
TYPE Original Research

PUBLISHED 15 July 2022

DOI 10.3389/fclim.2022.953262

OPEN ACCESS

EDITED BY

Karumuri Ashok,

University of Hyderabad, India

REVIEWED BY

Venkata Ratnam Jayanthi,

Japan Agency for Marine-Earth

Science and Technology, Japan

Matthew Collins,

University of Exeter, United Kingdom

Subimal Ghosh,

Indian Institute of Technology

Bombay, India

*CORRESPONDENCE

Kyle Joseph Chen Hall

hallkjc01@gmail.com

SPECIALTY SECTION

This article was submitted to

Predictions and Projections,

a section of the journal

Frontiers in Climate

RECEIVED 26 May 2022

ACCEPTED 27 June 2022

PUBLISHED 15 July 2022

CITATION

Hall KJC and Acharya N (2022) XCast:

A python climate forecasting toolkit.

Front. Clim. 4:953262.

doi: 10.3389/fclim.2022.953262

COPYRIGHT

© 2022 Hall and Acharya. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

XCast: A python climate
forecasting toolkit

Kyle Joseph Chen Hall1* and Nachiketa Acharya2,3

1International Research Institute for Climate and Society, Columbia University, Palisades, NY,

United States, 2Cooperative Institute for Research in Environmental Sciences, University of Colorado

Boulder, Boulder, CO, United States, 3National Oceanic and Atmospheric Administration (NOAA)

Physical Sciences Laboratory, Boulder, CO, United States

Climate forecasts, both experimental and operational, are often made by

calibrating Global Climate Model (GCM) outputs with observed climate

variables using statistical and machine learning models. Often, machine

learning techniques are applied to gridded data independently at each

gridpoint. However, the implementation of these gridpoint-wise operations

is a significant barrier to entry to climate data science. Unfortunately, there

is a significant disconnect between the Python data science ecosystem and

the gridded earth data ecosystem. Traditional Python data science tools

are not designed to be used with gridded datasets, like those commonly

used in climate forecasting. Heavy data preprocessing is needed: gridded

data must be aggregated, reshaped, or reduced in dimensionality in order

to fit the strict formatting requirements of Python’s data science tools.

E�ciently implementing this gridpoint-wise workflow is a time-consuming

logistical burden which presents a high barrier to entry to earth data science.

A set of high-performance, easy-to-use Python climate forecasting tools

is needed to bridge the gap between Python’s data science ecosystem

and its gridded earth data ecosystem. XCast, an Xarray-based climate

forecasting Python library developed by the authors, bridges this gap. XCast

wraps underlying two-dimensional data science methods, like those of

Scikit-Learn, with data structures that allow them to be applied to each

gridpoint independently. XCast uses high-performance computing libraries

to e�ciently parallelize the gridpoint-wise application of data science

utilities and make Python’s traditional data science toolkits compatible with

multidimensional gridded data. XCast also implements a diverse set of climate

forecasting tools including traditional statistical methods, state-of-the-art

machine learning approaches, preprocessing functionality (regridding,

rescaling, smoothing), and postprocessing modules (cross validation, forecast

verification, visualization). These tools are useful for producing and analyzing

both experimental and operational climate forecasts. In this study, we

describe the development of XCast, and present in-depth technical details

on how XCast brings highly parallelized gridpoint-wise versions of traditional

Python data science tools into Python’s gridded earth data ecosystem.

Frontiers inClimate 01 frontiersin.org

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://doi.org/10.3389/fclim.2022.953262
http://crossmark.crossref.org/dialog/?doi=10.3389/fclim.2022.953262&domain=pdf&date_stamp=2022-07-15
mailto:hallkjc01@gmail.com
https://doi.org/10.3389/fclim.2022.953262
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fclim.2022.953262/full
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Hall and Acharya 10.3389/fclim.2022.953262

We also demonstrate a case study where XCast was used to generate

experimental real-time deterministic and probabilistic forecasts for South Asian

Summer Monsoon Rainfall in 2022 using di�erent machine learning-based

multi-model ensembles.

KEYWORDS

geospatial data, machine learning, statistical learning, Python tools, climate

forecasting, parallel computing, global climate models

Introduction

For sub-seasonal to seasonal (S2S) climate forecasting, using

machine learning techniques to model relationships between

gridded global climate model (GCM) outputs and observed

climate variables is a core research technique. While there

are a number of ways to make these insights, like pattern

regression and aggregation, it is often desirable to apply a

given technique independently at each point in space because

it circumvents the need for domain sensitivity analysis, and

dramatically reduces the number of predictors used. Gridpoint-

wise modeling methods are commonly used to generate both

research products and operational climate forecasts. In climate

forecasting, these gridpoint-wise operations generally fall into

one of several categories: statistical post-processing, GCM bias

correction, or multi-model ensemble forecasting.

Background

There are ongoing efforts by the Python community to

facilitate the manipulation of gridded multidimensional datasets

in Python. Base functionality, like arithmetic, file reading and

writing, and visualization, is handled by Xarray, a powerful

open-source library (Hoyer and Hamman, 2017). Xarray is

supported by PanGEO, a large open-source community focusing

on geospatial data applications in Python (Odaka et al.,

2020). Xarray data structures have been largely adopted as the

fundamental units of gridded data in Python, enough so that an

ecosystem of climate data analytics libraries designed to produce

and consume them has emerged. This ecosystem also includes

climate data analytics libraries designed for dynamical modeling

like MetPy (May et al., 2022), ensemble production and forecast

verification packages like ClimPred (Brady and Spring, 2021),

distributed model training tools like Dask-ML (Rocklin, 2015),

and many others.

Python also implements a diverse set of statistical and

machine learning libraries, designed for the production

and consumption of traditional flat datasets. Scikit-Learn, a

commonly used machine learning library, is one of many such

Python data science utilities that operates nearly exclusively on

two-dimensional datasets (Pedregosa et al., 2011). Like Scikit-

learn, the majority of Python’s data science utilities operate on

two-dimensional data, and are not designed to accommodate

gridpoint-wise operations on Xarray data structures. The

tools that do accommodate multidimensional data do not

accommodate Xarray data types. This gap between Python’s data

science utilities and its gridded data ecosystem is notable. More

details about Scikit-Learn and the libraries upon which XCast is

built are available in Appendix C.2.

Motivations

The implementation of gridpoint-wise operations, like

those commonly used in climate forecasting workflows, and

especially in the statistical post-processing (calibration, mulit-

model ensembling) of GCM’s outputs, serves as a significant

barrier to entry to climate data science. Moreover, with the

recent advances in machine learning and climate science, there

are numerous state-of-art machine learning techniques used in

climate forecasting (Acharya et al., 2014; Kashinath et al., 2020;

Gibson et al., 2021) which are not easy to implement without

a strong computer programming background. While there are

powerful utilities for manipulating gridded data in Python, and

numerous libraries and toolkits for two-dimensional statistical

modeling and machine learning, extremely few support this

gridpoint-wise approach to climate prediction. The need to

bridge the gap between Python’s data science utilities and its

gridded data utilities is evident.

Gridpoint-wise operations like those used in multi-

model ensemble forecasting are also time consuming and

computationally expensive. Their spatial independence

theoretically allows them to be parallelized, but implementing

true parallel computation in Python is a specialized task which

requires a large time investment. If climate scientists must also

become computer scientists to implement their experiments,

their domain-specific research will suffer. The inaccessibility of

modern High-Performance Computing (HPC) tools therefore

presents a significant barrier to entry to climate data science. We

aim to significantly decrease the barriers to climate data science

by bridging the gap between Python’s data science utilities

Frontiers inClimate 02 frontiersin.org

https://doi.org/10.3389/fclim.2022.953262
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Hall and Acharya 10.3389/fclim.2022.953262

and its gridded data utilities with a flexible, easy-to-learn, and

highly-performant set of tools for geospatial data science.

Contributions: XCast

We, the authors, have co-developed just such a highly-

performant, easy-to-learn, and flexible set of geospatial data

science tools called XCast (https://xcast-lib.github.io). XCast

allows the user to train machine learning methods like

regressions, decision trees, neural networks, andmore, gridpoint

by gridpoint, directly on gridded datasets with significantly less

preprocessing. It speeds up these time-consuming workflows

by making modern high-performance computing methods like

chunk-wise parallelism and cluster computing available to the

user through an intuitive application programming interface

(API). XCast’s API purposefully mirrors the APIs of traditional

Python data science tools like Scikit-Learn to leverage users’

prior knowledge and minimize the time investment required

to start using it (Pedregosa et al., 2011). The API similarities

allow climate scientists and other users of traditional Python

data science utilities, to transition from single-point data science

workflows to gridpoint-wise data science workflows almost

seamlessly. XCast effectively utilizes Dask, a high-performance

computing library for Python to abstract away nearly all use

of parallelization and multiprocessing, relieving the user of the

burden of having to design efficient workflows (Rocklin, 2015).

Through Dask, XCast is capable of leveraging high-capacity

computing environments like clusters and supercomputers.

It also makes this kind of gridpoint-wise analysis possible

on an individual workstation or laptop. The simple interface

lets scientists focus on the science behind the predictability

of climate phenomena, rather than on efficient computing.

XCast implements climate forecasting tools like cross-validation,

gaussian kernel smoothing, rescaling, and regridding, as well as

a forecast verification module.

Road to XCast: Predecessors and
development

Although it can be used in a broad array of scientific

domains like meteorology, atmospheric science and dynamical

modeling, XCast derives its name from its initial purpose,

climate forecasting, and the fundamental data structure it

consumes, the Xarray Data Array. It grew out of PyELM-MME,

a platform for Extreme Learning Machine (ELM)-based Multi-

Model Ensemble (MME) forecasting (Acharya and Hall, 2021a).

The PyELM-MME platform was intended to make ELM-based

Multi-Model Ensemble climate forecasting accessible (Acharya

et al., 2014). After PyELM-MME was presented at the 2021

NCAR UCAR SEA Improving Scientific Software conference,

user feedback and peer review made it apparent that a

generalized version, which would make numerous statistical and

machine learning-based MME methodologies accessible, was

necessary. PyMME, the successor to PyELM-MME, emerged

to fill that gap. It was designed to make machine-learning

based MME forecasting methods, in general, accessible, and

was presented during a poster session for the third NOAA

workshop on Leveraging AI in the Environmental Sciences

(Acharya and Hall, 2021b). However, during the PyMME

development process, a major pain point became apparent,

through user feedback and suggestions by community stake

holders: the gridpoint-wise operations implemented were not

usable outside of the PyMME forecasting setting. Since both

PyMME and PyELM-MME were implemented specifically in

Jupyter Notebook environments, their functionality was not

easily transferable to other use cases. The need for a generalized

gridpoint-wise data science library was evident.

We realized that, since the gridpoint-wise approach to data

science operations is so broadly applicable in the earth sciences,

any MME climate forecasting platform should be built as a

special case of a more general gridpoint-wise data science

toolkit. There is no reason to require earth scientists in other

domains to retrofit anMME forecasting system to suit their own

needs, when a library can be designed to make all gridpoint-

wise data science operations accessible at once. Abandoning

the Jupyter Notebook-based forecasting platform design, we

implemented XCast as a general-purpose Python library so

it could be used in any given environment, and decided to

distribute it with Anaconda in order to make the installation

process fast, easy, and compatible with other similar libraries.

The first stable version of XCast, version 0.5.0, was released in

March, 2022, and is available on Anaconda for installation on

any operating system. Figure 1 shows the timeline of XCast’s use

and development up to that point.

Design and implementation of XCast

Unlike most other climate forecasting tools, XCast is

designed to be fully modular. While there is a general pattern

to XCast forecasting workflows, shown in Figure 2, each of

XCast’s classes and functions can be used independently, as part

of custom user-defined Xarray-based workflows. Appendix C.1

lists all of XCast’s available statistical methods and machine

learning models, but additional flat estimators and skill

metrics can be implemented easily. Appendix C.2 discusses

these third-party dependencies in more detail. XCast’s utilities

are easy to integrate with other verification and forecasting

Python modules, allowing the user to independently verify and

validate XCast-based predictions. This enforces transparency,

and provides accountability, which are critical aspects of a

credible forecasting tool. Additionally, XCast’s classes and

functions are wrapped in intuitive, Scikit-Learn-like interfaces.

The behavior of class methods and functions is consistent with

Frontiers inClimate 03 frontiersin.org

https://doi.org/10.3389/fclim.2022.953262
https://xcast-lib.github.io
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Hall and Acharya 10.3389/fclim.2022.953262

FIGURE 1

A timeline of the development of XCast.

FIGURE 2

The workflow of the XCast Toolkit.

that of those found in Scikit-Learn and other Python data

science utilities. This allows users to transition between single-

point estimators and XCast estimators seamlessly, without

checking documentation and interrupting the development

process. XCast’s Scikit-Learn-like interface also abstracts out

all of the low-level high-performance computing functionality

Frontiers inClimate 04 frontiersin.org

https://doi.org/10.3389/fclim.2022.953262
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Hall and Acharya 10.3389/fclim.2022.953262

that it’s built with, giving the user performance benefits without

requiring significant intervention by them.

More information about XCast’s functionality,

implementation, and installation, as well as examples and other

case studies, are available in the project’s documentation (https://

xcast-lib.github.io/), and the project’s Github repository (https://

github.com/kjhall01/xcast).

Application programming interface
design

Leveraging the prior knowledge of XCast’s target user

base makes it easy to learn. Its interface implements in

three archetypical data structures: Estimators, Transformers,

and Functions, all of which are patterns commonly used in

traditional Python data science libraries.

Estimators

Estimators are Python objects representing statistical and

machine learning models, like for example, neural networks.

Estimators can be either Regressors or Classifiers—where

regressors attempt to make deterministic guesses based on

inputs, and classifiers attempt to make probabilistic guesses

as to which category of output the inputs are associated

with. Scikit-Learn and other traditional Python data science

utilities also use this terminology, so users may already be

familiar with it. Estimators generally have three methods- fit(..),

predict(. . .) and predict_proba(. . .). Fit, as the name implies,

fits the underlying statistical model on user-provided training

data. Predict attempts to make deterministic predictions with

a previously-fit model, based on user-provided predictor-like

inputs. Predict_proba is available on classifiers, and returns

probabilistic predictions.

Transformers

Transformers are similar to estimators, with the exception

that they generally do not find relationships between inputs and

outputs, but rather identify and apply patterns based on a single

input dataset. Rather than fit-predict, transformers implement

a fit-transform workflow, where fit identifies a pattern or

transformation based on an input dataset, and transform applies

it to new data. Principal Components Analysis is an example of a

transformer. Themajority of XCast’s preprocessing functionality

is implemented as Transformers. Rescaling and dimensionality

reduction are represented as objects to be fit on input datasets, so

they can be reused for out-of-sample data. Some preprocessing

functionality which does not depend on a given input dataset,

like regridding, is implemented as functions.

FIGURE 3

The results of an experiment analyzing the comparative

performance of six implementations of gridpoint-wise model

fitting. Training time in fraction of minutes is plotted against the

ensemble size as an analog for job intensity.

FIGURE 4

Comparison of training time for a 31-chunked, 4-core

configuration of XCast with that of Xarray and For-Loop-based

implementations. Number of training samples at each point is

used as an analog for job intensity, and two di�erent statistical

methods are shown.

Functions

Gridpoint-wise functions are a data type in XCast which

apply some flat function to user-provided input data directly

gridpoint-by-gridpoint, without needing to identify any kind of

Frontiers inClimate 05 frontiersin.org

https://doi.org/10.3389/fclim.2022.953262
https://xcast-lib.github.io/
https://xcast-lib.github.io/
https://github.com/kjhall01/xcast
https://github.com/kjhall01/xcast
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Hall and Acharya 10.3389/fclim.2022.953262

pattern or transformation beforehand. They are largely defined

with the “metric” decorator function, to make new metrics easy

to build. Functions can accept one or multiple input datasets,

depending on the underlying function, and usually return

one or multiple output datasets. Gaussian Kernel Smoothing,

Skill Metrics, and One-Hot Encoding are all examples of

XCast functions.

Similarity to Scikit-learn

In order to minimize the time required to learn how to

use XCast, its API was specifically designed to leverage users’

prior knowledge. Xarray Data Arrays were chosen as the atomic

unit of XCast’s analyses because of the high degree of Xarray

adoption by the Python earth science community. Numerous

other Python climate analytics libraries also adopt Xarray Data

Arrays, which makes those libraries inherently compatible with

XCast. Any user of those libraries, or of Xarray itself, would

already have the requisite skills to use gridded data with XCast.

The interface is also intentionally designed to mimic that of

SciKit-learn, perhaps the most popular and well-supported

Python data science library. The similarity between XCast’s

API and that of SciKit-Learn (Pedregosa et al., 2011), and the

adoption of the Xarray DataArray, make the transition from flat,

two-dimensional SciKit-Learn data science to multidimensional

gridpoint-wise data science simple - all one need do is swap

NumPy arrays (Harris et al., 2020) for Xarray DataArrays. The

difference between NumPy arrays and Xarray DataArrays is

made evident by the discussion in Appendix C.2.

Parallelism

In pursuit of high-performance, XCast uses Dask (Rocklin,

2015) to implement chunk-wise parallelism. Gridpoint-wise

operations are uniquely parallelizable, since the computations

at each point are completely independent of one another. The

parallelism in XCast significantly decreases the time investment

for gridpoint-wise data science operations, and its natural

compatibility with Dask allows XCast to be scaled up to

institutional computer clusters with ease.

The gridpoint-wise approach to multidimensional gridded

data operations exemplifies the benefits of parallel processing.

Theoretically, each grid point’s computation could be performed

by a separate computer. Although unrealistic, that level of

parallelism would effectively eliminate the spatial dimensions

of the dataset, and reduce the time required to complete

all the gridpoint-wise operations to the time required by a

single gridpoint. Fortunately, it is possible to implement a

more generalized version of the concept: chunk-wise parallelism

(Dab and Slama, 2017). Rather than parallelizing gridpoint-

wise operations by splitting individual grid points, this type of

problem can be parallelized by splitting a dataset into spatially

local groups of grid points called chunks. Each chunk can then

be distributed to an independent processor, which reduces the

time required proportionally to the number of chunks. In fact,

parallelizing operations by splitting individual grid points can be

understood as chunk-wise parallelism with a chunk size of one.

In cases where only a small number of processors

are available to implement chunk-wise parallelism, the

performance gain or reduction in computation time is

not strictly proportional to the number of chunks. When

there are more chunks than processors available, each

processor must perform computations for several chunks

in serial- losing time, compared to perfect parallelism.

Practically, this often still represents a significant performance

boost when compared to fully serial operations. Even

further, since XCast implements chunk-wise parallelism

by leveraging Dask, it can easily be scaled to institutional

supercomputers and computer clusters. Using Dask to scale

XCast’s gridpoint-wise operations to powerful machines lets

the user further approach the perfect case of parallelism.

Additionally, XCast gives explicit control over the level of

parallelization to the user, by allowing them to specify the

size and number of chunks so they can optimize XCast’s

performance based on the specifications of their work station.

Further explanation of Dask’s pure-python multiprocessing

implementation and documentation links can be found

in Appendix C.2.

Analyzing the impact of XCast parallelism on
model training time

Gridpoint-wise operations, especially machine learning

model fitting, can be extremely time consuming. Depending

on the type of model and the context, training a single

instance can take seconds or minutes. If one were to train

such a model at each point on a relatively coarse 10 ×

10 global gridded dataset, the training time would increase

dramatically- 64,800 vs. 1min. Cross-validation compounds

this problem even further. Gridpoint-wise parallelism makes

this kind of analysis possible- dividing model training

efficiently among multiple compute cores decreases the time

required significantly. It also introduces extra overhead,

which, depending on the case, can cancel out performance

gains. In order to identify which circumstances make XCast’s

chunk-wise parallelism worthwhile, we analyzed how different

implementations of gridpoint-wise operations in Python scale

with job intensity.

Experimental design

During this experiment, multiple distinct methods

were used to fit an ensemble of several linear regression

models individually at each grid point of a gridded seasonal

precipitation dataset. Although linear regression is generally

solved analytically, many types of machine learning models

Frontiers inClimate 06 frontiersin.org

https://doi.org/10.3389/fclim.2022.953262
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Hall and Acharya 10.3389/fclim.2022.953262

FIGURE 5

XCast training time plotted against the number of chunks in the

training data. Two Dask clusters configurations with di�erent

numbers of parallel processes are compared.

FIGURE 6

An example of an XCast model training workflow which

leverages Dask multiprocessing.

are stochastic and iterative in nature. Large ensembles of

those methods are commonly used to account for their

stochasticity. Increasing ensemble size usually corresponds with

a proportional increase in training time, so in order to examine

how well each of these implementations scales, ensemble size

was used as an analog for training time. The lengths of time

required to fit gridpoint-wise linear regression ensembles of

successively increasing size were calculated, recorded, and

plotted for each method.

Four XCast configurations and two benchmark methods

were compared during this experiment. The first benchmark

was a naïve for-loop implementation of gridpoint-wise model

training, and was represented by the blue line in Figure 3.

This method iterated over the spatial dimensions in serial.

The second, represented by the orange line in Figure 3, was

a native Xarray function called “apply_ufunc”. This method

applied arbitrary functions along predefined core dimensions of

the dataset. Four configurations of XCast were also analyzed.

The first involved fully contiguous data, and used only a single

process (represented in green), the second used a single process

but split the data into thirty chunks (represented in red), the

third use fully contiguous data and four processes operating

in parallel (represented in purple), and the fourth used thirty

chunks and four parallel processes (represented in brown). All

tests shown were performed on aMid-2015 quad-core MacBook

Pro with Intel i7 processors.

Interpreting results

The configuration of XCast which used a single process and

a single contiguous data chunk (green) exhibited very similar

performance to that of Xarray (orange). XCast and Xarray

both use Dask to implement gridpoint-wise operations, but do

so slightly differently. Intuitively, their performance should be

similar; XCast does not claim to have implemented new or

revolutionary parallel computing algorithms, just to have made

the existing ones easily accessible to climate forecasters.

Comparatively, the XCast configurations which use a single

process but multiple chunks (red) and multiple processes

but a single chunk (purple) exhibit decreased performance.

This is because rechunking data and initializing Dask clusters

both introduce overhead. Additionally, neither of these

configurations actually use parallelism since parallel computing

with Dask requires both multiple processes and multiple data

chunks. In both cases, the overhead results in a net performance

loss. The only XCast configuration analyzed during this

experiment which benefits frommulti-process parallelism is that

which implements both many data chunks and many parallel

processes (brown). The performance benefit from parallelism

outweighs the overhead introduced by rechunking and cluster

initialization, and results in a net performance gain.

The for-loop implementation (blue) makes no attempt at

parallelism or vectorization, and is a clear performance loser.

Figure 4 further reinforces this result by demonstrating that

this relationship holds true for two types of machine learning

models, as well as under a different analog of training intensity-

number of training samples.

Some initial investigation of the relationship between the

number of chunks, the number of available cores, and the

computation time was performed. The results are detailed in

Figure 5; unfortunately, the strongest statement that can be

made under this environment is that XCast does not benefit

from parallelism when either (1) there is only one core available

for computation or (2) the dataset is completely contiguous, or

in other words, consists of only one chunk. This is intuitive,

because XCast’s parallelism works by distributing different

chunks to different cores—any scenario where multiple cores

cannot work concurrently will result in serial execution of any

available chunks, eliminating parallelism.

Frontiers inClimate 07 frontiersin.org

https://doi.org/10.3389/fclim.2022.953262
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Hall and Acharya 10.3389/fclim.2022.953262

FIGURE 7

Pearson Correlation and Index of Agreement for Random Forest (RF) (A,B), Extreme Learning Machine (ELM) (C,D), and Multiple Linear

Regression (MLR) (E,F).

The di�erence between XCast and Xarray

Since XCast and Xarray are both implemented with Dask,

one might wonder why Xarray’s performance in the above

analysis is not the same as that of XCast. Theoretically, it should

be. Xarray’s “appy_ufunc” function is designed to accommodate

an incredibly broad space of functions and input arrays,

including high-dimensional objects and multi-dimensional

functions. This requires it to go through dozens of steps of

validation, format checking, and compatibility checking. It also

wraps an extra layer of Dask function calls, when compared

Frontiers inClimate 08 frontiersin.org

https://doi.org/10.3389/fclim.2022.953262
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Hall and Acharya 10.3389/fclim.2022.953262

to XCast. Xarray.apply_ufunc calls dask.array.apply_gufunc,

which in turn calls dask.array.blockwise. XCast estimators

directly call dask.array.blockwise. The extra layers of

function calls and generalizations make it difficult to

successfully use Xarray’s “apply_ufunc” in conjunction

with a Dask cluster.

XCast, however, specializes in applying Dask’s chunk-wise

parallelism to four-dimensional XCast-formatted datasets; it

makes no attempts to generalize to even higher dimensions.

This comparative loss of generality allows XCast to focus

specifically on compatibility with Dask. While it may

theoretically be possible to use Xarray.apply_ufunc with

multicore Dask clusters, the layers of abstract syntax and

complicated function calls make it unnecessarily difficult,

preventing all but the most dedicated programmers from taking

advantage of it. XCast makes Dask chunk-wise parallelism easy

to use.

Figure 6 is an XCast code sample which demonstrates

how XCast requires no modification to take advantage of

Dask. If the user instantiates a Dask cluster, XCast uses

it without further intervention. In Figure 6, the first two

lines of code import Dask and instantiate a Dask Cluster,

which activates and manages multiple concurrent processes.

The fourth line uses a convenience function in XCast,

“NMME_IMD_ISMR” to load North American Multi-Model

Ensemble (NMME) predictor data and India Meteorological

Department (IMD) rainfall data for a period during the

Indian Summer Monsoon (ISMR) (Kirtman et al., 2013;

Sridhar et al., 2020). The “align_chunks” function serves

to transpose and rechunk these two datasets, adopting a

chunking scheme splitting the datasets into five groups along

each spatial dimension for a total of 25 chunks. XCast

then instantiates and trains a gridpoint-wise linear regression

model, and uses it to make predictions. Without any direct

changes to the XCast function calls, XCast proceeds to

leverage the multiprocessing capabilities of the instantiated

Dask cluster.

Case study: Showcasing XCast’s
functionality

XCast can be used in a variety of settings; it can address

any problem that requires the gridpoint-wise application of

statistical or machine learning tools. As a byproduct of the

authors’ area of study, the majority of use cases implementing

XCast so far involve forecasting precipitation for different

time scales and geographic domains. Here, we present a

case study where XCast was used to generate precipitation

forecasts using multi-model ensembles (MME). The main

purpose of this case study is to showcase the functionality

of XCast.

Seasonal forecasts of South Asian
summer monsoon rainfall

In Spring 2022, XCast was used by the authors to generate

deterministic and probabilistic forecasts of Summer Monsoon

Rainfall (SMR) for the South Asian region. South Asian

summer monsoon season takes place during the months

of June-September (JJAS), and total rainfall during this

season displays high interannual variability, which can make

it difficult to generate skillful forecasts with unprocessed

General Circulation Model (GCM) output (Acharya et al.,

2011b). Fortunately, MME forecasts are well-accepted as

an improvement on GCM forecasts (Weigel et al., 2008;

Casanova and Ahrens, 2009; Acharya et al., 2011a). They are

generally produced by averaging ensemble member outputs

with equal weight or with weight according to prior skill, but

there is also significant interest in using machine learning-

based regression techniques for MME construction after the

pioneering work by Acharya et al. (2014). In this exercise,

we used XCast to produce an April-initialized real-time SMR

forecast. The full details of this forecast can be found at

https://www.kjhall01.github.io/SASCOF22/ (Acharya and Hall,

2022).

Machine learning methodologies

XCast is used here to train models from each of three

core families of machine learning methodologies: Regression-

based techniques, Decision Tree-based techniques, and Neural

Network-based techniques. Multiple Linear Regression (MLR),

a commonly used core regression-based technique, is used

as a baseline for comparison. We selected Random Forest

Regression (RF), which is a collection of randomly-initialized

decision trees and has the potential to generalize well, to

represent the larger space of decision tree-based methods

(Breiman, 2001). Extreme LearningMachine (ELM)was selected

to represent the neural network-based family of methods,

because of its short training time and flexibility (Huang

et al., 2008). Extreme Learning Machine substitutes time

consuming, backpropagation-based training for frozen hidden

layer weights and biases, and solves its output layer with

the Moore-Penrose generalized inverse. For the experimental

probabilistic forecast, we used a modified version of ELM

known as Probabilistic Output Extreme Learning Machine

(POELM) to produce probabilistic such tercile forecasts (Wong

et al., 2020). POELM fits three output neurons, separately, on

binary-encoded target vectors representing each of the tercile

categories. It then applies a postprocessing rule which uses

regularization to generate multi-class probabilities which sum

to one.

This particular exercise only uses a small subset of the

machine learning models available through XCast to highlight

its utility, a full list can be found in Appendix C.1.

Frontiers inClimate 09 frontiersin.org

https://doi.org/10.3389/fclim.2022.953262
https://www.kjhall01.github.io/SASCOF22/
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Hall and Acharya 10.3389/fclim.2022.953262

Dataset

Lead-2 (initialized in April for JJAS) hindcast data from

four GCMs was obtained from the phase 2 of NMME project

(Kirtman et al., 2013). Hindcast data during the period

1982–2018 was used as predictors. The real-time forecast for

JJAS 2022 from each model was also used to produce an

experimental operational forecast, out-of-sample. As the GCMs

have different numbers of ensemble members, for each GCM,

ensemble members were averaged to generate an ensemble

mean before implemented MME. These NMME monthly

hindcast and forecast datasets are available on a common

1◦ resolution grid at http://iridl.ldeo.columbia.edu/SOURCES/

Models/NMME/. An observed precipitation dataset, the latest

version of daily gridded precipitation data from the India

Meteorological Department, Pune (Sridhar et al., 2020) was

used as the predictand. This data is at the 1◦ spatial resolution,

which allows for good spatial coverage of entire south Asia.

Seasonal total observed rainfall for JJAS is calculated for 1982

to 2018 (unit: mm/Season).

Preprocessing

Seasonal precipitation data provided by SASCOF was

anomalized and used as the predictand. XCast was used

to apply Minmax preprocessing (Normalization) to the

predictors. For the experimental probabilistic forecasts,

a process called One-Hot Encoding was applied to the

predictand. One-Hot Encoding involves identifying tercile

category boundaries at the 33rd- and 66th- percentiles, and

then generating binary-encoded vectors for each category

which indicate whether or not a given sample falls into that

category. Leave-One-Year-Out cross validation was used

to construct a cross-validated hindcast dataset, which was

then compared to the original predictand dataset to generate

skill maps.

Hindcast skill assessment

It is necessary to evaluate the skill of the hindcasts,

in order to understand of the expected skill of out-of-

sample forecasts. To prevent over-fitting, and give a more

reasonable and useful approximation of the skill of out-of-

sample forecasts, a cross-validated hindcast dataset is generated

and compared with the historical observed rainfall. In cross

validation, for each of a number of “windows”, a model is

trained on all data except that which falls within the window.

That model is then used to make out-of-sample predictions

for that window, data which it has not yet been shown.

These out-of-sample predictions are then reassembled into a

dataset which can be meaningfully compared to the observed

historical data. Skill metrics are then calculated by comparing

these cross-validated hindcasts with the observations, to

give an idea of how the methodology performs for out-of-

sample forecasts.

Deterministic skill

Figure 7 shows the skill maps generated by comparing

cross-validated hindcast data with the observed precipitation

data for MLR, RF, and ELM, respectively. They show the

Pearson Coefficient and Index of Agreement (IOA) for each

methodology. Pearson’s Coefficient is a commonly usedmeasure

of correlation, and IOA is a measure of error (Willmott, 1982).

Together, these skill maps can give an indication of the level of

skill of a forecast methodology. Since this exercise is meant to

highlight how XCast works, we will not discuss the comparative

skill levels of the forecast methodologies. While identifying

the best method through skill comparison is important in a

forecast development context, it is not the focus here. We aim

to show that it can be easily done with the skill maps generated

by XCast.

Probabilistic skill

The difficulty of generating a skillful deterministic forecast

due to the high degree of interannual variability in South

Asian SMR, necessitates the use of tercile probabilistic

forecasts. Figure 8 shows the Generalized Receiver Operating

Characteristic (GROC) score and the Rank Probability Skill

Score (RPSS) of the cross-validated probabilistic hindcast

dataset produced with POELM. GROC is a measure of

discrimination (Mason and Graham, 2002), and RPSS is

a measure of relative forecast quality (Murphy, 1969).

Here, RPSS is computed relative to the climatological

probability: 33, 33, 33%. Again, we make no claims about

the quality of this forecast, rather just highlight the fact

that XCast can be used to make probabilistic forecasts

and to compute probabilistic skill scores efficiently for

gridded data.

Real-time experimental forecast for
summer monsoon 2022

Figure 9 shows the experimental deterministic and

probabilistic forecasts produced for the year 2022 using

ELM-based methods. In summary, normal to above

normal rainfall is most likely during the upcoming 2022

summer monsoon season over most parts of the South

Asia. Above normal rainfall is most forecasted for the

foot hills of Himalayas, many areas of northwestern and

central South Asia, and some areas in the east and south.

Below normal rainfall, however, is forecasted for some

areas of extreme north, northwest, south, and southeast

parts of the region. The seasonal rainfall is most likely

to be normal or of climatological probabilities over the

remaining areas.

Frontiers inClimate 10 frontiersin.org

https://doi.org/10.3389/fclim.2022.953262
http://iridl.ldeo.columbia.edu/SOURCES/Models/NMME/
http://iridl.ldeo.columbia.edu/SOURCES/Models/NMME/
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Hall and Acharya 10.3389/fclim.2022.953262

FIGURE 8

Generalized ROC (A) and Rank Probability Skill Score (B) for POELM-based probabilistic forecasts of South Asian Summer Monsoon Rainfall.

FIGURE 9

Deterministic (A) and probabilistic (B) forecasts of 2022 South Asian Summer Monsoon Rainfall produced with XCast.

Similar forecasts have been produced by other Global

Producing Centers (GPC) like ECMWF and IRI. This real-

time forecast was presented at the 22nd South Asian

Seasonal Climate Outlook Forum (SASCOF) held April 26–28,

2022. SASCOF is organized by WMO’s regional climate

center for the purposes of preparing and disseminating

consensus forecasts for upcoming monsoon seasons for South

Asian countries.

Frontiers inClimate 11 frontiersin.org

https://doi.org/10.3389/fclim.2022.953262
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Hall and Acharya 10.3389/fclim.2022.953262

Discussion

XCast is designed to be an easy-to-use, flexible climate

forecasting Python library. Its API is meant to be easy

to learn, because it leverages the prior knowledge of users

familiar with Xarray and Scikit-Learn. It is also meant to

make high-performance computing tools easy to incorporate

in climate forecasting workflows: scaling XCast to institutional

supercomputers is easy with its intrinsic compatibility with

Dask. For those without institutional access, XCast can also

optimize computation on a Dask “local cluster”, letting users

work directly on their laptops and individual workstations.

Previously, slow computation, unwieldy datasets, and

opaque APIs prevented most scientists from pursuing this

kind of gridpoint-wise climate forecasting workflow. XCast has

made it significantly easier to pursue this type of gridpoint-

wise scientific inquiry through modern HPC tools, and lowered

barriers to computational earth science.

In the future, XCast’s performance will be analyzed in

a cluster computing setting, and the range of statistical and

machine learning methods will be expanded to include cluster

analysis, pattern regression, and unsupervised learning models.

New features and improvements to XCast are still under

development. There is certainly much more work and analysis

to be done.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Author contributions

KH designed, implemented, tested, and published the XCast

library in collaboration with NA, who provided climate science

and machine learning expertise and design feedback. NA led

topic selection and experimental design of the case studies and

provided insightful review and feedback. KH implemented them

using XCast and produced all figures and served as primary

author of this article. All authors contributed to the article and

approved the submitted version.

Funding

This work was unfunded and should be considered neither

a product of the IRI nor of CIRES/NOAA PSL. The authors

pursued this work in their own time, outside of work hours, for

the sake of scientific inquiry.

Acknowledgments

The authors humbly thank and acknowledge the NCAR

UCAR Software Engineering Assembly for hosting the

Improving Scientific Software conference, which has served

as inspiration and accountability, the in which a prior work

on this topic was published. Additionally, we thank the

organizers of the South Asia Seasonal Climate Outlook Forum

(SASCOF) for their observations data and the North American

Multi-Model Ensemble member GPCs for the use of their

forecast data. We also thank the PanGEO community for

their work supporting XCast’s core dependencies, as well as

the developers of XClim, ClimPred, MetPy, XSkillScore and

the rest of the Python Climate Data Science Ecosystem. We

thank the IRI Data Library for providing access to NMME

climate model data and global observations. Finally, we are

grateful to the three reviewers for their insightful comments

and suggestion that helped to improve the original version of

the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fclim.2022.953262/full#supplementary-material

References

Acharya, N., and Hall, K. J. C. (2021a). “PyELM-MME: a Python platform for
extreme learning machine based multi-model ensemble,” in Proceedings of the 2021
Improving Scientific Software Conference (No. NCAR/TN-567+PROC).

Acharya, N., and Hall, K. J. C. (2021b). “PyMME: A Python platform for multi-
model ensemble climate predictions,” in 3rd NOAAWorkshop on Leveraging AI in
Environmental Sciences (Zenodo).

Frontiers inClimate 12 frontiersin.org

https://doi.org/10.3389/fclim.2022.953262
https://www.frontiersin.org/articles/10.3389/fclim.2022.953262/full#supplementary-material
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Hall and Acharya 10.3389/fclim.2022.953262

Acharya, N., and Hall, K. J. C. (2022). kjhall01/SASCOF22: SASCOF Extreme
Learning Machine Forecasts (v1.0.0). South Asian Seasonal Climate Outlook
Forum. Zenodo.

Acharya, N., Kar, S. C., Kulkarni, M. A., Mohanty, U. C., and Sahoo,
L. N. (2011a). Multi-model ensemble schemes for predicting northeast
monsoon rainfall over peninsular India. J. Earth Syst. Sci. 120, 795–805.
doi: 10.1007/s12040-011-0111-4

Acharya, N., Kar, S. C., Mohanty, U. C., Kulkarni, M. A., and Dash, S. K. (2011b).
Performance of GCMs for seasonal prediction over India - A case study for 2009
monsoon. Theor. Appl. Climatol., 105, 505–520. doi: 10.1007/s00704-010-0396-2

Acharya, N., Srivastava, N. A., Panigrahi, B. K., and Mohanty, U. C.
(2014). Development of an artificial neural network based multi- model
ensemble to estimate the northeast monsoon rainfall over south peninsular
India: an application of extreme learning machine. Clim. Dyn. 43, 1303–1310.
doi: 10.1007/s00382-013-1942-2

Brady, R., and Spring, A. (2021). Climpred: verification of weather and climate
forecasts. J. Open Source Soft. 6, 2781. doi: 10.21105/joss.02781

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.
doi: 10.1023/A:1010933404324

Casanova, S., and Ahrens, B. (2009). On the weighting of multimodel ensembles
in seasonal and short-range weather forecasting. Monthly Weather Rev. 137,
3811–3822. doi: 10.1175/2009MWR2893.1

Dab, A., and Slama, Y. (2017). “Chunk-wise parallelization based on dynamic
performance prediction on heterogeneous multicores,” in 2017 International
Conference on High Performance Computing & Simulation (HPCS), 117–123.
Available online at: https://ieeexplore.ieee.org/document/8035067

Gibson, P. B., Chapman, W. E., Altinok, A., Delle Monache, L., DeFlorio, M.
J., and Waliser, D. E. (2021). Training machine learning models on climate model
output yields skillful interpretable seasonal precipitation forecasts. Commun. Earth
Environ. 2, 159. doi: 10.1038/s43247-021-00225-4

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., and
Cournapeau, D. (2020). Array programming with NumPy. Nature 585, 357–362.
doi: 10.1038/s41586-020-2649-2

Hoyer, S., and Hamman, J. (2017). Xarray: N-D labeled arrays and datasets in
Python. J. Open Res. Softw. 5, 10. doi: 10.5334/jors.148

Huang, G. B., Li, M. B., Chen, L., and Siew, C. K. (2008). Incremental extreme
learningmachine with fully complex hidden nodes.Neurocom. Puting 71, 576–583.
doi: 10.1016/j.neucom.2007.07.025

Kashinath, K., Mustafa, M., Albert, A., Wu, J.-L., Jiang, C., Esmaeilzadeh, S.,
et al. (2020). Physics-informed machine learning: case studies for weather and
cli-mate modelling, Philos. T. Roy. Soc. A 379, 20200093. doi: 10.1098/rsta.2020.
0093

Kirtman, B. P., Min, D., Infanti, J. M., Kinter, J. L., Paolino, D. A., Zhang, Q., et al.
(2013). The north american multi-model ensemble (NMME): Phase-1 seasonal to

interannual prediction, phase-2 toward developing intra-seasonal prediction. Bull.
Amer. Meteor. Soc. 95, 585–601. doi: 10.1175/BAMS-D-12-00050.1

Mason, S. J., and Graham, N. E. (2002). Areas beneath the relative
operating characteristics (ROC) and levels (ROL) curves: Statistical
significance and interpretation. Quart. J. Roy. Meteor. Soc. 128, 2145–2166.
doi: 10.1256/003590002320603584

May, R. M., Arms, S. C., Marsh, P., Bruning, E., Leeman, J. R., Goebbert,
K., et al. (2022). MetPy: A Python Package for Meteorological Data.
doi: 10.5065/D6WW7G29

Murphy, A. H. (1969). On the ranked probability skill score. J. Appl. Meteor. 8,
988–989. doi: 10.1175/1520-0450(1969)008<0988:OTPS>2.0.CO;2

Odaka, T. E., Banihirwe, A., Eynard-Bontemps, G., Ponte, A., Maze, G.,
Paul, K., et al. (2020). “The Pangeo ecosystem: interactive computing tools for
the geosciences: benchmarking on HPC,” in Tools and Techniques for High
Performance Computing. HUST SE-HERWIHPC 2019 2019 2019. Communications
in Computer and Information Science, Vol 1190, eds G. Juckeland, and S.
Chandrasekaran, S (Cham: Springer).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., et al. (2011). Scikit-learn: Machine Learning in Python, JMLR 12,
2825–2830. Available online at: http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.
html (accessed July 1, 2022).

Rocklin, M. (2015). “Dask: parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th Python in Science Conference. Available
online at: http://citebay.com/how-to-cite/dask/

Seabold, S., and Josef, P. (2010). “statsmodels: econometric and statistical
modeling with python,” in Proceedings of the 9th Python in Science Conference.
Available online at: https://conference.scipy.org/proceedings/scipy2010/bib/
seabold.bib

Sridhar, L., Sundran, D., Kumari, A., Rashid Bazlur, M.d., Ahmed,A., Sreejith,
O. P., et al. (2020). Development of a new 1 o x1 o (1981-2019) Monthly Gridded
Rainfall Data Set Over South Asian Region. CRS Research Report No.001/2020.
Pune: India Meteorological Department.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-0686-2

Weigel, A. P., Liniger, M. A., and Appenzeller, C. (2008). Can multimodel
combination really enhance the prediction skill of probabilistic ensemble forecasts?
Quart. J. Roy. Meteor. Soc. 134, 241–260. doi: 10.1002/qj.210

Willmott, C. J. (1982). Some comments on the evaluation of
model performance. Bull. Am. Meteorol. Soc. 63, 1309–1313.
doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2

Wong, S. Y., Yap, K. S., and Li, X. (2020). A new probabilistic output
constrained optimization extreme learning machine. IEEE Access 8, 28934–28946.
doi: 10.1109/ACCESS.2020.2971012

Frontiers inClimate 13 frontiersin.org

https://doi.org/10.3389/fclim.2022.953262
https://doi.org/10.1007/s12040-011-0111-4
https://doi.org/10.1007/s00704-010-0396-2
https://doi.org/10.1007/s00382-013-1942-2
https://doi.org/10.21105/joss.02781
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1175/2009MWR2893.1
https://ieeexplore.ieee.org/document/8035067
https://doi.org/10.1038/s43247-021-00225-4
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5334/jors.148
https://doi.org/10.1016/j.neucom.2007.07.025
https://doi.org/10.1098/rsta.2020.0093
https://doi.org/10.1175/BAMS-D-12-00050.1
https://doi.org/10.1256/003590002320603584
https://doi.org/10.5065/D6WW7G29
https://doi.org/10.1175/1520-0450(1969)008$<$0988:OTPS$>$2.0.CO;2
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://citebay.com/how-to-cite/dask/
https://conference.scipy.org/proceedings/scipy2010/bib/seabold.bib
https://conference.scipy.org/proceedings/scipy2010/bib/seabold.bib
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1002/qj.210
https://doi.org/10.1175/1520-0477(1982)063$<$1309:SCOTEO$>$2.0.CO;2
https://doi.org/10.1109/ACCESS.2020.2971012
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

	XCast: A python climate forecasting toolkit
	Introduction
	Background
	Motivations
	Contributions: XCast
	Road to XCast: Predecessors and development

	Design and implementation of XCast
	Application programming interface design
	Estimators
	Transformers
	Functions
	Similarity to Scikit-learn

	Parallelism
	Analyzing the impact of XCast parallelism on model training time
	Experimental design
	Interpreting results
	The difference between XCast and Xarray

	Case study: Showcasing XCast's functionality
	Seasonal forecasts of South Asian summer monsoon rainfall
	Machine learning methodologies
	Dataset
	Preprocessing
	Hindcast skill assessment
	Deterministic skill
	Probabilistic skill

	Real-time experimental forecast for summer monsoon 2022

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

