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Systematic tools and approaches for measuring climate change adaptation

at multiple scales of spatial resolution are lacking, limiting measurement of

progress toward the adaptation goals of the Paris Agreement. In particular,

there is a lack of adaptation measurement or tracking systems that are

coherent (measuring adaptation itself), comparable (allowing comparisons

across geographies and systems), and comprehensive (are supported by the

necessary data). In addition, most adaptation measurement e�orts lack an

appropriate counterfactual baseline to assess the e�ectiveness of adaptation-

related interventions. To address this, we are developing a “Biomass Climate

Adaptation Index” (Biomass CAI) for agricultural systems, where climate

adaptation progress acrossmultiple scales can bemeasured by satellite remote

sensing. The Biomass CAI can be used at global, national, landscape and farm-

level to remotelymonitor agri-biomass productivity associatedwith adaptation

interventions, and to facilitate more tailored “precision adaptation”. The

Biomass CAI places focus on decision-support for end-users to ensure that

the most e�ective climate change adaptation investments and interventions

can be made in agricultural and food systems.

KEYWORDS

climate change, agriculture, resilience, adaptation, remote sensing, artificial

intelligence, machine learning

Introduction

Unless greenhouse gas (GHG) emissions are curbed significantly within decadal

timeframes to follow low emissions scenarios and allow us to remain within 1.5◦C

by mid century, our social and ecological systems will experience more frequent and

intense climate change impacts throughout the rest of this century and beyond (IPCC,

2018, 2021). Such climate change impacts will include temperature increases, sea level

rise, changes to precipitation patterns, and an increased prevalence and intensity of

extreme weather shocks (IPCC, 2018, 2021). The productivity of many agricultural

systems is expected to be negatively impacted by climate change impacts (Mbow et al.,

2019), potentially reducing yields of major staple crops by 3–12% by 2050, and by

11–25% by 2100 (Wing et al., 2021). Without effective adaptation measures at farm and
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landscape levels, climate change will negatively impact

livelihoods and food security dependant on farming (Morton,

2007; Wheeler and Von Braun, 2013; Lipper et al., 2014; Mbow

et al., 2019; Wing et al., 2021). To strengthen the resilience of

rural and agricultural communities at risk of climate impacts,

a wide ranging portfolio of “Climate-Smart Agriculture” (CSA)

practices are being deployed and scaled (Lipper et al., 2014;

Rosenstock et al., 2019; FAO, 2013). Adaptation progress is

critical to meeting the Paris Agreement goals, with financing

entities pledging investments (The World Bank Group, 2021)

and over 131 parties now prioritizing adaptation of agricultural

systems in their nationally determined contributions (NDCs)

(Strohmaier et al., 2016).

Building resilience through climate
change adaptation

Conceptualization of climate change adaptation has

juxtaposed incremental vs. transformational adaptation in

agricultural systems (Howden et al., 2010; Kates et al., 2012;

Park et al., 2012; Rickards and Howden, 2012; Rippke et al.,

2016; Vermeulen et al., 2018). Incremental adaptation refers to

small changes made to an existing farming system to mitigate

the impacts of climate shocks, such as changing planting times

or varieties in accordance with weather projections (Howden

et al., 2010; Kates et al., 2012; Rickards and Howden, 2012).

Fitting with the concept that systems can migrate to different

states with differing levels of resilience (Holling, 1973; Allen

et al., 2019), agricultural systems can undergo transformational

adaptation by fundamentally changing their system state when

climate change threatens the system’s existence (Howden et al.,

2010; Kates et al., 2012; Rickards and Howden, 2012).

It is considered that transformational adaptation may be

more appropriate than incremental adaptation for agricultural

systems that face intense climate change projections (Howden

et al., 2010; Kates et al., 2012; Park et al., 2012; Rickards and

Howden, 2012; Rippke et al., 2016; Vermeulen et al., 2018),

with investment in incremental adaptation being criticized for

delaying the implementation of transformational adaptations

(Rickards and Howden, 2012). However, transformational

adaptation efforts have significant inertia and path dependency

effects to overcome, are often disorderly in practice (Vermeulen

et al., 2018) and involve significant risk and barriers (Howden

et al., 2010; Kates et al., 2012; Park et al., 2012; Rickards and

Howden, 2012; Vermeulen et al., 2018). Both incremental

and transformational adaptation processes require more

robust planning processes with the involvement of multiple

stakeholders (Howden et al., 2010; Kates et al., 2012; Park et al.,

2012; Vermeulen et al., 2018), financial support (Kates et al.,

2012; Rickards and Howden, 2012; Vermeulen et al., 2018), and

better monitoring and decision-support tools to identify gaps

and develop an “evidence base” for decision-making (Kates

et al., 2012; Park et al., 2012; Rickards and Howden, 2012;

Rippke et al., 2016; Vermeulen et al., 2018).

Resilience, Transformation and
Climate Change

The resilience of social-ecological systems has been

extensively investigated, where early definitions refer to

resilience as “the ability of a system to absorb changes of

state variables, driving variables, and parameters, and still

persist” (Holling, 1973) . This conceptualization of resilience

recognizes that resilient systems can be unstable, shifting to a

new state in different “basins of attraction” to promote resilience

(Holling, 1973; Allen et al., 2019). The idea that systems can

dramatically change state in a manner that leads to improved

resilience is referred to as “transformation” (Walker et al.,

2004). Frameworks have been devised to help understand

resilience, however many complicate the definition further by

introducing conflicting ideas (Allen et al., 2019). For example,

some approaches focus on the stability of systems in terms

of their “robustness, resistance and recovery”, insinuating

that systems must remain in or return to their original state

(Allen et al., 2019; Grafton et al., 2019). However, conflicting

arguments should be considered together to move forward

toward improved decision-making for resilience building (Allen

et al., 2019). This is critically important when considering

the threat of climate change, which could involuntarily push

systems beyond an equilibrium threshold into a state that is

maladapted to climate change impacts (Folke et al., 2010). For

instance, some crops in regions of Sub-Saharan Africa could see

thresholds crossed before 2100, beyond which their cultivation

would not be feasible in the regions affected (Rippke et al.,

2016). There remains an ongoing need for transformation of

small scale systems (e.g., agricultural systems), to facilitate wider

scale Earth resilience (Folke et al., 2010).

Tracking climate change adaptation
in agriculture

Although they are frequently juxtaposed, incremental and

transformational adaptation do not necessarily need to be

viewed as entirely separate pathways (Kates et al., 2012; Park

et al., 2012; Rickards andHowden, 2012; Vermeulen et al., 2018).

Incremental and transformational adaptation can be considered

as components of a broader “Adaptation Action Cycle” (Park

et al., 2012), where they occur in connected cycles across

four key stages: identification of the problem and development

of goals, creation of an adaptation plan, implementation of

the adaptation, and monitoring and evaluation (Park et al.,

2012). After monitoring and evaluation (indicated by the arrows

in Figure 1), a system has the opportunity to switch from
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FIGURE 1

Schematic of transformational and incremental adaptation in

relation to the benefit gained from the adaptation and the risks

involved. Redrawn from Howden et al. (2010) and Rickards and

Howden (2012), taking the “Adaptation Action Cycle” (Park et al.,

2012) into consideration. The black arrows represent

information provided by monitoring and evaluation tracking

systems, allowing a transition between adaptation states (Park

et al., 2012).

incremental to transformational adaptation, or vice versa (Park

et al., 2012). In this context, “adaptation tracking systems” are

critically important to monitor trends in adaptation progress

through time and space, which is fundamental for (a) assessing

the performance of adaptation interventions and evaluating how

successful different adaptation investments are, (b) recognizing

priorities, and (c) directing attention and investments toward

these priority areas (Ford et al., 2013; Ford and Berrang-Ford,

2016). If evidence shows that a transformation is required,

a system can enter a “preparatory phase” of decision-making

(Rippke et al., 2016).

Adaptation tracking systems have to date gained limited

attention within the UNFCCC process (Ford et al., 2015).

Indeed, there are no adaptation tracking systems that are

currently universally accepted or deployed by the global

adaptation community (Adaptation Committee, 2021). An

urgent need for the development of systematic tracking

procedures and methodologies that can assess global progress

toward adaptation goals is recognized (Ford et al., 2013,

2015; Ford and Berrang-Ford, 2016; Berrang-Ford et al.,

2019; Adaptation Committee, 2021). Investigations into

methodologies to track adaptation are increasing, driven partly

by the climate financing community calling for evidence behind

the outcomes of adaptation investments (Ford et al., 2013;

Ford and Berrang-Ford, 2016; Jacobs and Al-Azar, 2019),

and the demand for national reporting and transparency to

meet the Paris Agreement’s global goal on adaptation (Ford

et al., 2015; UNFCCC, 2015; Ramasamy, 2017; Rosenstock

et al., 2017; Berrang-Ford et al., 2019; Jacobs and Al-Azar,

2019).

Adaptation tracking systems should be “consistent,

coherent, comparable and comprehensive”—referred to as the

“4Cs” (Ford and Berrang-Ford, 2016). Although the “4Cs”

framework is largely applied to national level reporting for

adaptation in all sectors, the “4Cs” are also important to

consider for any tracking methodology. Firstly, a tracking

system must have a “consistent” definition of adaptation

(Ford and Berrang-Ford, 2016). The UNFCCC and the IPCC

define adaptation as an “adjustment in natural or human

systems in response to actual or expected climatic stimuli

or their effects, which moderates harm or exploits beneficial

opportunities” (Agard et al., 2014; UNFCCC, 2021). In

the context of the agriculture sector, the broad concept of

adaptation is now well understood. For example, adaptation

interventions under the banner of “Climate-Smart Agriculture”

are considered as particular actions that increase productivity

and resilience to climate shocks (FAO, 2013; Lipper et al.,

2014; Rosenstock et al., 2019). “Coherency” refers to the ability

of an adaptation tracking system to appropriately measure a

successful adaptation, rather than for example, the quantity

of adaptation interventions implemented (Ford and Berrang-

Ford, 2016). A tracking system must also be “comparable”

to enable assessment between different areas and across

different time periods, involving metrics that are transparent

and easily collected throughout time to analyse adaptation

progress (Ford and Berrang-Ford, 2016). “Comprehensive”

tracking systems composed of good quality and abundant

data can facilitate comparability (Ford and Berrang-Ford,

2016).

Developing a comparable and comprehensive adaptation

tracking system faces difficulties due to methodological and

empirical challenges associated with data collection (Ford et al.,

2015; Ford and Berrang-Ford, 2016; Adaptation Committee,

2021). For example, there are a lack of accepted indicators that

can be applied universally, compared to mitigation which can

be measured universally using greenhouse gas concentrations

(Brooks et al., 2011; Ford et al., 2015; Ramasamy, 2017; Jacobs

and Al-Azar, 2019; Adaptation Committee, 2021). It is also time

consuming and expensive to collect data on multi- and wide-

scales (FAO, 2013; Ramasamy, 2017; FAO and UNDP, 2019;

Jacobs and Al-Azar, 2019), i.e., data collected using surveys

which can take months to gather and process, and can cause

a delay in obtaining findings that may be required quickly for

further adaptation planning (FAO and UNDP, 2019). A further

challenge noted by many in the adaptation tracking sphere is

the difficulty in devising a “counterfactual baseline” to compare

adaptation progress to, especially as baselines shift with climate

change (Brooks et al., 2011; FAO, 2013; Ford et al., 2013, 2015;

Dinshaw et al., 2014; Ford and Berrang-Ford, 2016; Ramasamy,

2017; FAO and UNDP, 2019; Jacobs and Al-Azar, 2019). A

tracking system that is “coherent, standardized and relevant” is

required, while also being inexpensive and accurate (Rosenstock

et al., 2017).
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Remote sensing technology for
climate change adaptation tracking

To develop next-generation adaptation tracking systems,

there is an opportunity to establish new methods of data

collection building on technological innovation (Ford et al.,

2016; Rosenstock et al., 2017; FAO and UNDP, 2019).

In particular, remote sensing technology presents a major

opportunity to improve climate change adaptation tracking

systems (Ford et al., 2016; Rosenstock et al., 2017; FAO and

UNDP, 2019; Schiavon et al., 2021), with the potential to track

a range of indicators at high spatial and temporal resolution

(Rosenstock et al., 2017). Indeed, the IPCC have acknowledged

the key role of remote sensing formonitoring land based systems

(IPCC, 2020). Satellite remote sensing (SRS) demonstrates the

ability to consistently monitor agriculture systems across all

geospatial locations globally, providing data that can generate

more impartial and reliable evidence to direct decision-making

(Atzberger, 2013; Yang et al., 2013). Remote sensing tools

are consequently becoming more commonplace within the

agriculture sector, such as the Copernicus programme in the

European Union which is being used for tracking progress and

issuing payments to farmers under the Common Agricultural

Policy (European Commision., 2018; Schiavon et al., 2021).

In the context of biomass (natural or agricultural), vegetation

indices are commonly used metrics derived from SRS, such as

the Normalized Difference Vegetation Index.

The Normalized Difference Vegetation Index (NDVI) is a

popular vegetation index used to monitor the productivity

(Pettorelli et al., 2005) and therefore the “greenness”

of vegetation (Reed et al., 1994). As chlorophyll within

photosynthetic organisms absorbs red light (between 0.6 and

0.7µm) rather than near infrared light (between 0.75 and

1.35µm), a “contrast” is created (Myneni et al., 1995; Pettorelli

et al., 2005; Dinan et al., 2015). Using SRS, the reflectance of red

and near infrared light and the contrast between these can be

calculated using the NDVI equation (Equation 1), with values

falling between −1 and 1 (Huete et al., 1994; Reed et al., 1994;

Myneni et al., 1995; Pettorelli et al., 2005; Dinan et al., 2015).

Equation 1:

NDVI =
NIR− Red

NIR+ Red
(1)

A range of metrics, such as maximum NDVI and cumulative

NDVI, can be derived from an NDVI time-series spanning a

vegetation growing season, indicating temporal phenological

changes (Pettorelli et al., 2005). NDVI provides an indication of

photosynthetic activity (Tucker, 1979; Asrar et al., 1984; Huete

et al., 1994; Reed et al., 1994; Myneni et al., 1995; Pettorelli et al.,

2005; Dinan et al., 2015), and has therefore been extensively

applied to the agricultural sector to monitor crop productivity

and yield (Moriondo et al., 2007; Huang et al., 2013; Lopresti

et al., 2015), in addition to identification and monitoring of crop

systems and management zones on a wide scale (Vrieling et al.,

2011; Damian et al., 2020; Lebrini et al., 2020). NDVI has further

been used to estimate net primary productivity of vegetation

(Vrieling et al., 2011; Anchang et al., 2019), and to track climate

change impacts on vegetation (Liu et al., 2015; Piedallu et al.,

2019).

Remote sensing is also being investigated as a method to

monitor the resilience of ecosystems (Ndungu et al., 2019; Jones

et al., 2021). For example, NDVI has been used to measure

the resilience of ecosystems following exposure to shocks such

as a drought (Washington-Allen et al., 2008; Ndungu et al.,

2019; Von Keyserlingk et al., 2021). However, limited research

has to date been conducted to assess the use of NDVI to track

climate change adaptations in the agriculture sector. Recently,

the potential of MODIS satellite derived NDVI as a tool for

monitoring adaptations has been demonstrated focusing on

sites in Burkina Faso (Nyamekye et al., 2021) and Kenya

(Ndungu et al., 2019). Using the RESTREND method (Evans

and Geerken, 2004; Ibrahim et al., 2015), it is possible to

monitor adaptation interventions compared to a counterfactual

(Nyamekye et al., 2021). For this method, NDVI is predicted

using linear regression modeling with precipitation or soil

moisture data, which is then subtracted from observed NDVI to

show land degradation independent of climatic influence (Evans

and Geerken, 2004; Ibrahim et al., 2015).

Climatic factors, evapotranspiration, water quality, and

topography all have an impact on crop growth (Jia et al.,

2020). NDVI can be used to examine crop growth and its

relationship with various factors to reveal the important factors

for intervention and tracking climate adaptation (Phan et al.,

2021; Shen and Evans, 2021; Yadav and Geli, 2021; Rigden et al.,

2022). For instance, in China, precipitation was found to be

the leading cause of agricultural failure over other factors (Peng

et al., 2008), whereas Lamchin et al. (2018) found temperature

to be the most influential factor in vegetation growth in the

Asia region. Agricultural yields, such as of tea in Vietnam

(Phan et al., 2021), and corn, sorghum, alfalfa, and wheat in

New Mexico, USA (Yadav and Geli, 2021) have been predicted

by calculating the deviation of historical mean NDVI to the

current and assessing the correlation with water stress, extreme

weather events, and soil moisture. From time series NDVI

(Rigden et al., 2022) and (Wei et al., 2015) have depicted the

cropping calendar and explored climatic variability’s impact on

crop yield (Rigden et al., 2022). Wei et al. (2015) define onset

and end of growth as the dates when the reconstructed NDVI

time-series curve increases and decreases to 20% of the overall

level, respectively, and the peak of growth is defined as the

date when the reconstructed NDVI time-series curve reaches

the maximum. This capability endorses NDVI for developing

biomass-based climate adaptation index and provides quasi-

real-time information for different farming systems. Such

research serves as a basis for our current “Tracking Adaptation

Progress in Agricultural Systems” (TAPAS) program, which

is investigating the use of SRS and deep learning derived

NDVI to track agri-biomass resilience fostered by climate
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TABLE 1 Selection of adaptation tracking indicators from the TAAS

framework (Ramasamy, 2017).

Category Indicator Method of

collection

Outcome/

process

Natural

Resources and

Ecosystems

Percentage of the

population employed in

agriculture that own land

Quantitative Outcome

(Gender

disaggregated)

Procedures in place to

ensure species diversity

conservation

Qualitative Process

Agricultural

Production

Systems

Percentage change in

yield from the baseline

Quantitative Outcome

Percentage GDP loss

associated with crop loss

Quantitative Outcome

Socio-

economics

Percentage of the

population that are

undernourished

Quantitative Outcome

Percentage of the

population under safety

nets

Quantitative Outcome

(Gender

disaggregated)

Institutions

and Policies

Operational capacity of

climate adaptation funds

Qualitative Process

Number of times climate

scenarios have been used

in adaptation planning

Quantitative Process

change adaptation interventions. Although a multitude of

interdisciplinary indicators are essential for tracking adaptation

as highlighted in Table 1, an SRS basedNDVImonitoring system

of agri-biomass provides a straightforward and ex-situ method

of tracking adaptation interventions in agricultural systems to

aid decision-making (Ndungu et al., 2019; Nyamekye et al.,

2021).

Use of machine learning for
spatiotemporal data fusion,
NDVI-based vegetation prediction,
and accuracy evaluation

The availability of simultaneous high spatiotemporal

resolution remote sensing data is highly desirable for more

effectively monitoring and predicting vegetation growth (Ning

et al., 2015; Bento et al., 2020; Maselli et al., 2020; Kloos

et al., 2021; Measho et al., 2021; Wang et al., 2021). It is now

becoming easier to improve the spatiotemporal resolution

of remote sensing data using machine learning to enhance

vegetation monitoring and prediction capacity (Ferchichi et al.,

2022). For instance, Mishra and Shahi (2021) have applied two

deep learning (DL) models, convolutional neural networks

(CNNs) and long-short-term memory (LSTM), and one more

traditional machine learning model (i.e., random forest -RF) for

spatiotemporal data fusion of Landsat 8 and Sentinel-2 NDVI

datasets for predicting vegetation growth in China. Htitiou

et al. (2021) have also used deep learning-based Very Deep

Super-Resolution (VDSR) for spatiotemporal data fusion of

NDVI retrieved from Sentinel-2 and Landsat 8 images for crop

monitoring. Their study indicated that VDSR performed better

than the enhanced spatial and temporal adaptive reflectance

fusion model (ESTARFM) and the flexible spatiotemporal data

fusion (FSDAF) spatiotemporal image fusion algorithms in

terms of producing the least blurred images and predictions

of NDVI values. To produce a high spatial resolution NDVI

dataset for investigating vegetation dynamics in heterogeneous

landscapes, Liao et al. (2016) proposed the NDVI-Bayesian

Spatiotemporal Fusion Model (NDVI-BSFM), which integrates

the Moderate Resolution Imaging Spectroradiometer (MODIS)

and Landsat 8 NDVI.

Various machine learning (ML) algorithms are presented

for predicting vegetation conditions using NDVI data. For

instance, Huang et al. (2017) proposed the use of Multiple

Linear Regression (MLR), Artificial Neural Network (ANN),

and Support Vector Machine (SVM) models to improve

NDVI prediction. Meanwhile, for predicting NDVI from non-

stationary big remote sensing time series long short-term

memory (LSTM) neural networks have been proposed by Reddy

and Prasad (2018) and Rhif et al. (2020) and conventional LSTM

(ConvLSTM) for crop forecasting by Ahmad et al. (2020b).

The Elman recurrent neural network model (ERNN) has

been used for short-term NDVI index forecasting (Stepchenko

and Chizhov, 2015). Machine learning model-based extreme

gradient boosting method has been used to predict vegetation

growth represented by NDVI throughout the growing season

from 2001 to 2018 in China (Li et al., 2021). By assessing NDVI,

leaf area index (LAI) and normalized difference water index

(NDWI) derived from Landsat 8 surface reflectance, grape yield

estimations were made using artificial neural network (ANN)

based machine learning and regression analysis (Arab et al.,

2021).

Vegetation indices (NDVI and EVI) extracted from the

2001 to 2018 MODIS dataset have also been used to forecast

their values in 2019 using Vector Regression, Random Forest

(RF), and Linear and Polynomial Regression (Roy, 2021). For

predicting maize yield from land surface temperature (LST)

and NDVI in Pakistan, Ahmad et al. (2020a) applied the

K-Nearest Neighbor clustering machine learning model. In

predicting drought impacts on crop yield Mann et al. (2019)

used a machine learning-based random forest model that takes

NDVI, precipitation, and evaporation as indicators. Despite

the availability of numerous deep machine learning models,

their prediction accuracy may vary greatly when used in

biomass-based adaptation indexes. For instance, CNN and RF
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display good performance in vegetation growth predictions

from NDVI (Ayhan et al., 2020; Li et al., 2021; Mishra

and Shahi, 2021; Ferchichi et al., 2022). The performance of

machine learning models can be evaluated through a range

of approaches, including Root Mean Square Error (RMSE),

coefficient of determinates (R2), Pearson correlation (R), and

structural similarity (SSIM), which have been used by Rhif

et al. (2020), Ahmad et al. (2020b), Arab et al. (2021), Htitiou

et al. (2021), Mishra and Shahi (2021), and Roy (2021). Htitiou

et al. (2021) use NDVI values extracted from spatial transects

created across the study site to compare the performance of Very

Deep Super-Resolution (VDSR) against the enhanced spatial

and temporal adaptive reflectance fusion model (ESTARFM)

and the flexible spatiotemporal data fusion (FSDAF) method in

producing high resolution NDVI time series datasets. Based on

the random point (RPO) sample construction method, Li et al.

(2022) have investigated the prediction capacity of four machine

learning approaches, (backpropagation neural network, decision

tree, RF, and support vector machine), to predict the quality of

cultivated land, where RF was found to be the most accurate.

The accuracy and performance of combined feature

engineering forecasting model (SF-CNN) and CNN for

forecasting NDVI have been assessed using the root mean

square error (RMSE), mean absolute percentage error (MAPE),

Nash-Sutcliffe coefficient (NSE), and mean absolute error

(MAE) statistics indicators (Cui et al., 2020). Furthermore,

to improve the performance of machine learning prediction

accuracy ensemble algorithms have been incorporated into a

variety of applications including crop yield prediction and

forest structure and biomass estimation (Zhang et al., 2022a).

Ensemblemachine learning has been used to improve vegetation

and cropland classification accuracy (Aguilar et al., 2018;

Drobnjak et al., 2022). For above ground biomass estimation

a stacking ensemble algorithm has been used (Zhang et al.,

2022b). Zhang et al. (2022a) have identified bagging, boosting,

and stacking as widely used ensemble techniques. The use

of ensemble machine learning algorithms in biomass-based

adaptation index development will improve the performance

of the index. Evaluation indices, such as Lin’s Concordance

Correlation Coefficient (LCCC), can further improve prediction

accuracy. Zhao et al. (2022) uses ensemble modeling, averaging

models using Granger–Ramanathan averaging (GRA) and

LCCC, to improve prediction accuracy. They found that,

though both methods improved prediction accuracy, GRA was

better performing.

Options and challenges for
developing a Biomass Climate
Adaptation Index (Biomass CAI)

To meet the need for an integrative tracking system for

measuring agricultural adaptation across multiple scales, within

the TAPAS program we are developing a Biomass Climate

Adaptation Index (Biomass CAI) as a versatile tracking tool

based on SRS data to assist monitoring and decision-making

for agricultural resilience. For a given area of adaptation,

the Biomass CAI metric uses inputs of both observed NDVI

directly from satellites, and predicted NDVI from deep

learning algorithms. As the deep learning algorithms predict

NDVI accounting for shifts in climatic perturbations, this

represents the “counterfactual” situation that would occur if the

adaptation intervention was not implemented. By subtracting

the deep learning predicted NDVI from observed NDVI,

our Biomass CAI can calculate a “score” for any given

geospatial location, showing the deviation observed NDVI

measurements make from the counterfactual baseline. The

Biomass CAI presents scores over time in a time-series,

giving the end-user a quantitative indication of the agri-

biomass productivity and therefore the comparative “success”

of the adaptation intervention over time. Figure 2A provides a

schematic representation of a Biomass CAI time-series. Using

SRS to collect NDVI data for the Biomass CAI complements

the comparability and comprehensiveness components of the

“4Cs” (Ford and Berrang-Ford, 2016) due to the high spatial and

temporal resolution of satellites such as MODIS (Dinan et al.,

2015), Sentinel-2 (Drusch et al., 2012) and Landsat (Wulder

et al., 2019); and the capabilities of deep learning AI algorithms

to generate predicted data.

Imageries for crop monitoring can currently be obtained

from a variety of sources, including remote sensing (RS) by

satellite, aerial, and unmanned aerial vehicles (UAVs) that collect

data across a range of spatial, temporal, and spectral resolutions

(Yao et al., 2017). Phan et al. (2021) use 1 km spatial resolution

NDVI derived from MODIS for yield prediction and assessing

lag time between growing season and climatic variables for a

homogeneous farming system such as tea farming. Similar data

have also been used by Rigden et al. (2022) to explore the

trend of drought impacts on rice, cassava, maize, and sweet

potato yield in Madagascar. The impact of climate change on

farming systems in Sub-Saharan Africa has also been tracked

using an 8 km resolution AVHRR-NDVI (Vrieling et al., 2011).

A sequence of Landsat 30-meter resolution NDVI has been used

by Shen and Evans (2021) for estimating wheat yields in fields.

However, for detecting crop health patterns and making

appropriate interventions such as fertilizer or pesticides,

multispectral and fine spatial resolution data is required. Yao

et al. (2017), for example, were able to estimate wheat leaf area

index (LAI) effectively with UAVs narrowband multispectral

image (400–800 nm spectral regions, and 10 cm resolution)

under varying growth conditions during five critical growth

stages, and provide potential technical support for nitrogen

fertilization optimization. Satellite data with a wider spectral

band and multispectral imagery can help differentiate crop

characteristics (i.e., leaves, area) at a stand level (Gnädinger

and Schmidhalter, 2017; Jin et al., 2017; Varela et al., 2018),

estimate crop yield (Fernandez-Ordonez and Soria-Ruiz, 2017;

Yadav and Geli, 2021; Rigden et al., 2022); assess crop health
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FIGURE 2

(A) Schematic showing theoretical time-series trajectories of the Biomass CAI. Positive Biomass CAI values in the “Zone of Adaptation” reflect

larger observed NDVI values than predicted NDVI values, meaning the adaptation has improved agri-biomass (crop) productivity. Observed NDVI

values less than predicted NDVI values will give a negative Biomass CAI “score” in the “Zone of Degradation”, meaning the adaptation

intervention has not improved agri-biomass productivity and a transformational shift could be considered; (B) End-users at Global/national

scale (Conde and Lonsdale, 2005; FAO, 2013; Ford et al., 2013, 2015; Ford and Berrang-Ford, 2016; Berrang-Ford et al., 2019),

regional/landscape scale (Conde and Lonsdale, 2005; Galarraga et al., 2011; FAO, 2013) and local cale (Conde and Lonsdale, 2005; FAO, 2013;

Sherman and Ford, 2014) of the TAPAS Biomass CAI at corresponding spatial resolutions with appropriate satellites outlined. Sentinel-2 (Drusch

et al., 2012) and Landsat (Wulder et al., 2019) appropriate satellites for local level analysis, while MODIS (Dinan et al., 2015) is an appropriate

satellite for analysis at landscape, national and global resolutions.

such as pest pressure patterns that cannot be detected by thermal

imagery (Khanal et al., 2017), examine soil moisture (Hassan-

Esfahani et al., 2017), and crop water stress (Maselli et al.,

2020). To overcome the spatial and spectral variations between

remote sensing data for developing the CAI, it is important to

recognize that satellite data are more likely to be influenced by

several factors, including farming system, crop type, growing

state, management objectives, and data availability.

To ensure relevance to end-users and multicriteria

decision-making, our proposed Biomass CAI incorporates

concepts of resilience. The application of a “resilience lens”

to monitoring tools can provide more resilience-oriented

outputs and outcomes (Douxchamps et al., 2017). The

Biomass CAI encompasses the idea that resilient systems

are dynamic (Holling, 1973; Allen et al., 2019) and can

shift between incremental and transformational adaptation

following monitoring and evaluation in the cycle of adaptation

(Park et al., 2012). In this respect, if values remain in the

“Zone of Degradation”, it can be inferred that the adaptation

has not been successful and that transformation could be

considered and planned as part of the “preparatory” phase

for transformation (Rippke et al., 2016) and “transformative

governance” (Chaffin et al., 2016). Such “pro-active” adaptation

planning in anticipation of climate change shocks is crucial

to avoid agricultural systems shifting involuntarily into a new

maladapted state due to climate change shocks (Folke et al.,

2010; Kates et al., 2012; Park et al., 2012; Vermeulen et al., 2018).

Challenges and Opportunities for
evolutionary development of a
Biomass Climate Adaptation Index

Throughout the development of the Biomass CAI,

identification of potential barriers and solutions is important,

as outlined in Table 2. “Attribution” is a barrier faced by most
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adaptation tracking systems, where the cause of success or

failure is difficult to attribute directly to an adaptation initiative

(Brooks et al., 2011; FAO, 2013; Ford et al., 2013; Dinshaw

et al., 2014; Ford and Berrang-Ford, 2016; Ramasamy, 2017;

Berrang-Ford et al., 2019; FAO and UNDP, 2019; Jacobs

and Al-Azar, 2019; Adaptation Committee, 2021). Despite

this, adaptation tracking systems with robust and flexible

counterfactual scenarios (Brooks et al., 2011; Dinshaw et al.,

2014), combined with large spatial and temporal datasets (Ford

et al., 2013) can provide a strong evidence base to attribute

a particular adaptation initiative as the source of success or

failure. The flexibility of counterfactual baselines must focus on

the wider environment to help overcome attribution difficulties,

accounting for changes in both climate and economic state

(Brooks et al., 2011; Dinshaw et al., 2014). The Biomass CAI

can incorporate deep learning derived counterfactual baselines

accounting for weather patterns, combined with detailed spatial

and temporal datasets due to the nature of SRS. However, the

integration of socioeconomic data is also key to overcoming

this challenge of attribution (Brooks et al., 2011; Dinshaw et al.,

2014). This is important because, if a score decreases on the

Biomass CAI, this could reflect the failure of an adaptation to

improve resilience to climate shocks, or it could alternatively

reflect an increase in the cost of inputs (e.g., fertilizer, seeds,

irrigation) meaning farmers have less inputs overall. Despite

this, as any application of the Biomass CAI will focus on a

particular geospatial location combined with counterfactual

data from the same time period, end-users can have the

flexibility to integrate the Biomass CAI into their broader

assessments of the effectiveness of the adaptation intervention

(s) at their locations of interest. The barrier of attribution will

be a focus during the ongoing research and development of the

Biomass CAI.

The TAPAS Biomass CAI allows for use of satellite derived

NDVI data appropriate for different resolutions (scales) and

questions (Figure 2B). We acknowledge a range of remote

sensing data sources will be required for different agricultural

systems, different crops, and different geospatial locations;

requiring further research to enable accurate tracking and

inclusivity by TAPAS. For instance, in perennial systems such

as coffee, an extreme rainfall event may destroy flowers of

coffee trees meaning production would decline, but high NDVI

values would be recorded due to canopy growth. For rice-

based systems, techniques such as Synthetic Aperture Radar

(SAR) have been used to monitor and map rice productivity

(Nelson et al., 2014; Setiyono et al., 2018), an option that

TAPAS is exploring. Even where appropriate satellites and

data sources are used, one of the major limitations of remote

sensing as a means of data collection is that data needs to be

processed into a format that can be understood and analyzed

by end-users (Jacobs and Al-Azar, 2019; Ndungu et al., 2019).

End-users must also be enabled to routinely use the Biomass

CAI for their geo-locations of interest, requiring user friendly

interfaces (Jacobs and Al-Azar, 2019; Ndungu et al., 2019),

training manuals to guide use and interpretation (FAO and

UNDP, 2019) and/or collaboration with the TAPAS program to

facilitate knowledge transfer, adoption and scaling (FAO, 2013;

Ndungu et al., 2019). The TAPAS Biomass CAI platform is

being developed with a graphical user interface (GUI) viamobile

phone and low-bandwidth internet access, essential to bridging

the “digital divide” represented by lack of access to bandwidth

(Hilbert, 2016). Many regions of Africa, South America and

Asia additionally have limited capacity to implement SRS based

monitoring systems through direct use of satellite data (Romijn

et al., 2012), where amore centralized “country-led” (FAO, 2013)

Biomass CAI platform for analysis of any geospatial location

within these regions may be more useful and sustainable, also

minimizing expense (Romijn et al., 2012).

Importantly, NDVI measures are “blind” to many other

important metrics of adaptation (including socio-economic

metrics), meaning the Biomass CAI cannot be used as

a solitary tracking mechanism for adaptation monitoring.

The Biomass CAI will be most powerful when used with

other multi-criteria indicators measuring adaptation processes

and outcomes in frameworks such as TAAS (Ramasamy,

2017). For example, it is important that the Biomass CAI

is complemented by “gender sensitive indicators” to assess

the impact an adaptation intervention has on equality

and female empowerment, in addition to crop productivity

(FAO, 2013; Ramasamy, 2017; FAO and UNDP, 2019). The

Biomass CAI represents a quantitative and universally scalable

indicator for adaptation tracking that can be integrated with

additional qualitative and quantitative data of relevance to

the geospatial location subject to adaptation intervention(s).

Such a case-by-case approach using the Biomass CAI as a

reference “anchor” can allow for improved inter-comparability

between adaptation intervention(s) at different locations,

thereby improving understanding of the underlying processes

behind “successful” adaptation. Although the Biomass CAI

cannot directly address the time and expense required to

collect data for other indicators (FAO, 2013; Ramasamy, 2017;

FAO and UNDP, 2019; Jacobs and Al-Azar, 2019); the TAPAS

program is exploring integration of crowdsourcing approaches

into the Biomass CAI interface, to simultaneously assess crop

productivity and gather participatory socio-economic data from

local stakeholders to feed into larger indicator frameworks (Ford

et al., 2016; Rosenstock et al., 2017; FAO and UNDP, 2019).

Discussion

Meeting the needs of the Biomass
Climate Adaptation Index end-users

The Biomass CAI requires careful selection of satellites due

to varying spatial and temporal resolutions. Figure 2B provides
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TABLE 2 Summary of characteristics needed for the Biomass CAI, barriers, and approaches to overcome such barriers.

Biomass CAI

characteristics

Potential barriers Potential approaches to overcome barriers

Multi-level agri-biomass

monitoring in areas of adaptation

Other RS data sources may be more appropriate for different

agricultural systems than NDVI

• Further research and case studies to identify the most

appropriate satellites and RS data sources for different

agricultural systems

Ability to be used and interpreted

by end-users around the world

Complex terminology and concepts that are difficult to

interpret by end-users (FAO, 2013; FAO and UNDP, 2019;

Jacobs and Al-Azar, 2019; Ndungu et al., 2019)

• Communication between TAPAS program and end-users

to ensure understanding (FAO, 2013; Ndungu et al., 2019)

• User-friendly GUI (Jacobs and Al-Azar, 2019; Ndungu

et al., 2019)

• Training manuals explaining how the Biomass CAI is

calculated and to guide interpretation of results and

trends (FAO and UNDP, 2019)

The ‘digital divide’ in developing regions (Romijn et al.,

2012; Hilbert, 2016)

• Technical support and ‘South-South’ knowledge transfer

(Romijn et al., 2012)

• GUI for low-bandwidth mobile access in developing

regions (Hilbert, 2016)

• Development of ‘country-led’(FAO, 2013) central Biomass

CAI platforms for specific regions (Romijn et al., 2012)

Ability to attribute changes in crop

productivity to an adaptation

intervention

The Biomass CAI may not be able to attribute the adaptation

as the cause of agri-biomass productivity change (Brooks

et al., 2011; Ford et al., 2013; Dinshaw et al., 2014; Ford and

Berrang-Ford, 2016; Ramasamy, 2017; Berrang-Ford et al.,

2019; FAO and UNDP, 2019; Jacobs and Al-Azar, 2019;

Adaptation Committee, 2021)

• The ongoing development of the TAPAS deep learning

derived counterfactual baseline (Brooks et al., 2011;

Dinshaw et al., 2014)in relation to different crops,

different growth periods and varying geospatial locations

to ensure that results can be attributed to the adaptation

intervention.

• Integration of economic data into the Biomass CAI

(Brooks et al., 2011; Dinshaw et al., 2014)

• Large spatial and temporal datasets (Ford et al., 2013)

Ability to link with other

multi-criteria indicators in wider

monitoring frameworks

Time and expense required to gather data for other

indicators using traditional methods such as surveys (FAO,

2013; Ramasamy, 2017; FAO and UNDP, 2019; Jacobs and

Al-Azar, 2019)

• Crowdsourcing (Ford et al., 2016; Rosenstock et al., 2017;

FAO and UNDP, 2019) to gather data for other indicators

[e.g. yield per hectare, inputs used, access to climate

information services (Ramasamy, 2017)] within the

Biomass CAI interface

an overview of the satellites the TAPAS program is exploring for

integration into our Biomass CAI platform for use at different

scales, by different stakeholders and for different systems.

Satellite data from satellites such as MODIS (Dinan et al., 2015)

are being integrated into the Biomass CAI platform to track

NDVI at global, national and landscape-level. MODIS has a

minimum spatial resolution of 250 meters, and is advantageous

as it can calculate a 16 day NDVI composite to minimize

interference from aspects such as clouds (Dinan et al., 2015). To

measure adaptation progress at local resolution on smallholder

farmswith a typical size of two hectares (141 x 141meters) or less

(Lowder et al., 2016), high spatial resolution satellites are needed

to infer NDVI and enhance “pixel purity” without influence

from other features such as non-agricultural vegetation, roads

and buildings (Duveiller and Defourny, 2010). Landsat (Wulder

et al., 2019) and Sentinel- 2 (Drusch et al., 2012) would be

appropriate satellites for this purpose, with spatial resolutions of

30 meters (Wulder et al., 2019) and 10–60 meters (Drusch et al.,

2012), respectively.

Time-series biomass maps and current crop yield estimates

generated using SRS and NDVI have the potential to help

various level stakeholders by providing information on

how yield varies over time and space and optimizing

crop management (Yao et al., 2017; Shen and Evans,

2021). Furthermore, it contributes to advanced crop

and environmental analytical tools that assist farmers in

implementing the appropriate management practices at the

appropriate rates, times, and locations, hence, meeting both

economic and environmental targets (Khanal et al., 2017).

The use of RS and NDVI has the potential to improve the

agricultural system by allowing stakeholders to conveniently

and cost-effectively collect, visualize, and evaluate crop status

and associated factors at various stages of production, as well

as address problems quickly (Jung et al., 2021; Xu, 2021).
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Integration by the TAPAS program of multiple satellites to the

Biomass CAI platform will help recognize and mitigate any

bias and uncertainties arising from different satellite sensors

and algorithms (Yang et al., 2013). The TAPAS project aims

to identify the satellites most applicable for different spatial

resolutions during the development of the Biomass CAI.

National and global-level stakeholders

National and global-level stakeholders such as the Parties

(governments) to the United Nations Framework Convention

on Climate Change (UNFCCC), climate and agri-financing

entities, ministries, private sector companies and NGOs are

central to the development of country-wide adaptation policies,

plans and investments in the agriculture sector (Conde and

Lonsdale, 2005; FAO, 2013; Ford et al., 2013, 2015; Ford

and Berrang-Ford, 2016; Berrang-Ford et al., 2019). Enabling

decision-making by such stakeholders is a fundamental utility

of the Biomass CAI. The UNFCCC’s signatory parties enacted

the Paris Agreement in 2015, representing a major step forward

in tackling climate change with both mitigation and adaptation

recognized as key goals (UNFCCC, 2015). Indeed, Article 7

of the Paris Agreement indicates the need for monitoring

and evaluation systems to facilitate national reporting to the

UNFCCC in the form of National Adaptation Plans (NAPs)

and Nationally Determined Contributions (NDCs) (UNFCCC,

2015). NAPs aim to build on short term National Adaptation

Programmes of Action (NAPAs) by planning for longer

term climate impacts, acknowledging that transformational

adaptation may be necessary (UNFCCC, 2012). The Biomass

CAI can be integrated into monitoring and evaluation

frameworks in NAPs and NDCs, tracking the progress of

climate change adaptation interventions, identifying areas

where transformational adaptation needs are arising, and

providing the UNFCCC process with a universally comparable

“anchored” metric for measuring adaptation progress regarding

the resilience of the photosynthetic biomass that humanity

is dependent upon. The Biomass CAI can also be used by

the climate investment community (e.g., Adaptation Fund,

Green Climate Fund, Development Banks, etc.) alongside

existing project specific monitoring frameworks (Jacobs and Al-

Azar, 2019) to allow more appropriate targeting of adaptation

investments (Ford et al., 2013). Subsequently, the Biomass CAI

will help foster transparent communication between donors

and recipients (Dinshaw et al., 2014). There is potential for

synergies with the IFADAdaptation Framework Tool, where the

Biomass CAI could augment the evidence base for both national

adaptation planning and climate investments (IFAD, 2021).

Landscape-level stakeholders

Landscape-level stakeholders such as regional governments,

private sector companies, NGOs and financing entities (Conde

and Lonsdale, 2005; Galarraga et al., 2011; FAO, 2013) are

important actors involved in the implementation of adaptation

plans and programmes as they have more interaction with

people than national stakeholders (Galarraga et al., 2011).

This level of governance can enable the development of

policies informed by local needs, such as better allocation

and management of resources at a landscape level (Rama Rao

et al., 2022). Targets set by central government, such as in

National Adaptation Plans (NAPs), can be developed by local

government to take into account the specific socioeconomic,

political, and environmental factors of a particular landscape (Ji

et al., 2022). As farms in an agro-ecosystem are often connected

(Veldkamp et al., 2001), discussion has focused on “Climate-

Smart Landscapes” to ultimately align goals and create synergies

between adaptation, mitigation and food security (Scherr et al.,

2012). There is a need for tracking systems at the landscape

scale to monitor these synergies and to foster the development

of “Climate-Smart Landscapes” over time (Scherr et al., 2012).

By tracking the spatial progress of adaptation in a particular

region or landscape, the Biomass CAI can aid regional-level

stakeholders to identify and evaluate areas where adaptation

interventions are underperforming or subject to diminishing

resilience to climatic shocks. Landscape-level stakeholders,

such as local government, can often be in a better position

to understand the local factors which may be affecting the

performance of adaptation interventions. Based on a robust use

of Biomass CAI results with other indicators, revised landscape-

level plans can be adjusted according to the specific needs of a

region. If the Biomass CAI indicates a significant decrease in

a region or values remain in the “Zone of Degradation”, the

stakeholders can move forward with an “evidence base” that

can aid the development and implementation of more tailored

transformational adaptation interventions (Kates et al., 2012;

Park et al., 2012; Rickards and Howden, 2012; Chaffin et al.,

2016; Rippke et al., 2016; Vermeulen et al., 2018).

Farm-level stakeholders

Farm-level stakeholders such as farm households, farmers

organizations and value chain actors are vital stakeholders that

can work from the “bottom up” as part of a participatory

approach to develop, implement and sustain adaptation projects

(Conde and Lonsdale, 2005; FAO, 2013; Sherman and Ford,

2014). Indeed, indigenous stakeholders have been noted as key

actors in the development and use of existing remote sensing

decision support tools (Ndungu et al., 2019). Differences in

farm sizes, exposures to climate stresses and access to adaptive

capacity all contribute to the challenge of effective measurement

of adaptation interventions at farm-level. As it can measure

across different geographic scales (including across farm-scales),

the Biomass CAI can be used by farm-level stakeholders for

more specific “precision adaptation” than regional and national

stakeholders. We define precision adaptation as “climate change
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adaptation interventions which are spatially and temporally

targeted to have the most impact on climate change adaptation

for any biophysical and/or socio-economic system with a

defined geospatial boundary”. We consider that such “precision

adaptation” will be most powerful when focused on 10–60 meter

spatial resolution units (Drusch et al., 2012; Wulder et al.,

2019) across the geospatial footprint of each farm. Biomass

CAI data can be used to classify individual farms according

to their resilience to climate change, and hence their value

locally and within agri-value chains. The integration of farmers

(including women and young people) in adaptation planning

and implementation processes is particularly important, with

discussions at the COP23 Koronivia Joint Work on Agriculture

(KJWA) calling for the integration of such local stakeholders

into adaptation discussion, planning and monitoring (FAO,

2019). Using ubiquitous mobile phone technology, farmers can

also be enabled as key Biomass CAI end-users to show where

certain adaptations are performing best or worst on their farms,

to build capacity and knowledge for planning both incremental

and transformational adaptations (Kates et al., 2012; Park et al.,

2012; Rickards and Howden, 2012; Chaffin et al., 2016; Rippke

et al., 2016; Vermeulen et al., 2018).

Broadening the Biomass CAI end-users

Broadening the Biomass CAI end-users beyond the

agriculture sector can also support wider adaptation and

conservation interventions (e.g., biodiversity, ocean and

ecosystem services conservation). Natural vegetation and

marine ecosystems are two of the most important carbon sinks

for effective mitigation (IPCC, 2018). Due to the capability of

SRS based vegetation indices to measure biomass of different

ecosystems, the Biomass CAI can be adapted to monitor

biomass productivity and conservation in forests (Zhu and Liu,

2015) and marine photosynthetic organisms [i.e., macroalgae

(Garcia et al., 2013) and microphytobenthos (Daggers et al.,

2018)]. For example, many plant and tree species will need to

migrate with climate change to avoid a “migration lag” that

can ultimately lead to their extinction (Corlett and Westcott,

2013). In anticipation of such ecological state shifts, there are

proposals that “assisted migration” can be implemented (Corlett

and Westcott, 2013; Williams and Dumroese, 2013), where

monitoring is a critical aspect of tracking plant movements

and assisted migration efforts (Corlett and Westcott, 2013;

Williams and Dumroese, 2013). Indeed, SRS is suggested as an

important tool for biodiversity monitoring (Pereira et al., 2013)

with major potential for the integration of the Biomass CAI into

biodiversity conservation initiatives and decision-making at

multiple scales.

Conclusions

Tracking climate change adaptation is imperative for

end-users in the agriculture sector to monitor adaptation

progress and recognize priorities (Ford et al., 2013; Ford

and Berrang-Ford, 2016) to inform evidence-based planning

and investment regarding incremental and transformational

adaptation (Kates et al., 2012; Park et al., 2012; Rickards

and Howden, 2012; Chaffin et al., 2016; Rippke et al., 2016;

Vermeulen et al., 2018) in response to climate projections that

could decimate crop yields and reduce food security (Morton,

2007; Wheeler and Von Braun, 2013; Lipper et al., 2014; Mbow

et al., 2019; Wing et al., 2021). Although different adaptation

tracking approaches are challenged to secure agreement (and

adoption) by multiple stakeholders regarding their validity and

effectiveness (Adaptation Committee, 2021), a recent report by

the UNFCCC’s Adaptation Committee highlights the need for

flexible tracking mechanisms and frameworks that can adapt

to more innovative approaches to data collection (Adaptation

Committee, 2021). The Biomass CAI we are developing

presents a revolutionary and innovative approach for tracking

biomass productivity in locations undergoing adaptation,

utilizing remote sensing capabilities to deliver worldwide

monitoring at farm, landscape, national and global-levels and

encompassing a deep learning predicted counterfactual baseline.

The Biomass CAI can support agricultural communities

in sustaining resilience through appropriate incremental or

transformational adaptations in anticipation of adverse climate

change projections, linking to crop yield and economic data

where available.Working with high-resolution satellites (Drusch

et al., 2012; Wulder et al., 2019), the Biomass CAI can

also facilitate “precision adaptation”, allowing end-users to

channel context-specific adaptation interventions to particular

areas. The potential for the Biomass CAI is evident and

development of the Biomass CAI is currently underway in

our TAPAS program. We anticipate that future research and

partnerships will be needed to address knowledge gaps regarding

appropriate RS data sources for different crops, growth periods

and geospatial locations; the barrier of attribution (Brooks

et al., 2011; FAO, 2013; Ford et al., 2013; Dinshaw et al.,

2014; Ford and Berrang-Ford, 2016; Ramasamy, 2017; Berrang-

Ford et al., 2019; FAO and UNDP, 2019; Jacobs and Al-

Azar, 2019; Adaptation Committee, 2021), the “digital divide”

(Romijn et al., 2012; Hilbert, 2016), and the integration of

multidisciplinary indicator frameworks (Brooks et al., 2011;

Ramasamy, 2017; Jacobs and Al-Azar, 2019) to ultimately

provide a comprehensive overview of adaptation interventions

that deliver resilience outcomes.
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