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A new type of hybrid prediction system (HPS) of the land surface air temperature

(SAT) is described and its skill evaluated for one particular application. This approach

utilizes sea-surface temperatures (SST) forecast by a dynamical prediction system,

SINTEX-F2, to provide predictors of the SAT to a statistical modeling system consisting

of a set of nine different machine learning algorithms. The statistical component is aimed

to restore teleconnections between SST and SAT, particularly in the mid-latitudes, which

are generally not captured well in the dynamical prediction system. The HPS is used to

predict the SAT in the central region of Japan around Tokyo (Kantō) as a case study.

Results show that at 2-month lead the hybrid model outperforms both persistence and

the SINTEX-F2 prediction of SAT. This is also true when prediction skill is assessed for

each calendar month separately. Despite the model’s strong performance, there are also

some limitations. The limited sample size makes it more difficult to calibrate the statistical

model and to reliably evaluate its skill.

Keywords: seasonal prediction, hybrid prediction, machine learning, statistical modeling, information flow

INTRODUCTION

For the last two decades, seasonal climate prediction (SCP) has become an area of study in its own
right (Pepler et al., 2015), similar to weather prediction and climate change projection. Continuous
improvements (Doblas-Reyes et al., 2013) have increased the value of SCP in decision-making,
though quantifying its benefits remains a challenge (Kumar, 2010; Soares et al., 2018).

In the agricultural sector, decision-making that adapts to climate variability is essential for food
security (Hansen, 2002; Meza et al., 2008). For example, in Europe, SCP are helpful in the selection
of winter wheat and planning of agro-management practices (Ceglar and Toreti, 2021). In the
energy sector, the sudden weather changes and climate variability impact energy consumption
(Auffhammer and Mansur, 2014) and, for example, the use of air conditioners (Auffhammer and
Aroonruengsawat, 2012; Auffhammer, 2014).

SCP is also used in risk management (Troccoli et al., 2008) and crop insurance (Osgood
et al., 2008; Carriquiry and Osgood, 2012), and is viewed as a viable alternative to traditional
crop insurance in countries with rainfed agriculture (Leblois and Quirion, 2013), although its full

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://doi.org/10.3389/fclim.2022.862707
http://crossmark.crossref.org/dialog/?doi=10.3389/fclim.2022.862707&domain=pdf&date_stamp=2022-03-30
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles
https://creativecommons.org/licenses/by/4.0/
mailto:oettli@jamstec.go.jp
https://doi.org/10.3389/fclim.2022.862707
https://www.frontiersin.org/articles/10.3389/fclim.2022.862707/full


Oettli et al. Hybrid Prediction of Air Temperature

adoption to the benefit of local farmers has still been slow so
far (Leblois and Quirion, 2013). Also, combining dynamical and
statistical modeling often increases the value of SCP information
for decision makers and end-users, as it improves the skill of
the forecast and can serve to downscale forecasts to relevant
spatial scales. For example, working on the improvement of the
Australian seasonal rainfall, Schepen et al. (2012) have confirmed
that merging statistical and dynamical forecasts maximizes
spatial and temporal coverage of skillfulness. This in turn
enhances the value for end-users. However, Darbyshire et al.
(2020) concluded that the practical value of SCP is still relatively
low and inconsistent for seven Australian case studies and call
for improvement of forecasts, in accordance with similar findings
by Gunasekera (2018) in the energy sector, stressing the need to
create more skillful seasonal forecasts. There are different ways
to achieve improvements, like increasing the spatio-temporal
resolution of seasonal forecast systems, correcting/adjusting the
systematic errors (or bias) of such a system by downscaling
or by constructing a statistical model linking a predictand and
its predictors.

Oceans are major drivers of the climate system (Shukla,
1998) and the main source of seasonal predictability (Barnston,
1994 and references therein; Goddard et al., 2001; Shukla
and Kinter, 2006) for temperature and precipitation. While
dynamical prediction systems can accurately predict seasonal
climate in the tropics due to the strong coupling between
ocean and atmosphere, prediction skills of the SAT are limited
in many terrestrial parts of the world (Figure 1), partly
because dynamical forecast systems cannot fully reproduce the
relevant atmospheric processes (Shukla, 1985; Branković et al.,
1990; Livezey, 1990; Milton, 1990; Barnston, 1994; Sheffield
et al., 2013a,b; Henderson et al., 2017). Also, many of the
teleconnections between the tropics/sub-tropics and the mid-
latitudes are not well-represented, with the exception of those
arising from the El Niño–Southern Oscillation (ENSO). As
monthly-scale SAT in the extra-tropics, including our target
region, can be strongly affected by atmospheric teleconnections
(e.g., Oettli et al., 2021), there is a potential gain in skill that
could be realized by representing teleconnections between the

FIGURE 1 | Anomaly correlation coefficient between the 2-month lead

SINTEX-F2 ensemble mean 2-meter temperature and the GHCN CAMS

2-meter temperature (Fan and van den Dool, 2008) for the period 1983–2015

(396 months).

tropics and the mid-latitudes through statistical modeling, by
using sea-surface temperature (SST) as a predictor of the surface
air temperature (SAT).

The conventional approach involves multivariate linear
statistical models (Barnston, 1994; Drosdowsky and Chambers,
2001). While these models are easy to construct, they are rather
limited because they miss some of the important non-linear
links between SST and SAT. Machine learning (ML), a subset
of artificial intelligence that improves algorithms automatically
through experience (Mitchell, 1997; Hastie et al., 2009; James
et al., 2013; Kuhn and Johnson, 2016), can capture such non-
linearities through statistical modeling.

Artificial Neural Networks (ANN) and Support Vector
Machines (SVM) have been successfully used to forecast SAT at
different time scales (Cifuentes et al., 2020; Tran et al., 2021). The
predictability comes from the temperatures only (e.g., Ustaoglu
et al., 2008; Chattopadhyay et al., 2011), or in association with
other atmospheric variables (e.g., Mori and Kanaoka, 2007; Smith
et al., 2009), oceanic modes (Salcedo-Sanz et al., 2016), or SST
indices (Ratnam et al., 2021b). But the skills of such forecast
systems are highly variable (Cifuentes et al., 2020) and dependent
on past observations. Could the skill of such models be improved
by including oceanic conditions forecast by a dynamical model?

In the present study, we attempt to harness the skills from
both dynamical and statistical modeling approaches by adopting
a hybrid approach to SCP, which has been demonstrated to yield
skillful seasonal precipitation forecasts in northwest America
(Gibson et al., 2021). In this approach, a dynamical prediction
system, SINTEX-F2 (Doi et al., 2016, 2017), is used to provide
the SST anomaly field, from which potential predictors of the
SAT are extracted. The extracted predictors are used to construct
a statistical prediction model using the following nine ML
algorithms: Artificial Neural Networks with single- (SLP) and
multi-layer perceptrons (MLP); Support Vector Machines with
linear (SVML) and radial kernels (SVMR); Random Forests
(RF); relatively recent approaches based on the gradient boosting
of decision trees, namely the extreme gradient boosting with
linear (XGBL) and tree-based (XGBT) approaches, and CatBoost
(CBST); and Bayesian additive regression trees (BART). These
boosting techniques are largely used in classification problems
(Hancock and Khoshgoftaar, 2020; Ibrahim et al., 2020; Xia et al.,
2020; Zhang et al., 2020; Jabeur et al., 2021; Luo et al., 2021),
but less so for regression problems. This study provides a good
opportunity to evaluate the skills of boosting procedures in the
prediction of SAT.

In this study, we focus on SAT because it is a crucial climatic
factor in agriculture (because it conditions the crop growth and
its physiology) and in the energy sector (because it has a large
impact on the fuel consumption for heating and cooling systems),
two give two examples. Thus, the seasonal prediction of SATmay
help to mitigate impacts of climate variations by allowing to take
appropriate action in advance.

Motivated by an ongoing project in the energy sector, the
target lead time for our hybrid model is 2 months. Forecasts
between monthly and seasonal time steps are important for mid-
term planification, such as the water and energy management
(Oludhe et al., 2013) or the indoor residual spraying for
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malaria transmission control and elimination (World Health
Organization, 2015). Therefore, we use the 2-month lead SST
forecasts from the dynamical model as input for the hybrid
prediction system (HPS). Details of the HPS and associated data
are presented in Section Materials and Methods, and then the
hybrid system skills are assessed in Section Application to the
Kantō Region, using the Kantō region (a geographical area of
the main island of Japan, comprising the Kantō plain to the
central eastern part andmountainous region to the North and the
West; Figure 2A), as an example of application. Finally, results
are discussed in Section Summary and Discussion.

MATERIALS AND METHODS

SINTEX-F2 Seasonal Prediction System
The SINTEX-F2 prediction model (Doi et al., 2016), and its
upgraded version, the SINTEX-F2 3DVAR system (Doi et al.,
2017) forecast monthly mean SST at various lead times.

Our goal is the prediction of the SAT anomaly in the Kantō
region, 2 months in advance using the information coming from
the SINTEX-F2 SST anomaly prediction fields. To achieve this
purpose, the predicted SST anomalies at 2 months lead time
are taken for all 24 members plus the ensemble mean (hereafter
2mlEMs). The monthly anomalies we use are calculated by
subtracting the 1983–2015 monthly climatology and removing
the linear trend calculated over the same time period.

The SINTEX-F2 prediction model has high skill in the
prediction of the ENSO (Luo et al., 2005, 2008b; Jin et al., 2008;
Doi et al., 2016), a fundamental requirement for any seasonal

prediction system (Stockdale et al., 2011) to be considered
skillful. SINTEX-F2 is also successful in predicting the Indian
Ocean Dipole (Luo et al., 2007, 2008a; Doi et al., 2016) and the
subtropical dipole modes (Yuan et al., 2014).

Surface Air Temperatures in the Kantō
Region
From the Automated Meteorological Data Acquisition System
(AMeDAS) network maintained by the Japanese Meteorological
Agency (2018), monthly mean SAT from 102 stations are
extracted to cover the Kantō region (138–141◦E, 35–37◦N,
Figure 2A), for the period March 1983 (due to the 2 months
difference)–July 2020. Except for the initial quality check
performed at JMA, no further quality check or homogenization
has been performed before the analyses. An SAT index for the
Kantō region is calculated by arithmetically averaging the values
of the 102 stations, without weighting by latitude, considering
the rather small region used in this study. To comply with
SINTEX-F2 forecasts, departures from the 1983 to 2015 monthly
climatology are calculated, and the linear trend calculated over
the same period is subsequently removed.

Cause-and-Effect Relationships
The natural way to find linear relationships between time series
is the calculation of the correlation coefficient. Correlation,
however, does not imply causation (Barnard, 1986) and is
not sufficient to establish causality (Sugihara et al., 2012).
Therefore, different statistical concepts have been developed to
identify the mutual information (Shannon, 1948) between time

FIGURE 2 | (A) Location of the Kantō region (black box) in Japan. (B) Example of normalized information flow calculation, (C) grid points complying with the selection

criterion (NIF ≥ 30%) for the global region, and (D) areas complying with the selection criteria (NIF ≥ 30%, surface area ≥ 300,000 km2 ) for the global region.
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series and the underlying cause-and-effect relationships between
them. Popular statistical concepts include the Granger causality
(Granger, 1969), the transfer entropy (Schreiber, 2000), the
climate networks (Tsonis and Roebber, 2004), the convergent
cross mapping (Sugihara et al., 2012), or the information flow
(Liang and Kleeman, 2007a,b; Liang, 2008, 2014, 2016).

The information flow (IF) measures the rate of information
flowing from X2 to X1 and the maximum likelihood estimator of
the rate of IF (Liang, 2014) is:

T2→1 =
C11C12C2,d1 − C2

12C1,d1

C2
11C22 − C11C

2
12

with Cij the sample covariance between Xi and Xj, and Ci,dj the
sample covariance between Xi and a series derived from Xj using

the Euler forward differencing scheme: Ẋj,n =

(

Xj,n+k−Xj,n
)

(kt)
, with

k = 1 or k = 2, some integer defining the time lag of the Euler
forward scheme (i, j = 1, 2), n ∈ N (the sample size), and 1t the
time step (Liang, 2014, 2019).

The IF has been shown to be efficient for detecting causality
in linear and non-linear systems (Stips et al., 2016). In order
to assess the relative importance of an identified causality, a
normalized version of the information flow (NIF) has been
developed (Liang, 2015; Bai et al., 2018), as:

τ2→1 =
abs (T2→1)

abs (T2→1) + abs
(

dHnoise
1
dt

)

with abs (T2→1) the absolute IF and
∣

∣

∣

(

dHnoise
1
dt

)∣

∣

∣
the rate of change

of the stochastic effects, defined as (adapted from Bai et al., 2018):

dHnoise
1

dt
=

−1

2
E

(

1

ρ1

∂2g11ρ1

∂x21

)

−
1

2
E

(

g11
∂2 log ρ1

∂x21

)

with E the mathematical expectation, g11 the perturbation
amplitudes of X1 and ρ1 the marginal probability density
function of X1 (Liang, 2019).

The normalization avoids the relative causality to become too
small (Bai et al., 2018).

Design of the Hybrid Prediction System
Since the model should be evaluated against a data set
independent of the one used to train the prediction system
(Davis, 1976; Chelton, 1983; Dijkstra et al., 2019), the available
data are divided into three subsets. The calibration subset covers
the period March 1983 to February 2010 (for a total of 27 years),
the validation subset covers the period March 2010 to February
2020 (10 years), and the evaluation subset covers March 2020
to August 2021 (1 year). While it not possible to calculate skill
metrics on the evaluation subset, we consider it is a good way
to see whether a totally independent subset (i.e., not used either
during the training step or during the optimization step) is able to
reproduce observed anomalies for different seasons. All subsets
start from March because of the 2 months lead initialization
of SINTEX-F2.

Defining the Potential Predictors
For each month, the NIF is used to quantify the flow of
information from each grid point of each of the 25 SINTEX-F2
2mlEMs into any SAT time series of interest (see Figure 2B for an
illustration with the SAT index of the Kantō region) and delineate
areas of interest as potential sources of predictability, and thus as
potential predictors to use in our hybrid prediction model (upper
part of Figure 3). For each 2mlEMs, only grid points with an NIF
significant at 99% (Liang, 2015) are kept, reducing the amount
of data. Subsequently, grid points with an NIF larger or equal to
30% are kept as a first group of potential predictors (Figures 2C,
3, “GR-Z” block). A second class is then defined by aggregating
adjacent retained grid points and calculating the convex hull (i.e.,
the smallest convex area containing them; Figure 2D), in order
to determine regions that potentially offer predictability. Only
areas with a surface area larger or equal to 300,000 km2 are kept
in the second group (Figure 3, “GR-Z” block). The extraction is
done globally (Figure 3, “GR-Z” block), but also for the tropical
region only (30◦N−30◦S), where the SINTEX-F2 has high skill
(Doi et al., 2016).

Selecting the Predictors
A set of predictors is designed by performing a feature selection
(Figure 3, “PredS” block). First, we test for multicollinearity
to reduce the redundancy contained in the pool of potential
predictors. The absolute values of pair-wise correlations are
considered. If two variables have a high correlation, the function
looks at the mean absolute correlation of each of the two variables
with all the other variables and removes the variable with the
largest mean absolute correlation. The cutoff is fixed at 0.8.

Second, the feature selection itself is performed by using the
Boruta method (Kursa and Rudnicki, 2010; Kursa et al., 2010),
which iteratively compares the importance of attributes with their
shuffled versions of the original attribute (i.e., their “shadows”).
At each iteration, the importance of original attributes is
compared to their respective “shadow” versions. All original
attributes that have smaller importance than the “shadow” are
dropped. Shadows are re-created in each iteration. For this study,
we fixed themaximumnumber of iterations at 10,000. A Random
Forest algorithm (Breiman, 2001) is used to provide the variable
importance measure necessary for the Boruta method to achieve
the selection.

Finally, the variance inflation factor (VIF; Marquardt, 1970;
Fox andMonette, 1992) is calculated for the remaining predictors
and those with values larger or equal to 5 are kept, to create the
final selection of predictors. All the three steps of the feature
selection are performed over the calibration period and for the
two classes of predictors previously defined (i.e., grid points and
convex hull areas).

A second set of predictors (Figure 3, “PredS” block), including
all the potential predictors without the prior selection, is also
defined. Here, the idea is to let the machine learning (ML)
algorithms manage the whole data and create an optimal model.

Performance Measurement
The accuracy of the predictions is assessed by calculating several
metrics between the observations and the predictions.
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FIGURE 3 | Workflow of the hybrid prediction system (HPS). For each month, the general process consists of NIF calculation, followed, in order, by the selection of

geographical region and zones (GR-Z), the selection of predictors (PredS), the calibration of models through different machine learning algorithms (Alg), and the

optimal configuration (OC) ending to the creation of HPS. SLP and MLP are artificial neural network with single- and multi-layer perceptron, respectively; SMVL and

SVMR are the support vector machine with linear and radial kernels, respectively; RF is the random forest; XGBL and XGBT are extreme gradient boosting with linear

and tree-based approaches, respectively; CBST is CatBoost and BART is Bayesian additive regression trees.

• Anomaly Correlation Coefficient (ACC): While the ACC is
sensitive to outliers, it remains a simple metric to evaluate the

co-variability of two time series. A positive value (as close as
possible to+1) indicates similar variability and is targeted;
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ACC =

∑n
i=1

(

fi − f
)

(ai − a)
√

∑n
i=1

(

fi − f
)2

∑n
i=1 (ai − a)2

• Root Mean Square Error (RMSE): A popular measurement
of prediction model accuracy. RMSE should be as small as
possible (with a perfect model, RMSE would be equal to 0);

RMSE =
1

n

√

√

√

√

n
∑

i=1

(

fi − ai
)2

• Mean Absolute Error (MAE; Willmott and Matsuura, 2005):
Another measurement of model error;

MAE =
1

n

n
∑

i=1

∣

∣fi − ai
∣

∣

• Mean Absolute Scaled Error (MASE; Hyndman and Koehler,
2006): Calculated by scaling the error based on the in-sample
MAE from the random walk forecast method. MASE is
below 1 when the forecast is better than the average one-step
naïve forecast. MASE has been shown (Franses, 2016) to be
consistent with the standard statistical procedures for testing
equal forecast accuracy (Diebold and Mariano, 1995);

MASE =

1
n

∑

i |ei|

1
T−1

∑T
t=2 |at − at−1|

• Linear Error in Probability Space (LEPS; Ward and Folland,
1991): Provides an equitable scoring system, but can tend
to assign better score to poorer forecasts near the extremes
(“bend back”). It is a negatively oriented score, where 0 is a
perfect score;

LEPS =
1

n

n
∑

i=1

∣

∣CDFa
(

fi
)

− CDFa (ai)
∣

∣

• Skill Error: A positively oriented score that is considered an
enhancement of the LEPS (Potts et al., 1996) because it solves
the “bend back” problem. Because this score is not widely used,
we show the SK together with the LEPS. SK is defined as

SK = 3
(

1−
∣

∣CDFa
(

fi
)

− CDFa (ai)
∣

∣ + CDF2a
(

fi
)

− CDFa
(

fi
)

+CDF2a (ai) − CDFa (ai)
)

− 1

with f the predicted values, a the actual values, overbar the mean
of all samples of the variable, n the total number of samples
and e is the forecast error (i.e., a–f ). In the MASE equation,
the denominator is the mean absolute error of 1-month-ahead
forecasts from each data point in the sample (Hyndman, 2006)

i.e., ft = at−1, with T the training period and t a time step during
T. In LEPS and SK equations, CDFa is the cumulative density
function of actual values.

Outcomes of the hybrid approach are compared to the SAT
index for the Kantō region calculated from the SINTEX-F2
ensemble mean (i.e., the arithmetic average of the 24 members).
The 2-month persistence is also considered as a one-period-
ahead naïve forecast (i.e., the SAT anomalies taken 2 months
before are considered as good predictors of the SAT anomalies
2 months after). Hybrid prediction systems must have better
performance than this naïve forecast to show skills in predicting
SAT in the Kantō region.

Machine Learning
To predict an SAT index from 2mlEMs, we need to map the
routes connecting SAT and SST, to create a general rule, i.e.,
a statistical model able to accurately predict the SAT from
the 2mlEMs. ML can efficiently describe underlying processes
between input and output data, mapping the paths from the
former to the latter, and is thus applied to our purpose.

Tuning parameters (or hyperparameters) of the algorithm are
generated by a random search (Bergstra and Bengio, 2012), which
generates 10 combinations of them. The details of the tuning
parameters for each method are introduced below.

Artificial Neural Network
The architecture of the artificial neural network (ANN) is
designed tomimic the human brain and how the neurons interact
with each other, how they are activated and how they learn. ANN
consists of an input layer, one or multiple hidden layers and an
output layer. A hidden layer is constructed by interconnecting
artificial neurons (or nodes) with a specific weight and threshold
(which determine whether a node is activated or not). ANNs are
often used for pattern recognition but are increasingly used in
a broad range of applications, including ENSO forecasts (Ham
et al., 2019; Yan et al., 2020).

We use a simple feed-forward multi-layer perceptron with
a single hidden layer (i.e., single-layer perceptron) for its ease
of use and robustness. The tuning parameters consist of the
number of artificial neurons of the hidden layer and the weight
regularization (via an exponentially decay to zero), which both to
helps the optimization process and avoids over-fitting (Venables
and Ripley, 2002). The internal number of iterations to hit the
local minima, i.e., the improvement of accuracy through training,
is set at 100.

In addition, we also use a multi-layer perceptron with three
hidden layers, instead of one, and threshold activation, to alter
the results of the ANN. The tuning parameters are the number of
nodes in each hidden layer.

Random Forest
A random forest fits a number of decision tree classifiers (which
learn simple decision rules inferred from the data features)
on various sub-samples of the dataset and uses averaging to
improve the predictive accuracy and control over-fitting. The
tuning parameter is the number of variables randomly sampled
as candidates at each split. The number of trees to grow is set
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to 500, to ensure that every input row gets predicted at least a
few times.

Support Vector Machine
Support vector machine minimizes the coefficients (instead of
the squared error in the case of linear regression) in order to
reach an acceptable error of the model. A choice of different
kernel functions (i.e., a pattern analysis to identify recurrent
relationship in datasets) can be specified for the decision function
(i.e., decide the acceptable error). Expecting the results being
sensitive to the use of different kernels, we choose linear and
radial kernels. The former is the dot product between two given
observations while the latter creates complex regions within the
feature space. The tuning parameter for the linear kernel is the
cost regularization parameter, C, which controls the smoothness
of the fitted function. In addition to the C parameter, the
tuning parameter s (the inverse kernel width) is available in
radial kernels.

Gradient Boosting
Gradient boosting (Figure 3, “Alg” block) is an ensemble learning
technique to build a strong classifier from several weak classifiers
(typically decision trees), through iteration (Breiman et al., 1984;
Friedman, 1999a,b). Here we used the XGBoost implementation
(Chen and Guestrin, 2016), which gives better performance and
a better control of over-fitting issues. Two types of boosters are

utilized to create the prediction system, a linear model, with
squared loss as objective function, and a tree-based model.

The maximum number of boosting iterations (trees to be

grown) is common to both boosters. The linear model has two
other hyperparameters: the L1 regularization (lasso regression

which adds “absolute value of magnitude” of coefficient as a
penalty term to the loss function) and the L2 regularization (ridge

regression which adds “squared magnitude” of coefficient as a
penalty term to the loss function). In the case of the tree-based
model, the maximum depth of a tree, the learning rate (scaling

the contribution of each tree, to prevent overfitting by making

the boosting process more conservative), the minimum loss
reduction (to make a further partition on a leaf node of the tree),

subsample ratio of columns when constructing each tree, the
minimum sum of instance weight (to stop further partitioning

of the tree), and the subsample percentage (random collection of

the data instances to grow trees and prevent overfitting).
The CatBoost implementation (Dorogush et al., 2018;

Prokhorenkova et al., 2019), a more recent gradient boosting of

decision trees, is also used. It provides a different kind of boosting
through a symmetric procedure. This approach imposes that all
nodes at the same level test the same predictor with the same
condition, allowing for a simple fitting scheme and efficiency on
CPUs. Also, to avoid overfitting, the optimal solution is found
by the regularization operated by the tree structure itself. In this
algorithm, the number of trees, the depth of trees, the learning
rate, the coefficient of the L2 regularization, the percentage of

FIGURE 4 | Comparison of model performances during the training phase, in terms of anomaly correlation coefficient (ACC) and root mean square error (RMSE).

Shapes correspond to the different combination geographical region/zone (Gr-Z). Colors are the ML algorithms (Alg) with a filling (contour) corresponding to the

existence (absence) of feature selection. Vertical and horizontal segment are the dispersion of the performance across the samples.
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features to use at each iteration and the number of splits for
numerical features are the tuning parameters.

Bayesian Additive Regression Trees
Inspired by the boosting approach i.e., summing the contribution
of sequential weak learners to build a strong learner, Bayesian

Additive Regression Trees (BART; Chipman et al., 2010) depends
on an underlying Bayesian probability model (Figure 3, “Alg”
block). The bartMachine implementation (Kapelner and Bleich,
2016) is used in our prediction framework.

The associated hyperparameters are the number of trees to be
grown in the sum-of-trees model, the prior probability that E(Y

FIGURE 5 | Monthly anomaly correlation coefficients (ACC) between the observed SAT index anomalies in the Kantō region and the forecasted SAT index anomalies

during the validation period (March 2010 to February 2020). Each row is the results for a machine learning (ML) algorithm for each month (column). “SLP” is the

single-layer artificial neural network, “MLP” is the multi-layer (3 layers) version, “RF” is the random forest, “SVML” is the support vector machine with a linear kernel,

“SVMR” is the version with a radial kernel, “BART” is the bartMachine implementation of the BART algorithm, “XGBL” is the linear XGBoost implementation of the

gradient boosting and “XGBT” is the tree-based XGBoost implementation. ML are run with the selected predictors (“Yes”) or with all the predictors (“No”). The origin of

the predictors is provided by the colors. Vertical black lines denote the best coefficient my month.
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|X) is contained in the interval (ymin, ymax) based on a normal
distribution, the base and power hyperparameters in tree prior
probability for whether a node is non-terminal or not, and the
degrees of freedom for the inverse χ2 prior.

Limitations
Machine learning approaches have recently gained large
popularity in climate sciences (Monteleoni et al., 2013;
Lakshmanan et al., 2015; Voyant et al., 2017; Chantry et al., 2021),
but concerns and constraints still exist (Makridakis et al., 2018).
First, it is hard to derive physical understanding through the use
of ML, even though some attempts have been made to address
this issue (McGovern et al., 2019). The computational complexity
of the algorithms, particularly the most recent ones, and the need
of lengthy batch training can be a limitation to the use of ML.
Also, specially trained algorithms are still required to perform
specific tasks. The risk of overfitting is also an important concern
and must be kept in mind. Closely related, a balance between
interpretability and accuracy must be found when using ML.
Relationships between variables that do not exist in the training
data are likely to be missed in an independent data set, creating a
limitation in the use ofML. Finally, the length of the training data
may be an issue, as small datasets may limit pattern recognition
(Raudys and Jain, 1991; van der Ploeg et al., 2014).

Training Process
To address the issue of the small sample size of the calibration
period, bootstrapping (Efron, 1979) is used during the calibration
phase to estimate the extra-sample prediction error (Figure 3,
“Alg” block). Bootstrapping involves the generation of random
sampling with replacement to estimate the error. It also
introduces a bias because the replacement introduces repetitions
of the same observation. In order to reduce the bias, the
0.632 bootstrap estimator (Efron, 1983; Efron and Tibshirani,
1997) is used, because on average each bootstrap sample
contains about two thirds of observations. The optimal regression
model is selected as the one which minimizes the MASE,

after intermediate models have been built by resampling the
calibration datasets 500 times.

The validation subset is subsequently used to evaluate the
performance of the model previously trained, as well as to
construct optimized forecast systems. Finally, an evaluation
subset is used to assess the skills of the HPS.

Optimizing the Time Series
For each month in our training data, nine (9) ML algorithms
are used to construct prediction models from two (2)
geographical regions (global and tropical), two (2) classes of
zones (grid points and convex hull area), and two (2) sets
of predictors (selection of features and all features). As a
result, a total of seventy-two (72) prediction models (hereafter
ML configurations) associating Geographical Region-Zone-
Predictor Set-Algorithm (GR-Z-PredS-Alg) are constructed
for the calibration period and evaluated over the validation
period (Figure 3).

Using the same predictors, each prediction system can be
viewed as an ensemble member with its own internal condition
and uncertainties. The ensemble mean of the 72 prediction
models is calculated by averaging the outcome, as it is usually,
but not always, more skillful than using any of the 72 models
individually (Fritsch et al., 2000; Hagedorn et al., 2005; Eade et al.,
2014).

We also assume that an individual model can outperform
all other models for a specific calendar month. Thus, from the
monthly 72ML configurations, an optimized prediction is also
calculated, according to the monthly performance measured
over the validation period (Figure 3, “OC” block). For each
month, the ACC (hereafter ACC_crit) is calculated between the
prediction of each model and the observed SAT anomalies, and
the model with the largest positive ACC is kept. This is also
done according to the smallest RMSE (hereafter RMSE_crit) and
the smallest MASE (hereafter MASE_crit). As a result, three
optimized predictions are constructed, one for each of those
three methods.

TABLE 1 | Optimal selection of monthly GR-Z-PredsS-Alg based on anomaly correlation coefficient criterion (ACC_crit).

Month GR Z PredS Alg ACC

Jan Global Convex hull Sel. CBST 0.5036

Feb Global Grid points All XGBL 0.4424

Mar Global Grid points All XGBT 0.6776

Apr Tropical Convex hull Sel. RF 0.8486

May Tropical Grid points Sel. XGBL 0.7292

Jun Tropical Grid points All XGBL 0.8692

Jul Global Grid points All XGBL 0.9282

Aug Global Grid points Sel. SVML 0.8126

Sep Tropical Grid points All. XGBL 0.7612

Oct Tropical Convex hull All. CBST 0.6959

Nov Tropical Grid points Sel. MLP 0.4814

Dec Tropical Grid points Sel. SLP 0.8334

GR is the geographical region (global or tropical), Z is the type of zone (grid point or convex hull area), PredS is the predictors set (selection or all), and Alg is the machine learning algorithm.
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Finally, the long-term and monthly linear trends based on the
observed SAT index (1983–2015 period) are added back to the
observed and forecasted SAT anomalies.

In the present prediction system, we introduce an original
hybrid approach that combines dynamical and statistical
(machine learning) methods, in a new way. The major
characteristic of this hybrid system is that predictors for the
statistical part are not taken from observation (with or without
time lag), but are provided by the 2-month lead SST forecasts
from the SINTEX-F2 seasonal prediction system. In this way

the system benefits from the ability of the dynamical prediction
system to predict SST anomalies 2months in advance. The hybrid
approach also aims at statistically inferring teleconnections
between remote SST anomalies and mid-latitudes, which are
generally misrepresented in the dynamical prediction system.

In the case study below, all calculations have been performed
on a personal computer with 8 cores [Intel(R) Xeon(R) CPU E5-
1620 v3 @ 3.50 GHz] using the R programming language (R Core
Team, 2019) and packages “caret” (Kuhn, 2020), “neuralnet”
(Fritsch et al., 2019), “randomForest” (Liaw and Wiener, 2002),

FIGURE 6 | Same as Figure 5 but for the root mean square error (RMSE).
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“RSNNS” (Bergmeir and Benítez, 2012), “kernlab” (Karatzoglou
et al., 2004), “catboost” (Dorogush et al., 2018), “bartMachine”
(Kapelner and Bleich, 2016), and “xgboost” (Chen et al., 2020)
and required about 120 h to complete.

APPLICATION TO THE KANTŌ REGION

The Kantō region is a highly populated area (43 million in
2015; Ministry of Internal Affairs and Communications, 2020)
with high energy demand, particularly during boreal summer
and winter. In summer, the heatstroke death rate increases with
higher temperature and humidity (Akihiko et al., 2014) in the
Kantō region. Akihiko et al. (2014) suggest that early warning
systems based on SCP can be developed to reduce the risk of
heatstroke, by forecasting the probability of heatwave occurrence
a few months in advance.

At the same time, a significant part of the electricity demand
in the region is met by thermal power plants, requiring good
planning for the fuel management and logistics sufficiently ahead
of time. SCP could potentially help in the management of fuel
and in the planning of the operation to reduce the cost of the
operation. For example, the Northern Illinois University saved
approximately $500,000 in natural gas purchase with the help
of climate information and forecast tools developed by a faculty
member and a group of undergraduate meteorology students
(Changnon et al., 1999).

We apply our hybrid prediction system (Figure 3) to the
Kantō region. To put it simply, for each month of the year, the
NIF is first calculated between the 25 2mlEMs and the Kantō
SAT index during the calibration period. Then predictors are
extracted and used to construct the 72 GR-Z-PreS-Alg. Finally,
monthly SAT anomalies for the Kantō region are calculated over
the validation period, using the GR-Z-PreS-Alg applied on the
information provided by the 2mlEMs.

Evaluation of the Training Stage
The performance of the 72 monthly models (GR-Z-PreS-
Alg) is evaluated by the ACC and RMSE calculated during
the resampling phase of the training stage, between observed

and forecasted SAT anomalies (Figure 4). In terms of ACC,
performances are very similar across calendar months, with most
of the coefficients ranging between 0.25 and 0.90. Performances
are more variable with RMSE, some trained models being less
accurate in July and February with RMSE >1.0. But overall
performances are similar between months.

Across months, XGBL (dark blue) and XGBT (orange)
without selection features (open symbol) appear to perform less
well-compared to SVML (soft blue), SVMR (lime green), and
SLP (gray) with feature selection (closed symbol). Other models
are distributed between these two groups of models, following
a curved line (better models have both lower RMSE and higher
ACC). MLP (black) is a noticeable exception with most of the
time high ACC associated to higher RMSE.

However, these results are biased because the evaluation of
models is done against the data used to calibrate those models,
with a high risk of overfitting, making them less generalizable.
In order to possibly overcome this issue, forecasts from all
the available monthly GR-Z-PreS-Alg are calculated and the
monthly optimization of the time series is performed for the
validation period.

Evaluation of the Optimizations
Over the validation period, monthly ACC are calculated between
the output of each GR-Z-PreS-Alg and the observed SAT
anomalies of the Kantō region (Figure 2A) over the validation
period. It is clear from Figure 5 that some ML configurations
performed better than others for the same month (some ACC
are even negative). In January, the optimal GR-Z-PreS-Alg is the
CaBoost (CBST) using all the selected areas of the global region
(dark blue bar in the Jan/CBST panel, “Yes” line) with an ACC of
0.50. Other monthly optimal ML configurations can be found in
Table 1. Interestingly, all ACC values are around 0.70 or above,
ranging between 0.68 (in March) and 0.93 (in July), with the
exception of January, February, and November in which a much
smaller accuracy (ACC = 0.50, 0.44, and 0.48, respectively) of
the optimal choice is obtained, implying that the hybrid model is
struggling to accurately predict the SAT anomalies during these
months. Another interesting result is the difference between the

TABLE 2 | Same as Table 1 but from the root mean square error criterion (RMSE_crit).

Month GR Z PredS Alg RMSE

Jan Global Convex hull All XGBL 0.9164

Feb Global Grid points All RF 0.9931

Mar Global Grid points All XGBT 1.0952

Apr Tropical Convex hull Sel. XGBT 0.9491

May Tropical Grid points Sel. XGBL 0.4695

Jun Tropical Convex hull All XGBL 0.4259

Jul Tropical Grid points All XGBT 0.7479

Aug Global Grid points Sel. SVML 0.5090

Sep Tropical Grid points Sel. SVML 0.7258

Oct Tropical Convex hull All CBST 0.5109

Nov Tropical Grid points All CBST 0.9035

Dec Tropical Convex hull All SVML 0.8883
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ACC of models calculated with the calibration subset (Figure 4)
and the ACC shown in Figure 5. Support vector machines have
good skills during the calibration step, but have generally poor
performances with the validation subset, with the exception of
boreal summer (SVML is selected as the best approach in August;
Table 1). By contrast, gradient boosting approaches were not
performing well with the bootstrapping validation, but are more
skillful with the validation subset (XGBL/T are selected 6 months
out of 12). Results also confirm that the search for an optimal
GR-Z-PreS-Alg for each month is a useful approach.

We test an alternative approach for finding optimal
configurations. In this approach, we use the RMSE_crit, rather
than the ACC_crit, as our skill metric (Figure 6). For example, in
January, the optimal combination is the linear gradient boosting
using all the predictors (convex hull areas) of the global region
(RMSE = 0.9164; dark blue bar in the Jan/XGBL panel, “No”
line). Other combinations are summarized in Table 2. With this
approach, March has the worst score (1.0952) while June has
the best (0.4259). Similar to ACC_crit, SVML/R have poorer
performances with the RMSE_crit compared to the calibration

FIGURE 7 | Same as Figure 5 but for the mean absolute scaled error (MASE).
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step, but are selected more often (three times). Again, XGB(L/T)
are selected six times.

The same method of optimized selection is applied with the
MASE_crit as selection metric (Figure 7) and the final optimal
combination for eachmonth is summarized inTable 3. It is worth
noting that with this criterion, most of the models are based
on extreme gradient boosting (XGBL/T; 6 models) and support
vector machine (SVML/R; 5 models). The exception is April with
the single-layer artificial neural network.

Together with the ensemble mean (Figure 8A; orange line),
three optimized predictions of SAT index anomalies in the Kantō
region are constructed, respectively, from the ACC_crit (bright
yellow line), RMSE_crit (soft blue line), and MASE_crit (dark
blue line). The observed SAT index is also shown for comparison
(Figure 8A; black line). Overall interannual variability appears
to be quite well-predicted by the various simulated SAT indices.
In 2015–2016 or in 2018–2019, models are able to capture the
seasonal variability. But sometimes, like in 2012–2013 or 2017 for
example, all models have difficulties to capture correct values of
SAT, particularly in boreal winter. The three optimized systems
have anomaly correlation coefficients larger than 0.5 (Figure 9A),
which is better than that of the SINTEX-F2 ensemble mean and
the persistence (r < 0.2). Based on other accuracy metrics, the
three optimized hybrid systems also systematically outperform
the SINTEX-F2 ensemblemean and the 2-month lead persistence
with smaller RMSE, MASE, MAE, and LEPS, and larger SK
(Figure 9A).

Interestingly, while all three optimized models perform
equally well over the validation period (with the model based
on ACC_crit slightly left behind), the average of the 72 models
performs less well though still better than the SINTEX-F2
ensemble mean and the 2-month lead persistence (Figure 9A).
The selective ensemble mean technique (Ratnam et al., 2021a)
may help to improve the average of the 72 models by carefully
only picking the models with enough skills, before calculating
the average.

The monthly stratification reveals the abilities and limitations
of the hybrid prediction systems, and their disparities. In late
spring, summer, and fall, simulated SAT are close to the observed

ones (i.e., along the 1:1 line in Figure 8B), indicating that the
hybrid systems perform quite well. ACCs are close to 0.75 during
these seasons for most of the optimized models (Figure 9B).
This is confirmed by other metrics, RMSE (Figure 9C), MASE
(Figure 9D), MAE (Figure 9E), and LEPS (Figure 9F) are very
low compared to other months. Also, the SKs are maximum
during the same months (Figure 9G). This clearly indicates that
the hybrid systems perform better than the SINTEX-F2 ensemble
mean as well as the persistence predictions during these months.
In late fall, winter (with the exception of December) and early
spring, on the other hand, performance as measured by the ACC
and other metrics is not as high as in other seasons. Thus, it
seems the hybrid models are less able to predict the sign of the
interannual anomalies, as well as their intensity during the cold
period. Nevertheless, even for the non-ACC metrics, the hybrid
model still outperforms the SINTEX-F2 ensemble mean and the
persistence. Along the year, the ensemble average of the hybrid
models struggles to reproduce the intensity of the anomalies
(“Avg.” line, Figure 8C), with a weak forecast amplitude most
of the time. Individual hybrid systems have better results (but
suffer from other problems, such as overestimating anomalies
in February). It is also confirmed that SAT in February and
November are not very well-simulated, with the lowest ACC
(Figure 9B) among all months, and poor performance in other
metrics as well (Figures 9C–G).

SUMMARY AND DISCUSSION

We have presented a novel approach that combines dynamical
forecasts with machine learning to predict SAT anomalies over
the Kantō region, a part of the central region of Japan. In this
approach, the role of the machine learning is to represent the
influences of remote SST, which are not well-simulated in the
dynamical model.

Results of this HPS are promising, particularly because they
outperform both the 2-month lead persistence and the SINTEX-
F2 forecasts of the SAT in the Kantō region, indicating the (linear
and non-linear) teleconnections have been (partially) restored

TABLE 3 | Same as Table 1 but from the mean absolute scaled error criterion (MASE_crit).

Month GR Z PredS Alg MASE

Jan Global Grid points All XGBT 1.0716

Feb Global Grid points All SVMR 0.8715

Mar Tropical Convex hull Sel. SVML 0.4824

Apr Tropical Convex hull All SLP 0.6895

May Tropical Grid points Sel. XGBL 0.9747

Jun Tropical Convex hull All XGBL 0.3519

Jul Tropical Grid points All XGBT 0.5840

Aug Tropical Grid points All SVML 0.5129

Sep Tropical Grid points Sel. SVML 0.4831

Oct Tropical Convex hull All XGBL 0.4676

Nov Global Grid points Sel. XGBL 0.5727

Dec Tropical Convex hull All SVML 0.5474
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FIGURE 8 | (A) Observed (black line) and predicted SAT index anomalies in the Kantō region for the validation period. Time series of the prediction consist of the

average of the models (orange line) and optimized time series according to the anomaly correlation coefficient (yellow line), the root mean square error (cyan line) and

the mean absolute scaled error (blue line). Long-term and monthly linear trends are restored. (B) Same as (A) but for the evaluation period. (C) Monthly stratification of

scatter plots of the observed anomalies (x-axis) vs. the predicted anomalies (y-axis). Black dots are the forecasts for the validation period and black triangles for the

evaluation period. Rows correspond to the different types of prediction system and columns to the month.

in this method. Results also suggest that the hybrid approach is
able to improve prediction skill in mid-latitudes. The HPS was
able to quite accurately forecast the SAT of the evaluation subset,
particularly the rapid change of sign between March 2020 and
July 2020 (Figure 8B). This is very encouraging, as theHPS seems
to address the overfitting issue and to create a good compromise

between interpretability and accuracy (Section Limitations). It
also performed quite well in winter, but missed the correct sign of
October 2020 and the intensity of August 2020 and March 2021
(while correct in sign).

Another interesting result is the share (about 50%) of boosting
methods in the HPS, outperforming seminal methods such
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FIGURE 9 | Evaluation of the different prediction systems performance including the 2-month persistence (pink) and SINTEX-F2 (lime green). (A) Overall performance

over the complete validation period, showing the anomaly correlation coefficient (ACC), root mean square error (RMSE), mean absolute scaled error (MASE), mean

absolute error (MAE), linear error in probability space (LEPS), and skill error (SK). (B–F) Individual monthly performance metrics. Monthly performance according to (B)

ACC, (C) RMSE, (D) MASE, (E) MAE, (F) LEPS, and (G) SK.

as artificial neural networks. It is also worth noting that the
support vector machine algorithms are also picked up during
the optimization phase. The remaining selected methods are
distributed random forest and CatBoost. The Bayesian approach
is never picked up as the best solution (at least in our
study design).

Some previous studies have already discussed the prediction
of SAT in Japan, either by selecting the best from the SINTEX-
F2 predictions the best ensemble members with regard to the
SAT (Ratnam et al., 2021a), or by using past observations of
SST to predict winter SAT with the help of ANN (Ratnam
et al., 2021b). While a direct comparison of the results is
difficult due to the differing approach and study regions, the
forecast skills in winter are quite comparable. We recognize
a potential application could be to combine these prediction

systems, for example by selecting the best systems (based on
accuracy measurement) or by weighting the forecasts (Bates
and Granger, 1969; Aiolfi and Timmermann, 2006; Aiolfi et al.,
2010; Hsiao and Wan, 2014). This will be explored in a
future study.

On the other hand, the results also show some limitations of
this approach. Even though the HPS outperforms the dynamical
forecast system, it can only reproduce around 35–40% of the
variance of the Kantō SAT index between 2010 and 2020.

This suggests that model improvement may be obtained by
including additional variables, such as the geopotential height,
to take into account the atmospheric dynamics, which are likely
to play a role in the SAT variability, as well as soil moisture,
which is a key variable in the occurrence of temperature extremes
(Seneviratne et al., 2010; Quesada et al., 2012). In some years,
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as seen in Figure 8A, the HPS could not correctly predict the
SAT index in the Kantō region. Exploring the reasons of these
forecast failures could help to improve the HPS by adding
supplementary information, such as atmospheric processes.
Adding more variables and introducing time lags will likely
increase the amount of information to analyze, and using deep
learning algorithms may help to improve the seasonal forecast
by revealing unknown interactions among variables. We would
also like to add that deep-learning could in fact be used as a
tool for prediction (with feature selection to avoid redundancy
in the information). But it could also be used as an analysis
tool to document the relationships between variables, particularly
through the use of layer-wise relevance propagation (LRP) or
heat maps (Bach et al., 2015; Zhou et al., 2016; Montavon et al.,
2019; Toms et al., 2020). LRPs quantifies the contributions of the
predictors to the predictand, providing a physical interpretation.

The HPS approach is based on the strong assumptions that (1)
the explanatory power of the predictors selected in each monthly
model is robust in time i.e., we assume that the selection during
the calibration of themodels is valid for the validation period and,
most importantly, for the future. (2) Although the model seems
to be robust over different time periods, it relies on the accurate
seasonal prediction of SST, particularly outside the tropical region
where SINTEX-F2 has more limited skills.

ML algorithms used in this study have a relatively low risk of
over-fitting, but because of the limited sample size for calibration,
over-fitting cannot be totally avoided, which may explain the
limited skills of the hybrid model in some months.

A possible drawback of the HPS is the limitation in
deriving physical interpretation from the monthly models
as by construction, potential sources of predictability
from the global ocean are included, regardless of physical
distance to the target region. Due this limitation, it is still
difficult to derive physical mechanisms from ML (Section
Limitations). Such physical understanding will eventually help

to improve prediction skill and should be therefore addressed in
future studies.
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