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Sea surface temperature (SST) variability plays a key role in the global weather

and climate system, with phenomena such as El Niño-Southern Oscillation

(ENSO) regarded as a major source of interannual climate variability at the

global scale. The ability to make long-range forecasts of SST variations and

extreme marine heatwave events have potentially significant economic and

societal benefits, especially in a warming climate. We have developed a

deep learning time series prediction model (Unet-LSTM), based on more

than 70 years (1950–2021) of ECMWF ERA5 monthly mean SST and 2-m air

temperature data, to predict global 2-dimensional SSTs up to a 24-month lead.

Model prediction skills are high in the equatorial and subtropical Pacific. We

have assessed the ability of the model to predict SST anomalies in the Niño3.4

region, an ENSO index in the equatorial Pacific, and the Blob marine heatwave

events in the northeast Pacific in detail. An assessment of the predictions of the

2019–2020 El Niño and the 2016–2017 and 2017–2018 La Niña show that the

model has skill up to 18 months in advance. The prediction of the 2015–2016

extreme El Niño is less satisfactory, which suggests that subsurface ocean

information may be crucial for the evolution of this event. Note that the model

makes predictions of the 2-d monthly SST field and Nino 3.4 is just one region

embedded in the global field. The model also shows long lead prediction skills

for the northeast Pacific marine heatwave, the Blob. However, the prediction

of the marine heatwaves in the southeast Indian Ocean, the Ningaloo Niño,

shows a short lead prediction. These results indicate the significant potential

of data-driven methods to yield long-range predictions of SST anomalies.

KEYWORDS

sea surface temperature (SST), Nino3.4 SST index, deep learning, deep
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1. Introduction

Modes of inter-annual climate variability, such as El Niño-Southern Oscillation

(ENSO) and Indian Ocean Dipole (IOD), are known to modulate the global sea surface

temperature (SST) variability and themarine heatwave frequency, duration, and intensity

(Saji and Yamagata, 2003; McPhaden et al., 2006; Holbrook et al., 2019). The climate
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modes influence SST variability locally and remotely, mostly

through atmospheric teleconnection. Ocean circulation and

large-scale oceanic waves also transmit climate signals to remote

regions. SST variability and marine heatwave characteristics

are also influenced by regional atmospheric and oceanic

dynamics and coupled processes. The Blob marine heatwaves

in the northeast Pacific during 2013–2015 and 2019 have been

attributed to anomalous atmospheric pressure systems (Bond

et al., 2015; Amaya et al., 2020). The teleconnection between

the equatorial and northeast Pacific may be one of the key

drivers to sustain the Blob warming over a multi-year period (Di

Lorenzo andMantua, 2016). Marine heatwaves off the west coast

of Australia, the Ningaloo Niño, are due to both oceanic and

atmospheric teleconnection from the equatorial Pacific (Feng

et al., 2013) and the local air-sea coupling (Kataoka et al., 2014;

Tozuka et al., 2021).

A timely forecast of global SST anomalies helps marine

and terrestrial resource managers to mitigate potential risks

from extreme climatic events. The prediction of ENSO and

IOD events, indexed with equatorial SST anomalies in the

equatorial regions, is important for forecasting rainfall, drought,

and bushfire variability around the globe. Coupled ocean-

atmosphere models have been used to forecast global SST

variability. Most of the skill assessment has been for the inter-

annual climate modes, with 3–4 season forecasting skills for

ENSO and 1-2 seasons for IOD (Stockdale et al., 2011). Regional

SST variability forecast has limited skills and is highly regionally

dependent (e.g., Spillman and Smith, 2021), which is to some

extent due to coupled ocean-atmosphere models not properly

capturing important regional coupled processes driving the SST

anomalies (e.g., Doi et al., 2013).

Coupledmodel outputs have also been used to trainmachine

learning (ML) models to assess the predictability of climate

modes. A convolutional neural network (CNN) model has

been proven to have a long-lead prediction skill (up to 18-

month) for December-February Niño3.4 SST—an index for

ENSO variability, trained by SST, and upper ocean heat content

anomalies from coupled models (Ham et al., 2019). Similarly,

an artificial neural network model has been trained to forecast

the SST variations at the peak season of the IOD events

(Ratnam et al., 2020). Rojo Hernández et al. (2020) used a

nonhomogeneous hidden Markov model to achieve superior

prediction skills of Nino3.4 SST variability compared to dynamic

forecasting models at up to a 9-month lead time. Given the

phase-locking characteristics of the climate modes, these models

aim to make single-season predictions, and for a single climate

index. SST variability outside the ENSO and IOD regions also

show some seasonal phase-locking, such as the Ningaloo Niño

marine heatwaves are phase-locked to austral summer (Kataoka

et al., 2014; Feng et al., 2015).

Complex spatio-temporal variations of the climate modes

have been recognized, such as the complexity in ENSO dynamics

and predictability (Timmermann et al., 2018). During the

2009-2010 El Niño, the peak SST warming occurred in the

central Pacific so that the event is being classified as a central

Pacific El Niño, as compared with the more traditional 2015–

2016 El Niño when the extreme warming was more located

in the eastern equatorial Pacific. Marine heatwaves across the

global ocean have diverse spatial variability and are to some

extent not tightly phase-locked with seasons (Gupta et al.,

2020). For example, the Blob marine heatwave can occur in

different seasons (Amaya et al., 2020), whereas the Ningaloo

Niño has substantial spatial variations among different events

(Feng et al., 2015). An all-season CNNmodel has been proposed,

arguing that it would overcome some arbitrary fluctuations in

the predictions at different lead times. Still, the prediction aims

for a single index, the Niño3.4 (Ham et al., 2021). Thus, it is

important to explore ML models which can predict the full

seasonal cycle and the spatial patterns of SST anomalies. It is also

crucial for themodel to take into account the steady SST increase

under the influence of anthropogenic global warming.

In this study, we propose a new deep learning modeling

framework to forecast monthly global SST, using an Unet-

LSTM convolutional encoder-decoder neural network (Taylor

et al., 2021), which has been proven to have better prediction

skills while using fewer parameters, compared with other

deep learning architectures (Larraondo et al., 2019). We train

the model with observed (reanalysis) SST and surface air

temperature data over the past 7 decades to demonstrate

potential long lead predictions for SST variability in the tropical-

subtropical oceans. We present the methodology and examine

the predictability of SST anomalies in the equatorial Pacific

and the Blob region in detail, whereas a full exploration of the

machine learning model and SST predictability will be presented

in the future work.

2. Materials and methods

2.1. Dataset

The ERA5 reanalysis data set (Hersbach et al., 2020)

provides monthly estimates, currently commencing in 1979,

of many atmospheric, land, and oceanic variables at global

scale with a spatial resolution of 0.25◦, ≈ 30 km. An ERA5

preliminary analysis commencing in 1950 and covering the

period up to December 1978 is also available. The ERA5 data

set includes surface variables, including SST, and atmospheric

variables computed on 137 levels to a height of 80 km. ERA5

dataset was created by combining a comprehensive set of

historical meteorological observations with a sophisticated data

assimilation and modeling workflow developed by ECMWF.

Most reanalysis products use gridded SST observations as

their lower boundary forcing. Based on an assessment of the

ERA5 surface data, it is suggested that the reanalysis skill

for surface temperature is compatible with other reanalysis
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FIGURE 1

An illustration of the ERA5 monthly mean sea surface temperature (SST), 2-meter air temperatures, and the combined temperatures where the

2-meter air temperature is used only over the land surface during March 2010. The correlation coe�cient between the SST and 2-meter air

temperatures, computed over the ocean only, is 0.92 in this example.

products (Simmons et al., 2021). We use a replica of the ERA5

data set available at the National Computational Infrastructure

(NCI) (NCI, 2020). ERA5 data can also be obtained on request

from ECMWF’s meteorological data archive and retrieval

system (MARS).

Our experiments use SST (ERA5 label “sst”) and 2-m

atmospheric temperature (ERA5 label “t2m”) variables drawn

from the ERA5 data set. 2-D convolutions require a full 2-

D grid when modeling the oceans at the global scale. The 2-

meter atmospheric temperature data was used only over the land

surface in order to complete a global grid of data for use with

the 2-D convolutional model layers. As both the SST and 2-

metre atmospheric temperature data are from the same ERA5

reanalysis data set they are physically consistent within the limits

of the reanalysis system. We selected the t2m data in order to

minimize the impact of the transition between the ocean and

continents. The t2m values are driven by different processes

over the continent; however, we are using an ML model that

is predicting SSTs by adjusting the weights in the model layers.

The t2m data over the continents contributes no information to

the prediction of SSTs will have weights that are zero, or close

to zero, and where the t2m data contributes information the

weights will be set above zero. The approach we have adopted

leads to improved prediction of SSTs at the continental margins

compared, for example, to setting all values over the continents

to a constant in our earlier experiments. Other approaches to

solving this problem could be investigated, especially where the

focus is on SSTs near the coastal margins; however, it does not

have a significant impact on the predicted SSTs beyond the

coastal margins.

Figure 1 provides an example of the ERA5 monthly mean

SST, 2-meter air temperatures and the combined temperatures

for March 2010. We start with the full global data set with

latitude and longitude dimensions of [720,1440]. The temporal

domain data span January 1950 until May 2021, with a temporal

resolution of 1 month, a total of 857 months.

The convolutional layers used in ourmodel require complete

grids of data, ideally in dimensions that are powers of 2

to avoid the need for padding at the boundaries. To satisfy

this requirement, we combine the SST data over the ocean

grid points with 2-meter atmospheric temperature over the

land surface grid points to yield a global grid without

masked regions over the land surface. Using the Climate

Data Operators (CDO) software package (Schulzweida, 2019),

we first averaged the [720,1440] data set to a 1 x 1◦ grid

[180,360] and then used bilinear interpolation to a [64,128]

latitude (–64◦S to 62◦N in 2◦ increments) and longitude (–

180◦S to 180◦N in 2.8125◦ increments) grids. Finally, we

normalized the data, as we found that using the normalized

data significantly improved themodel training performance.The

resulting surface temperature data are represented as a three-

dimensional numerical array with shapes [857, 64, and 128]

corresponding to dimensions [time, latitude, and longitude].

Input data used for training the model were selected as a

moving window using 12 time steps (1 year), which capture the

seasonal cycle in SST, as this was found to yield the best model

predictions of SST.

2.2. Models

We apply a similar deep learning modeling architecture,

referred to as Unet-LSTM (Taylor, 2021), as applied in previous

modeling studies (Taylor et al., 2021), except we do not include

the batch normalization layers after each convolution layer

as adding this layer did not improve the model fit. We also

modify the hyperparameters, as detailed in the Methodology

section, in order to obtain the model with the best fit. The

Unet-LSTM convolutional encoder-decoder neural network

delivers pixel-wise semantic segmentation that enables us to

generate quantitative estimates of meteorological variables of

interest such as SST at each latitude-longitude grid-point
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FIGURE 2

A summary of the architecture of the convolutional neural network (CNN) model, referred to as the Unet-LSTM, that we have trained to forecast

2-D SST fields. The model shown was implemented in Python using the TensorFlow and Keras 2.4 API.

[64,128]. In order to make forecasts of 2-D fields the Unet-

LSTM includes 2-D convolutional long short-term memory

(LSTM) layers (Hochreiter and Schmidhuber, 1997). Examples

of the application of convolutional encoder-decoder neural

networks approaches include SegNet (Badrinarayanan et al.,

2017), VGG16 (Simonyan and Zisserman, 2015), and U-net

(Ronneberger et al., 2015). Previous work by Larraondo et al.

(2019) investigated the application of SegNet, VGG16, and

U-net to the prediction of precipitation fields and concluded

that U-net delivered the best estimates of precipitation while

employing significantly fewer model parameters. Based on

these advantages and our successful application of our U-net-

based model in previous studies (Taylor et al., 2021)to the

prediction of surface precipitation and forecasting 500 hPa

geopotential height, we have adopted the Unet-LSTM model

(Taylor et al., 2021), as the underlying model architecture

for our study. The Unet-LSTM model code is available

here (Taylor, 2021).

Developing ML models can be very challenging and ML

models do have limitations including (i) they require large

amounts of high quality data for training purposes, with

the assumption that the precursors of the model predictions

reside in the training data, (ii) they are not deterministic

models based on the laws of physics so do not readily

reveal the physical relationship between variables, and (iii)

they require significant computational resources in order

to explore the wide range of possible model architectures

and hyperparameter settings used to train the model. By

adopting the ERA5 data set and the Unet-LSTM model

for our study we have sought to minimize the impact of

these limitations.

2.3. Methodology

The Unet-LSTM model described in Figure 2 was written

in Python using TensorFlow (Abadi et al., 2015) and Keras

APIs (Chollet, 2015). We used Horovod (Sergeev and Balso,

2018) to implement a data-parallel model.We selected the Adam

optimizer (Kingma and Ba, 2014) with a learning rate of 0.003

and a learning rate warmup over the first 5 epochs. The higher

learning rate and the warmup improved model fitting on the

larger batch sizes when using multiple GPUs. We chose a batch

size of 4 that yields the best model fit for forecasting SST. The

total batch size when using Horovod on multiple GPUs was the

number of GPUs multiplied by the batch size on each GPU. The

total batch size was therefore a function of the number of GPUs

used in model training. For this problem, we used 4 Nvidia V100

GPUs each with 32 GB of memory making up one node on the

NCI Gadi computer.

We used 760 of the available time steps from January 1950

to April 2013 for training and the remaining 97 time steps for

validation and testing. We have attempted to best balance the

need to train the model while testing the model performance

to ensure that it is not overfitting and can predict unseen data.

Although the validation period is short, it contains several El

Frontiers inClimate 04 frontiersin.org

https://doi.org/10.3389/fclim.2022.932932
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Taylor and Feng 10.3389/fclim.2022.932932

Nino and La Nina events, which provide a certain degree of

freedom to validate the model performance. The Unet-LSTM

model uses the prior 12 months of SST data in order to predict

the following 2 months of SST data. Note that selecting a longer

prediction time period results in errors accumulating over a

longer prediction window.We used the tanh activation function,

set the kernel, bias and recurrent L2 regularization value at 10-8,

and run the model training for 200 epochs saving only the model

with the minimum mean square error (MSE) value, then output

the final model and report the resulting MSE values. The MSE

value is defined as

MSE =
1

n

n∑

i=1

(y− ŷ)2 (1)

where y is the target ECMWF ERA5 SST value, ŷ is

the model estimated SST value, and n is the total number

of SST values in the training data set. MSE is a standard

loss function for regression problems. Mean square log error

(MSLE) was also considered but did not lead to significantly

improved fit so MSE was preferred. Mean absolute error as a

loss function results in a poorer model fit. Land areas were

included in the loss function as leaving land areas unconstrained

did not lead to an improved fit over the oceans. When we

included the land areas, the improvement was small, mostly

due to an improvement in the model fit to SSTs at the

continental margins.

We found that 200 epochs ensured that the MSE value

always reached a minimum without overfitting. Figure 3 shows

the MSE error calculated from a comparison of the model

predictions with all the training (train) and all the validation

(test) data sets converging over a 200 epoch training period.

This graph clearly shows that the model is not overfitting and

that we can have high confidence in the model as the MSE

error for the whole test data is nearly identical to that of the

training data. Using the saved model, we then make model

predictions (inference) using an autoregressive approach for up

to 24 months.

FIGURE 3

The mean square error (MSE) error calculated from a comparison of the model predictions with the training (train) and the validation (test) data

sets over a 200 epoch training period. We see a rapid convergence of the model on the minimum MSE value. The upper panel shows the MSE

values over the full 200 epochs. In order to show greater detail of the model fitting process, the lower panel shows the same MSE values at

higher resolution and focused on the tail of the model training. Note the di�erent y-axis scales between the two panels.
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We applied a standard formula for normalization as is

commonly used in deep learning. The minimum (xmin) and

maximum SST (xmax) over all the data were calculated and the

following formula was applied

zi = (xi − xmin)/(xmax − xmin) (2)

where xi is the raw ECMWF ERA5 SST value and zi is the

normalized ECMWF ERA5 SST value, Normalization primarily

aids in numerical stability, thus making a solution possible, and

speeding up the rate of convergence to a solution.

In order to efficiently load the model training data using a

data-parallel approach, we distribute the model data required by

each GPU onto the CPU memory of the corresponding node,

as we have done in prior studies (Taylor et al., 2021). The data

required on each GPU is read once from a single NetCDF

file containing the preprocessed data as described above. This

approach facilitates the rapid loading of each batch of data

to GPU memory and makes possible the highly scalable data-

parallel training by preventing a filesystem IO bottleneck from

occurring during training. This is particularly important when

training the forecast Unet-LSTM model as we construct a batch

using a rolling window from the 12 past time steps and the

future 2 time steps, so each sample in a batch consists of a total

of 14 time steps. In order to further reduce memory usage for

the Unet-LSTM model, we define a data loader so we load from

memory only the data that each batch requires at each time step.

We divide the training and test data sets equally by time onto

each GPU. It is essential that each GPU has exactly the same

number of time steps to avoid problems with load balancing and

the timely communication of model parameters at the end of

each epoch.

3. Results

Having trained the Unet-LSTM model, we can then make

forecasts (inferences) of the temporal evolution of the 2-D SST

fields. The model inference step takes the preceding 12 months

of SST data and makes predictions of the following 2 months.

By using an autoregressive approach, where we feed model

predictions back in as input to the model, we can make

an unlimited number of predictions. For the results reported

here, we limit the predictions to a 24-month window. Model

FIGURE 4

The model predicted SST at +1 month (January 16), from a model forecast initiated in December 2015, the corresponding target ERA5 SST data

set, the di�erence between the model predictions and the target, and the model predicted SST anomaly. Note the di�erent, much higher

resolution temperature scale used to plot model di�erences and SST anomalies.
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FIGURE 5

The model predicted SST at +6 months (June 2016), from a model forecast initiated in December 2015, the corresponding target ERA5 SST data

set, the di�erence between the model predictions and the target, and the model predicted SST anomaly. Note the di�erent, much higher

resolution temperature scale used to plot model di�erences and SST anomalies.

predictions span the data used both for model training and

validation, noting that the MSE between all the training and all

the test data are nearly identical. As the MSE values are nearly

identical, looking at results drawn from either the training and or

validation periods primarily reflects the response of the model to

a particular set of input data. This is the first presentation of the

Unet-LSTM model applied to the prediction of global scale SST

fields. Future work with longer training and validation periods

will provide a more thorough analysis of the model approach.

In this section, we first present results showing the

predictions of the global scale SST fields. We also use the global

scale SST fields to extract the SST values that correspond with

well-known climate indices. As we are making predictions of

the global scale fields, we can extract any index of interest from

our model predictions without the need to develop and train a

new model.

3.1. Global scale 2-D SST predictions

We first show an example set of SST model hindcasts at

t=1, 6, 12, and 18 months initiated in the December 2015 El

Niño. We are using only the test data set to perform the SST

model hindcasts. Figure 4 presents the model predicted SST

field at t=1 (January 2016), the corresponding target ECMWF

ERA5 SST field, the difference between the model predicted and

ERA5 SST, and the model predicted SST anomaly which is the

difference between the model predicted SST values and an ERA5

climatology computed over the 30 year period 1981–2010. The

model predicted SST values accurately capture the main features

of the target ERA5 SST values with the majority of differences

in SST values falling within the range ±1◦C. There does appear

to be evidence that the model is systematically slightly warmer

above 20◦N and slightly cooler in the eastern pacific below

20◦S in Figure 4. The model captures the SST warming in the

eastern equatorial Pacific during the 2015–2016 El Niño, though

with a small cool bias, or underestimation of the warming.

Interestingly, the model is also able to capture the warming

SST off the northwest Australian coast. Model predictions

of warm SST anomalies in the eastern Mediterranean Sea

and northwest Atlantic coast appear also being supported by

observations (Figure 4).

Figures 5–7 compare Unet-LSTM model predictions at t

= 6, 12, and 18 months into the future, respectively. We
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can see that the model captures the temporal evolution of

SST field well over the full 18-month prediction period.

The differences between model predicted SST values grow

slowly over the 18-month prediction period with the majority

of differences in SST values, as shown in Figure 7, falling

within the range ±2◦C with a small overall bias toward

cooler temperatures. The root mean square error (RMSE)

value increases steadily over the 18-month prediction period

from 0.48◦C in January 2016 to 0.63◦C in June 2017. At

12 months lead (Figure 6), the Unet-LSTM model predicts

the near maximum cooling in the equatorial eastern Pacific

as El Niño ends and La Nina conditions develop. At 18

months (Figure 7), the ocean temperatures are predicted to

have warmed slightly again, as is seen in the ERA SST data.

Thus, there appears to be good skill predicting the cooling

at the 12-month lead and warming of SSTs at the 18-month

lead time. The model predicted SSTs at mid-to high-latitudes

in the southern hemisphere at 18-month lead are biased to

cooler temperatures than are seen in the ERA5 data (Figure 7).

Nevertheless, the Unet-LSTM model captures the underlying

seasonal, and to some extent interannual, variations of the global

SST quite accurately.

Figure 8 presents histograms of the Unet-LSTM model

predicting SST values in comparison with the ERA5 SST values

for June 2017, corresponding to the results presented in Figure 7,

at the end of the 18 month prediction period. Figure 8 clearly

demonstrates that the model is able to accurately maintain the

correct distribution of SST values with no smearing of the

distribution even at the end of the 18 month prediction window.

This can be attributed to the use of the Conv2DLSTM layers in

the Unet-LSTMmodel which correctly captures both the spatial

and temporal evolution of the 2D SST field. The second panel in

Figure 8 shows a histogram of the differences between the model

and the ERA5 SST values in comparison with errors produced

by assuming persistence from December 2015. The histogram of

the model differences is centered close to 0◦C with the majority

of errors falling within the range ±2◦C, as previously shown

in Figure 7.

Figure 9 shows the estimates of the Pearson correlation

index for our predicted SST against the ERA5 SST data based

on the 10 24-month predictions starting in July 2006 from

months t+1 to t+6. Figure 10 shows a corresponding plot to

Figure 9 except for the months t+7 to t+12. In order to be able

to compute the Pearson correlation index over 10 years part of

FIGURE 6

The model predicted SST at +12 months (December 2016), from a model forecast initiated in December 2015, the corresponding target ERA5

SST data set, the di�erence between the model predictions and the target, and the model predicted SST anomaly. Note the di�erent, much

higher resolution temperature scale used to plot model di�erences and SST anomalies.
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FIGURE 7

Model predicted SST at +18 months (June 2017), from a model forecast initiated in December 2015, the corresponding target ERA5 SST data

set, the di�erence between the model predictions and the target, and the model predicted SST anomaly. Note the di�erent, much higher

resolution temperature scale used to plot model di�erences and SST anomalies.

the data for the correlation analysis is from the training period.

As illustrated in Figure 3, the MSE errors for the training and

test periods are nearly identical indicating that data from the

training period will not overly influence the results. The case

studies in the model validation period of the study also tend

to support the correlation analysis. Future studies will further

address this issue.

Figures 9, 10 illustrate that the Unet-LSTM model is able to

maintain a good correlation with the target ERA5 SST anomalies

for predictions out to t+12 months. Not shown are plots of

the Pearson correlation index for t+13 to t+24 which continue

to show regions of significant correlation. In general, long-

lead high prediction skills are mostly located in the tropical,

northeast, and south Pacific. There are also high prediction skills

for the high latitude North Atlantic. There are good skills for the

Indian Ocean Dipole regions up to 3-month lead, and the skills

decay rapidly, likely due to a winter prediction barrier of the IOD

(e.g., Luo et al., 2007). The high predictability regions from the

Unet-LSTMmodel are consistent with a statistical predictability

analysis of monthly SST anomalies in the global ocean (Li and

Ding, 2013), with high predictability in the tropical eastern

Pacific, tropical western IndianOcean, and tropical Atlantic, and

mid-latitude Pacific (their Figure 2).

3.2. Long-lead predictions of the El Niño
3.4 and El Niño 4 indices

Most dynamic models’ correlation prediction skills drop

to around 0.5 at a 12-month lead for Nino3.4, as presented

recently (Ham et al., 2019). The CNN model developed by Ham

et al. (2019) can achieve a longer lead prediction for Nino3.4,

however, that is only for a single climate index, whereas in our

model we make predictions of the 2-d monthly SST field and

Nino3.4 is just one region embedded in the global field. So

far, there has not been much study on the prediction skills of

global SST.

Using the Unet-LSTM predicted SST values, we can calculate

the Niño 3.4 index computed over the region 5◦S-5◦N, 170◦W-

120◦W. We compared the model predictions with the Niño 3.4

index derived from the ERA5 SST data. The ERA5 Niño 3.4

index is defined as the difference between the monthly mean
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FIGURE 8

Histograms of the model predicted SST values in comparison with the ERA5 SST values for June 2017 at the end of the 18-month prediction

period. The second panel shows a histogram of the di�erences between the model and the ERA5 SST values in comparison with errors

produced by assuming persistence.

ERA5 SST values and an ERA5 climatology computed over the

30 year period 1981–2010.

We evaluated the Unet-LSTMmodel predictions of the Nino

3.4 index during 2015–2020 at various lead times and compared

with the consolidated predictions archived at the National

Oceanic and Atmospheric Administration (NOAA) Climate

Prediction Center (CPC) website (https://iri.columbia.edu/~

forecast/ensofcst/Data/) (Figure 11). The CPC consolidated

predictions are 3-month averages for up to a 9-month lead. Note

that the consolidated prediction data are for 1–9 months leads

and are only available after 2015. Rojo Hernández et al. (2020)

provided a comprehensive analysis of the forecasting skills of

various models archived on the CPC website.

Compared with the CPC consolidated prediction, the Unet-

LSTM model tends to underestimate the 2015–2016 El Nino

SST warming peak at 3–6 month lead; however, the Unet-LSTM

model tends to behave better at long leads and can predict

a moderate warming in the Nino3.4 region during the 2015–

2016 event at up to 18-month lead (Figure 11). Note that the

Unet-LSTM model overestimates the amplitude of the weak

2014-15 El Nino event. The Unet-LSTM model predicts the

2018–2019 El Nino event rather accurately at all lead times, up

to 18 months, having better skills than the CPC consolidated

prediction at long lead times. The Unet-LSTM model may also

have long-lead prediction skills for the 2020–2021 La Nina

event. In general, the RMSE and correlation skills of the Unet-

LSTM model only decrease slightly between 6 and 18 month

lead times.

As the 2009-10 El Niño is generally regarded as a central

Pacific El Niño (Timmermann et al., 2018), we also assess the

prediction of Niño 4 SST variability, an index for the central

Pacific warming. The Niño 4 index is computed over the region

5◦S-5◦N and 160◦E-150◦W. In Figure 12, the upper panel shows

the ERA5 Niño 4 index over the 24 months covering the

Frontiers inClimate 10 frontiersin.org

https://doi.org/10.3389/fclim.2022.932932
https://iri.columbia.edu/~forecast/ensofcst/Data/
https://iri.columbia.edu/~forecast/ensofcst/Data/
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Taylor and Feng 10.3389/fclim.2022.932932

FIGURE 9

The Pearson correlation coe�cient (R) calculated using the 10 24-month forecasts commencing each July from July 2006 until July 2015 for

months t+1 to t+6 showing large regions of significant correlation between the model predicted and ERA5 SST values out to t+6. In order to use

a 10-year period, part of the data for the correlation analysis is from the training period, however, the case studies in the model validation period

of the study tend to support the correlation analysis.

2009–2010 warm event. The lower panel in Figure 12 presents

the spatial pattern of the model predicted SST anomalies in

November 2009 taken from the corresponding Niño 4 index

predictions in the panel above. It is shown that the model

can predict the Niño 4 index variability well, though, with an

early peak in the predicted SST anomalies in October 2009

(Figure 12), the warming pattern is similar to a central El Niño

event (Figure 12). Note that data from 2009–2010 are from the

end of the model training period, as there is no good example for

a central Pacific El Nino during the model validation period.

Figure 13 shows model predictions of the El Niño 3.4 index

for a 24-month prediction starting in July 2014 (rather than

in January) and ending in June 2016 which spans the entire 2

year warm period. Figure 13 illustrates that the model is able

to capture this unusual event with two consecutive El Niños

with model predictions tracking the ERA5 El Niño 3.4 index

within 1◦C, throughout the full 2-year period, though it still

does not match the full intensity of the 2015–2016 El Niño. As

demonstrated in the correlation maps, we note that most of the

ENSO events can be well captured by the Unet-LSTMmodel.

3.3. Long-lead predictions of the “Blob”
index

We have computed the Blob index using the ERA5 SST data

for the period January 1950-May 2021. The Blob index is defined

as the difference between the monthly average SST climatology

(1981–2010) and the monthly average SST computed over

the region 34◦N-47◦N, 147◦W-128◦W (Amaya et al., 2020).
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FIGURE 10

The Pearson correlation coe�cient (R) calculated using the 10 24-month forecasts commencing each July from July 2006 to July 2015 for

months t+7 to t+12 showing the presence of a significant correlation between the model predicted and ERA5 SST values out to t+12. In order to

use a 10-year period, part of the data for the correlation analysis is from the training period, however, the case studies in the model validation

period of the study tend to support the correlation analysis.

Figure 14 presents the blob index over this time period, along

with a two-sided 95% confidence interval and a one-sided 90%

confidence interval. In the lower panel of Figure 14, we focus

on the period January 2014-May 2021. During this time period,

we see multiple exceptional ocean warming events in the Blob

region where ocean temperatures exceed the 95% confidence

interval by up to 1◦C. It is also worth noting during the January

2014-May 2021 period the Blob index only dropped below 0◦C

during the boreal winter of 2016–2017.

In order to demonstrate the ability of the Unet-LSTMmodel

to predict the Blob index, Figure 15 presents multiple 24 month

predictions of the Blob index focusing on the period 2014–

2021. The Unet-LSTM model Blob index is computed from the

corresponding model predicted SST values, e.g., as presented in

Figures 4–7 and monthly average SST climatology (1981–2010).

We include 24-month predictions that capture the warm events

in 2014 and 2015, the cooling during the winter of 2016–2017,

and the two warm events in 2019 and 2020. Figure 15 illustrates

the ability of the model to accurately predict the evolution of the

Blob index during both warming and cooling events over the full

24-month prediction period.

4. Summary and discussion

In this study, we use monthly reanalysis of global surface

temperature (SST and 2-m air temperature) data to train a Unet-

LSTM data-driven model and demonstrate its ability to predict

SST variability at various lead times. We used a 12-month

window to train the Unet-LSTMmodel, with the seasonal cycles

retained in the training data, which effectively captured the

seasonal SST variation in the global ocean. For the SST anomaly
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FIGURE 11

Comparison between the Unet-LSTM model predictions of the Nino3.4 index during 2015-2020 and the consolidated predictions of the

National Oceanic and Atmospheric Administration (NOAA) archived at the Climate Prediction Center (CPC) website (https://iri.columbia.edu/~

forecast/ensofcst/Data/archive/), with lead times of 1, 3, 6, 9, 12, and 18 months. The correlation and RMSE numbers are denoted for each lead

time. The NOAA consolidated predictions are 3-month averages for up to a 9-month lead. In 2016, there are no NOAA consolidated predictions

during the first 6 months. The ERA5 monthly Nino3.4 SST anomalies are plotted as references.
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FIGURE 12

Model predictions of the El Niño 4 index for the 2009-10 and 2015-16 warm periods are presented in the upper panels. In each graph, we

compare the model results with the El Niño 4 index, defined as the monthly average SST computed over the region 5◦N-5◦S and 160◦E-150◦W,

calculated from the monthly mean ERA5 SST data. The dotted lines define warm (> 0.8◦C) and cold (< −0.8◦C) periods. Model predictions and

ERA5 estimates of the El Niño 4 index > 0.8◦C have been shaded red, and values < −0.8◦C have been shaded blue, for emphasis. The lower

panels present the spatial pattern of the model predicted SST anomalies in November 2009 and October 2015 taken from the corresponding

24-month predictions shown in the upper panels. The 2009-10 El Nino is from the model training period, as there is no good example for a

central Pacific El Nino during the model validation period.

prediction, there are high long-lead skills in the equatorial

Pacific and northeast Pacific. In the following, we discuss a

few aspects of the model predictions and outline our plans for

future work.

4.1. Comparison with other ML ENSO
prediction architectures

Ham et al. (2019) developed a CNN deep learning model,

trained with coupled climate model outputs, to achieve 18-

month-lead prediction skills for Nino3.4. Their model was

initialized with both monthly SST and upper ocean heat content

anomalies, claiming that the upper ocean heat content memory

actually helped the model to achieve the long-lead model

skills. Most of the recent development in deep learning ENSO

forecasting models are based on this framework (Ham et al.,

2021 among others). The Unet-LSTM based CNNmodel trained

and initialized with global surface temperature fields can achieve

similar prediction skills, not only for Nino3.4 but also in

the northeast Pacific, which is demonstrated in the prediction

assessment of the recent Blob marine heatwave events.

We have used a 12-month window to train the Unet-LSTM

model, while most other CNN models used 3-month temporal

window. The model achieves long-lead prediction mostly in

the Pacific, which suggests that the precursors of the long-lead

prediction likely reside in the Pacific.

By using a 12-month time window to train the Unet-LSTM

model, we can use the full temperature field, instead of only

using the anomaly field. In this way, both the annual cycle

of temperature variations and the interannual anomalies are

considered simultaneously. This may have two benefits: one

is to be able to train the model to assimilate the dynamics

of the seasonally phase-locked variability; the other is that the

model can carry the memory over the past years, so that it

is not necessary to remove the steady warming trend at the

surface ocean from the reanalysis (observation) data prior to the

model training.

Note that there is an attempt to capture the seasonal cycle

by introducing additional labels in a CNN model (Ham et al.,

2021); however, it may only be achievable for a single index
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FIGURE 13

Model predictions of the El Niño 3.4 index for a 24-month prediction starting in July 2014 and ending in June 2016. We compare the model

results with the El Niño 3.4 index, defined as the monthly average SST computed over the region 5◦N-5◦S and 120◦W-170◦W, calculated from

the monthly mean ERA5 SST data. The dotted lines define warm (> 0.8◦C) and cold (< −0.8◦C) periods. Model predictions and ERA5 estimates

of the El Niño 3.4 index > 0.8◦C have been shaded red, and values < −0.8◦C have been shaded blue, for emphasis.

prediction. However, we do need to assess the stability of the

model prediction starting from different months, especially

when there are known prediction barriers for various climate

indices (e.g., Timmermann et al., 2018). While the Unet-LSTM

model is able to predict most ENSO events well, it is noted

that the model prediction starting in January fails to predict the

2015–2016 peak during the rare occurrence of two consecutive

El Ninos, likely due to a lack of similar cases in the training

data based on existing observations. ENSO diversity may still

pose a challenge for data-driven ML models. Nevertheless, the

current version of Unet-LSTM shows great promise in leading

the way tomore sophisticated 2-dimensional SST predictions for

the global ocean.

4.2. Future work

The success of the Unet-LSTM model at capturing

key features of the global scale temperature field clearly

demonstrates that data-driven approaches to modeling the

spatio-temporal evolution of complex physical systems such

as SSTs are a promising avenue for further research. As a

next step, we plan to retrain our model using the twentieth-

century reanalysis products with a more extended validation

period in future studies. We also plan to increase the model

spatial resolution to the full resolution of the ERA5 data

set, currently 0.25◦, which will allow us to investigate the

impact of model resolution on SST predictions and to study

the variations in SST at the regional scale in more detail.

Incorporating upper ocean variability as model input is also

a priority. It appears that some upper ocean memory may

reside in the surface temperature records. Surface SST and

land surface temperatures drive global surface wind anomalies

and then subsequently drive the planetary ocean waves to

store the upper ocean heat content anomalies. This is a

problem for further exploration. We will also investigate better

quantifying the uncertainty associated with model forecasts

using an ensemble forecasting approach and the prediction
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FIGURE 14

The Blob index defined as the di�erence between the monthly average SST climatology (1981–2010) and the monthly average SST computed

over the region 34◦N-47◦N and 147◦W-128◦W. We compute the Blob index from the monthly mean ERA5 SST data for the period January

1950-May 2021. We include the two-sided 95% confidence interval and the one-sided 90th percentile. The lower panel is the same Blob index

with a focus on the period January 2014-May 2021 with the significant ocean warming events in 2014, 2015, 2019, and 2020 highlighted.

of other key ocean indices, such as the Indian Ocean

Dipole (IOD), using both the existing model and at higher

model resolutions.

Given the results presented here and the successful

application of the Unet-LSTM model in previous studies

(Taylor et al., 2021), we have increased confidence that the

Unet-LSTM model can be applied to the general problem of

the spatial and temporal evolution of other 2D geophysical

fields. As of TensorFlow 2.6, a ConvLSTM3D layer is now

available. By replacing the ConvLSTM2D layer with the

ConvLSTM3D layer, the Unet-LSTM can be used to predict

the spatio-temporal evolution of 3D fields. The ability to

model 3D fields will allow us to investigate improving SST

predictions by incorporating additional input variables, such

as surface wind fields, into the Unet-LSTM model. The

primary barrier to working with large 3D fields is the

availability of GPU memory which on current devices is

limited to 16-32GB. Next, generation GPU devices will have

significantly larger memory, which combined with model

parallelism, will allow much larger more complex models to

be developed.

Training the Unet-LSTM model only with the reanalyzed

temperature field (which incorporates existing observations)

over the seven decades appears to have constrained the model

to capture the ENSO dynamics and its teleconnection in

the Indian Ocean and mid-latitude oceans (e.g., the Blob

region). On the other hand, the CNN ML models are trained

using coupled atmosphere-ocean models, which have inherent

biases in the coupled models, as well as unrealistic ENSO

simulations in some of the coupled models, such as the ENSO

frequencies. Transfer learning, which has been proposed in

some studies (Ham et al., 2019), may not be enough to correct

these model biases (Timmermann et al., 2018). A knowledge-

based strategy is needed to combine the coupled model results
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FIGURE 15

Model predictions of the Blob index over a 24 month period commencing in July 2013, 2014, 2015, and January 2019 compared with the Blob

index, defined as the monthly average SST computed over the region 34◦N-47◦N and 147◦W-128◦W, calculated from the monthly mean ERA5

SST data. We include the two-sided 95% confidence interval. We focus on the period January 2014-May 2021 with the significant ocean

warming events in 2014 and 2015 captured in the top two panels. The winter cooling in 2016–2017 and the warming events in 2019 and 2020

are presented in the lower panels.

with observations to provide a well-sampled dataset, for the

ML models to capture the diverse SST variability in the

global and regional oceans, in order to better predict rare

climate events.

A new and rapidly evolving area of research is physics-

informed ML (Karniadakis et al., 2021) that combines

ML with physical constraints, derived for example, from

ordinary differential equations (ODEs) and partial differential

equations (PDEs) that describe the system under study. The

implementation of physics-informed ML is mesh-less which

allows model regression to take place using an available

set of imperfect observations that define the initial and

boundary conditions without the need to interpolate the data

to an appropriate grid. Physics-informed ML could yield new,

more flexible, potentially transformative, approaches to ocean

modeling; however much work needs to be done to realize

this goal.
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