggested an active role of spring North Atlantic SST as a
driver for summer NAO at seasonal to interannual timescales
(e.g., Gastineau and Frankignoul, 2015; O’Reilly et al., 2017).
Osborne et al. (2020) investigated the effect of North Atlantic
SST on atmospheric circulation responses over the Euro-Atlantic
region, speculating that summer NAO-related SST anomalies
might feedback onto the At. Ridge and Low teleconnections
rather than the summer NAO. Our analysis using North Atlantic
SST as a precursor for NAO show only marginal predictive skill
improvement, for bothNAO in positive and negative phases. This
suggests that April North Atlantic SST has a limited impact on the
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FIGURE 8 | Evaluation of SST as a predictor in the independent ensemble. ACC for SLP, temperature at 2 m height (T2m), and geopotential height at 500 hPa (Z500),

as labeled, comparing the independent ensemble to Era-Interim in 1980–2016. On the upper three rows, ACCs are calculated for years where April SST months in the

pre-forecast data are classified as preceding either At.Ridge or NAO+, i.e., pre-At.Ridge/NAO+. Conversely, the lower three rows show ACCs for the case of

pre-Atl.Low/NAO-. Column-wise, ACCs are presented as follows: (A,D,G,J,M,P) the ensemble mean is taken over the full ensemble; (B,E,H,K,N,Q) the ensemble

mean is taken over the selected ensemble; (C,F,I,L,O,R) differences in ACC between the full and selected ensemble mean. Stippling represents correlation significant

at the 95% level.

seasonal predictability of summer NAO, potentially explained by
this SST-NAO inconsistency.

Though we only investigate the role of spring North Atlantic
SST, other predictors have been suggested to influence the
predictability of the summer atmospheric teleconnections

analyzed here. In particular, Hall et al. (2017) suggested
that summer NAO is dependent on the positioning of the
polar front jet and, thus, on Arctic sea ice. Another potential
predictor for summer NAO is stratospheric temperature,
which in winter establishes a downward connection from
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the stratosphere to the surface, leading to enhanced surface
predictability (e.g., Ayarzagüena and Serrano, 2009). For
winter NAO, a combination of these precursors in autumn
with ensemble subsampling allowed unprecedented skillful
prediction of the NAO index in MPI-ESM-MR (Dobrynin
et al., 2018). Including such predictors to inform the
ensemble subsampling would be an interesting focus for
future study.

5. CONCLUSIONS

We combine SOM and seasonal climate predictions with
MPI-ESM-MR to investigate the seasonal predictability of the
European summer climate associated with the North Atlantic jet
stream. We show that April North Atlantic SST patterns can be
used to select potentially skillful ensemble members for MPI-
ESM-MR summer hindcasts over specific target regions. Our
main findings are:

• Our SOM analysis shows that among the four main summer
atmospheric teleconnections MPI-ESM-MR best represents
At. Ridge, showing the highest agreement with the reanalysis
both spatially and in the frequency of occurrence. Conversely,
spatial representation of At. Low in MPI-ESM-MR agrees the
least with the reanalysis, and the model underestimates the
frequency of occurrence.

• The use of SOM composites of North Atlantic SST patterns
as spring SST predictors is relevant for At. Ridge and At.
Low teleconnections and limited for NAO. Greenland and
Scandinavia are the areas over land with the most potential
spring SST influence on northern jet positions.

• Using the test ensemble (1902–2008), we find significant
skill improvement for summer SLP at 3–4 month lead time
over Greenland and Scandinavia for predictions initialized
with SST predictors for At. Ridge, for a selected ensemble
predicting northern jet atmospheric teleconnections (At.
Ridge or NAO+).

• Using the independent ensemble (1980–2016), we find
significant skill for summer SLP at 3–4 month lead time
over northern Europe for predictions initialized with SST
predictors for northern jet atmospheric teleconnections (At.
Ridge or NAO+). For a selected ensemble predicting northern
jet teleconnections, we find significant skill improvement over
Scandinavia for both Z500 and T2m.

• A spatial correspondence in the improvement of Z500 and
T2m for the northern jet group suggests the effect of large-scale
atmospheric circulation as a dynamical driver of European
temperature variability at the seasonal timescale. This finding
highlights the importance of accurately representing summer
atmospheric teleconnections in dynamical seasonal prediction

systems as a necessary condition toward skillful predictions of
the European climate.

Our findings offer an interesting avenue for the use of SOM
in further research on windows of opportunity for seasonal
climate predictions. Since our analysis only relies on SST
information prior to the initialization of the prediction system,
our methodology can be extended and further applied to
operational ensemble prediction systems.
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