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Global climate models and long-term observational records point to

the intensification of extreme precipitation due to global warming. Such

intensification has direct implications for worsening floods and damage to

life and property. This study investigates the projected trends (2015–2100) in

precipitation climatology and daily extremes using Community Earth System

Model Version 2 large ensemble (CESM2-LE) simulations at regional and

seasonal scales. Specifically, future extreme precipitation is examined in

National Climate Assessment (NCA) regions over the Contiguous United States

using SSP3-7.0 (Shared Socioeconomic Pathway). Extreme precipitation is

analyzed in terms of daily maximum precipitation and simple daily intensity

index (SDII) using Mann-Kendall (5% significance level) and Theil-Sen (TS)

regression. The most substantial increases occur in the highest precipitation

values (95th) during summer and winter clustered in the Midwest and

Northeast, respectively, according to long-term extreme trends evaluated in

quantiles (i.e., 25, 50, 75, and 95th). Seasonal climatology projections suggest

wetting and drying patterns, with wetting in spring and winter in the eastern

areas and drying during summer in the Midwest. Lower quantiles in the central

U.S. are expected to remain unchanged, transitioning to wetting patterns in

the fall due to heavier precipitation. Winter positive trends (at a 5% significance

level) are most prevalent in the Northeast and Southeast, with an overall

ensemble agreement on such trends. In spring, these trends are predominantly

found in the Midwest. In the Northeast and Northern Great Plains, the

intensity index shows a consistent wetting pattern in spring, winter, and

summer, whereas a drying pattern is projected in the Midwest during summer.

Normalized regional changes are a function of indices, quantiles, and seasons.

Specifically, seasonal accumulations present larger changes (∼30% and above)

in summer and lower changes (< ∼20%) in winter in the Southern Great Plains

and the Southwestern U.S. Examining projections of extreme precipitation

change across distinct quantiles provides insights into the projected variability

of regional precipitation regimes over the coming decades.
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Introduction

Anthropogenic actions that alter the Earth’s climate

(Solomon et al., 2007) have the potential to cause irreversible

disruptions in the twenty-first century. These disruptions are

expected to be seasonally and regionally variable and include the

potential for large-scale amplification of extreme precipitation

events (Pfahl et al., 2017). Agreement persists among climate

scientists that copious greenhouse gas emissions contribute to

accelerated global-scale warming (Anderson et al., 2016). The

Synthesis Report highlights that significant emission reductions

are required to limit the global mean surface temperature

increase to <2◦C above the pre-industrial level (IPCC, 2014).

The increase in temperature, in turn, has a direct link to

atmospheric water holding capacity (O’Gorman and Muller,

2010), consequently creating conditions for more intense

precipitation events. Several global-scale studies have clarified

the connection between the hydrologic cycle and global warming

(Trenberth, 1999; Allen and Ingram, 2002; Trenberth et al.,

2003). The latest Intergovernmental Panel on Climate Change

(IPCC) Assessment Report (AR6) also documents increasingly

intense precipitation over most lands (IPCC, 2021). The internal

climate variability introduces uncertainties in characterizing

the distribution of extremes at regional scales, which requires

robust evaluation of large ensembles (Fischer et al., 2013). The

present study uses a large ensemble to assess projected seasonal

climatology and extremes over the Contiguous United States

(CONUS). Future precipitation characteristics are essential for

understanding the evolution of the hydrological cycle (Tabari,

2020), adaptive flood engineering design (Madsen et al., 2014;

Coelho et al., 2022), climate-resilient water systems (Rahat et al.,

2022), and sustainable water resources management (Peters-

Lidard et al., 2021).

Previous studies delve into the characteristics of projected

wet extremes, such as increased precipitation intensity (Westra

et al., 2014) and increased frequency (Allan and Soden, 2008;

Papalexiou and Montanari, 2019), as well as dry extremes,

such as increased drought severity in response to the warming

over land in the coming decades (Dai, 2013; Cook et al.,

2015; Schwalm et al., 2017). Precipitation simulations from

global climate models (GCMs) show consistency with the global

observations (Held and Soden, 2006; Benestad, 2018), which

indicates that anthropogenic climate signals are strengthening

(Fischer and Knutti, 2016) and expected to continue in the

twenty-first century (Fischer et al., 2013; Pendergrass and

Hartmann, 2014). The signals demonstrate a more intense

hydroclimatic regime in the twenty-first century (Giorgi et al.,

2014; Abdelmoaty et al., 2021). Thackeray et al. (2018)

illustrate an increasing pattern in the CMIP5 (Coupled Model

Intercomparison Project Phase 5) RCP8.5 (Representative

Concentration Pathways; Taylor et al., 2012) multi-model mean

precipitation change (difference between projected and the

historical period) in 10◦S−10◦N and high latitude zones.

However, the authors identified a decrease in light-moderate

precipitation in the 10–45◦ zones (subtropics to mid-latitudes).

Other studies demonstrate that mid-latitude areas, including

North America, are expected to remain vulnerable to extreme

precipitation (Donat et al., 2013; Prein et al., 2017; Rajczak and

Schär, 2017). Changes in precipitation patterns vary spatially,

making it essential to understand the regional distribution of

future extremes at various percentiles for local to regional

scale flood and drought adaptation as well as agricultural

infrastructure planning.

On a regional scale, National Climate Assessment (NCA)

reports an increasing trend of the heaviest precipitation (top

1%) in the Midwest and the Northeast (Melillo et al., 2014).

A broad range of studies investigated the change in observed

(Alexander et al., 2006; Dollan et al., 2022) and projected

extremes (Sillmann et al., 2013; Ménégoz et al., 2020) at global

and regional scales (Westra et al., 2013; Diaconescu et al., 2016)

using a set of climate extremes defined by the Expert Team on

Climate Change Detection and Indices (ETCCDI; Zhang et al.,

2011). Detecting trends despite uncertainties originating from

a variety of factors such as greenhouse emission scenarios and

model differences (i.e., physics, parameterization, initialization)

add to the difficulty of climate change assessment studies (Razavi

et al., 2016). It has been found that multi-model mean or

ensemble mean can represent the climatology of atmospheric

fields, given the uncertainties among climate models (Gleckler

et al., 2008). The latest Coupled Model Intercomparison Project,

phase 6 (CMIP6; Eyring et al., 2016) models can represent

climatology over different regions (Akinsanola et al., 2020a;

Dong and Dong, 2021). Recent studies have used the CMIP6

simulations to explore future changes in extremes over different

regions (Ayugi et al., 2021; Li et al., 2021a) using multi-model

ensemble simulations (Akinsanola et al., 2021). Large ensemble

(LE) simulations can be used to achieve robust estimations

of extreme changes at the regional scale (Li et al., 2021a).

Previously, changes in the mean precipitation climatology due

to anthropogenic emissions have been discerned at a regional

scale in three large ensembles (Zhang and Delworth, 2018).

Robust statistical tools are essential in assessing precipitation

characteristics (Treppiedi et al., 2021). Quantile regression

(QR) has recently become a useful tool in quantifying trend

magnitudes of the upper and lower tails of the distribution

(Villarini et al., 2011; Bartolini et al., 2014; Lausier and

Jain, 2018). While these studies focus on the change in

historical precipitation quantiles, limited studies have analyzed

precipitation quantiles using LEs on a seasonal scale. This

study investigates the projected trends of seasonal climatology

and two extreme indices at four different quantiles (lower

25th, median 50th, above median 75th, and extreme 95th) over

CONUS using the Community Earth System Model Version 2

LE (CESM2-LE; Rodgers et al., 2021a) simulations. Specifically,

regional quantile changes from the ensemble distributions

coupled with non-parametric Sen’s slope (Sen, 1968) are
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presented. The seasonal total (TOTs), the daily maximum

per season (RX1day, extreme index), and daily precipitation

intensity index (SDII, extreme index) long-term trends (2015–

2100) are studied over the NCA (Reidmiller et al., 2018)

regions under SSP3-7.0 (medium-to-high) emission scenario.

Leveraging the LE outputs, regional changes in patterns of

the indices alongside the median (50th) distribution provide

valuable findings that can benefit distinct socioeconomic sectors

in building planning strategies and sustainable ecosystem

dynamics. The average change of the distribution of the indices

is compared with the model’s reference climatological quantiles

(1951–2015). Since improved climate models do not translate

into narrowing the projection spread (Douville et al., 2021),

uncertainty quantification of the indices is essential among the

ensembles (John et al., 2022). Thus, large ensembles improve

the capacity to assess the uncertainty in trend detection of

such indices and compare outputs at regional scales. In this

study, a single emission scenario is used as only SSP3-7.0

provides large ensemble outputs during the analysis time. As

additional datasets become available in future CMIP projects,

such explorations can be expanded to encapsulate different

climate scenarios.

Specifically, our study aims to address the following

research questions using CESM2-LE SSP3-7.0: 1. How is future

precipitation expected to vary seasonally in extreme indices across

quantiles in the twenty-first century? 2. Which quantiles are more

likely to drive future precipitation changes? 3. What changes in

precipitation are likely to occur at the regional scale, and what

are the associated uncertainties? Studying the regional changes

in extremes with respect to the historical period is critical for

regional climate assessment (Li et al., 2021b) and ecological

adaptation (Vicente-Serrano et al., 2022). Our efforts present

a new and comprehensive evaluation of long-term seasonal

precipitation changes across quantiles using the latest CMIP6

CESM2-LE simulations under themid to high-emission scenario

over CONUS.

Materials and methods

Community Earth System model and
large ensemble

The Scenario Model Intercomparison Project

(ScenarioMIP) is an activity of CMIP6 which provides

future climate projections for eight unique SSP-based

scenarios obtained by integrated assessment models (IAMs)

(Tebaldi et al., 2021). CMIP6 employs a new generation

of GCMs (Eyring et al., 2016), which incorporates an

increased understanding of physical processes, vertical and

horizontal resolutions (Akinsanola et al., 2020b), adapted

reconstruction of the land-use changes, and coherent

depiction of atmospheric aerosol forcings (Stouffer et al.,

2017).

The SSP-RCP framework combines the newly developed

socioeconomic scenarios with the RCPs in CMIP5 (van Vuuren

et al., 2014). In the CMIP6 model’s historical simulation

from 1850 to 2014, natural forcing, e.g., volcanic eruptions

and human influence, such as CO2 concentration, are used

as inputs (Srivastava et al., 2020). This framework, referred

to as “scenario matrix architecture,” explains socioeconomic

reference pathways (a total of five pathways) in coordination

with radiative forcing levels (W/m2) (van Vuuren et al.,

2011). The SSPs are intended to reflect future socioeconomic

developments, ranging from the absence of climate policy to

greater climate adaptation and mitigation (Riahi et al., 2017).

The SSP narratives incorporate a wide range of potential

future societal trends and designed mitigation and adaptation

strategies to address socioeconomic challenges (Riahi et al.,

2017).

The National Center for Atmospheric Research (NCAR) has

constructed a 100-member ensemble utilizing the Community

Earth System Model version 2 (CESM2) with 100 km grid

spacing, a feat unprecedented in climatemodeling (Danabasoglu

et al., 2020). The CMIP6 efforts provide a framework for

analyzing internal variability to forced changes (Rodgers

et al., 2021b). The simulation period spans from 1850 to

2100, including historical and SSP3-7.0 protocols of CMIP6

(Eyring et al., 2016). SSP3-7.0 (radiative forcing 7.0 W/m2)

is between the moderate SSP4-6.0 and the worst-case SSP5-

8.5 scenarios. This scenario is simulated with an ensemble

of initial conditions to assess the model’s natural variability.

The nominal horizontal resolution of components of CESM2

is 100 km. A set of components consisting of land, ocean,

atmosphere, sea-ice, ocean waves, rivers, and land-ice, exchanges

fluxes and states using a coupler (Danabasoglu et al.,

2020).

A prior study compared the new generation CESM2-

LE over CONUS in three different periods, namely 1961–

1980, 1981–2000, and 2001–2020 with a reference from

1941 to 1960 (Coelho et al., 2022). The study made use

of the available Global Historical Climate Network (GHCN)

observing stations data in each CESM2-LE grid box (100km)

to construct an empirical cumulative density function (CDF)

based on the return period (representing climatological

quantiles). The CDF was determined in each grid box by

averaging all available stations’ annual maximum series (AMS)

over the three periods. A similar process was applied to

CESM2-LE, leveraging 70 ensembles. The study used the

concept of relative change (RC) of quantiles of precipitation

between the three periods and reference periods for both

GHCN and CESM2-LE findings. The RC incorporates upper

quantiles representing extreme precipitation relative to the

reference period. The study found that the relative change

difference between the two datasets (GHCN and CESM2-LE)
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has <5% bias on a continental scale, which supports the

capacity of large ensembles to capture the climatological

quantiles adequately.

Indices such as seasonal daily maximum precipitation for

2015–2100 at each grid are extracted. This process is repeated

over M ensemble members (M = 70, based on the ensemble

member availability during the study). In total, M values are

extracted per season at each grid. Each year, a large ensemble

distribution is used to calculate the index’s quantile values

(i.e., 25, 50, 75, and 95th). The LE provides a robust estimate

of quantiles that represents the range of future precipitation

wet extremes.

Non-parametric trend tests

Projection of the seasonal climatology is studied over

the CONUS alongside two extreme indices of ETCCDI,

such as the maximum daily precipitation (RX1day) and the

simple precipitation intensity index (SDII) per season. The

seasonal SDII is calculated by averaging the accumulated daily

precipitation by the number of precipitation days in a season.

Non-parametric Sen’s slope trend magnitude (Theil, 1950; Sen,

1968) along with Mann-Kendall (MK) (Mann, 1945; Kendall,

1948) trend detection at a 95% confidence level is employed

in the processed time series of the three indices from 2015 to

2100. Equation (1) calculates Sen’s slope estimator, which yields

a robust trend estimate in a time series.

Tr =median

(

It−Is

t − s

)

, t>s (1)

Tr represents slope estimator of the selected quantiles, r, i.e.,

25, 50, 75, and 95th. It and Is are (t > s) are values of a particular

index at successive points of the time series (2015–2100). The

procedure uses the number of years to calculate combination C

of data points.

C =
n(n− 1)

2
(2)

n in Equation (2) represents number of years (86 years from

2015 to 2100). The median of the pairwise slope estimation

represents the slope estimator.

Uncertainty in detecting trends is presented by quantifying

the number of members identifying significant trends (either

positive, negative or no trend) using the MK test at a 5% alpha

level. We employed a simple majority rule on the direction of

projected trends at each pixel following an earlier trend study

(Kumar et al., 2013). We consider a pixel to have a statistically

significant trend direction if it has >50% ensemble agreement

(from 70 ensembles, at least 35 or more agrees statistically) on

the sign of trend as no trend, positive trend, or negative trend at

the 95% significance level.

Projected trends in seven regions of CONUS divided

according to the NCA regions are presented in Figure 1: SE

FIGURE 1

National Climate Assessment regions (Available online at:

https://www.c2es.org/content/national-climate-assessment/).

SE, southeast, NE, northeast, MW, Midwest, SGP, southern great

plains, SW, southwest, NGP, northern great plains,

NW, northwest.

(Southeast), NE (Northeast), MW (Midwest), SGP Southern

Great Plains), SW (Southwest), NGP (Northern great plains),

NW (Northwest).

Assessing regional changes

The quantiles’ seasonal climatology of the indices (RX1,

TOTs and SDII) is determined for the reference period (1951–

2014). First, the indices are computed for the M (70) ensembles

for N (64) years; in total, it gives M × N data points (70

ensembles of 64 years each producing 4,480 points) in each

grid. Second, the quantiles (25, 50, 75, and 95th) are calculated

using the data probability distribution (e.g., 25th of 4,480 values).

These reference quantiles are used to normalize the future

changes (trend magnitudes) of the indices and presented as

percentages. The normalized changes over CONUS are cropped

into the seven NCA regions (i.e., SE, NE, MW, SGP, SW, NG,

and NW). The grids within an NCA region are aggregated to

calculate the average change (%). The grids are also used to

compute standard deviation to represent regional uncertainty

in the projected changes. The normalization is applied to all

the quantiles used in the study but is shown only for the

50th (median) and 95th (extreme) quantiles. The normalization

produces a percent value and is used to compare the projected

changes among different regions. Equation (3) explains the

normalization approach.

Nr =

(

Tr
∗N

Climr

)

∗100 (3)

where, Tr represents trend magnitudes (2015-2100), Climr

represent reference quantiles from 1951 to 2014. r represent

different quantiles, i.e., 50 and 95th, andN represents no of years

during 2015–2100 period.
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Results

Daily maximum

This study uses Sen’s slope estimator to investigate the

projected trends (2015–2100) from the distribution of ensemble

members of seasonal daily maximum precipitation in various

quantiles. Figure 2 illustrates the spatial distribution of the

daily maximum trend magnitudes across seasons. Seasons

influence the spatial patterns of the RX1, which remains

consistent across quantiles with a varying range of projected

trend magnitudes.

Spring shifts toward a higher wetting magnitude in the

eastern regions (SE, NE), and parts of the MW, moving from the

25 to 95th quantile (Figures 2A,E,I,M). In the highest quantile,

higher positive magnitudes are projected in the country’s eastern

half (i.e., SE, NE, and MW). The summer trends project smaller

wetting patterns in lower quantiles (Figures 2B–D) in southern

(SGP, SW), and northwest (NW) regions, illustrating a higher

magnitude in the highest quantile except the upper MW.

Fall shows minimal to no change in the lower quantiles

(Figures 2C,G) over the central U.S. but projects a positive

trend in the highest quantile (95th). In winter, a positive

signal in the SE, NE, and SW in the 25, 50, and 75th

quantiles are found. The winter illustrates a similar spatial

pattern in the eastern regions as the spring in the 95th. The

seasonal and regional breakdown of trend magnitudes at

different quantiles provides a complete understanding of

changes in the projected distribution of the daily maximum

precipitation. Most importantly, the 95th quantile (extremes)

trend distribution illustrates a general wetting pattern

across all seasons and regions, except for much of the

NGP in summer, while the changes in the lower quantiles

are much less pronounced (Figures 2M–P). There is a

general wetting pattern over most regions of CONUS in the

highest quantile.

FIGURE 2

CONUS spatial distribution of projected daily maximum (mm) Sen’s long-term trends of projected daily maximum precipitation (mm/year) from

2015 to 2100 using CESM2-LE for di�erent quantiles (rows) across seasons (columns). Cold (blue) colors represent wetting trends, whereas

warm (red) represents a drying trend, and no change is highlighted in the white color. The trend magnitudes are shown as; lower 25th [spring

(A), summer (B), fall (C), and winter (D); median 50th, (E–H); above median 75th, (I–L); and extreme 95th (M–P)]. The cold (blue) color

represents wetting trends, whereas warm (red) represents drying and no change is highlighted in white color. Single emission scenario SSP3-7.0

(between the moderate SSP4-6.0 and the worst-case SSP5-8.5 scenarios) is used in the analysis.
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FIGURE 3

CONUS spatial distribution of projected seasonal total (mm/year) Sen’s long-term trends of projected seasonal total (mm/year) from 2015 to

2100 using CESM2-LE for di�erent quantiles (rows) across seasons (columns). Cold (blue) colors represent wetting trends, whereas warm (red)

represents a drying trend, and no change is highlighted in the white color. The trend magnitudes are shown as; lower 25th [spring (A), summer

(B), fall (C), and winter (D); median, 50th, (E–H); above median 75th, (I–L); and extreme 95th (M–P)].

Seasonal total

Spatial patterns of seasonal total (TOTs) trends

are illustrated in Figure 3. A drying pattern and

minimal change are found in the southern parts (SGP

and SW) in spring (Figures 3A,E,I,M). In contrast

wetting patterns dominate in NE, SE, and MW,

stretching to the Northern Great Plains from the

50th quantile.

The summer drying and wetting patterns are visible in

MW and SGP, respectively (Figures 3B,F,J,N). The wetting

pattern of fall becomes prominent in the higher quantiles with

concentrated higher magnitudes in the NW, NE, and SE. No

change in fall is pronounced at the lower quantiles in MW, NGP,

and SW (Figures 3C,G). The winter pattern is similar to spring,

except for an enhanced drying pattern in SGP, particularly in

Texas. In contrast to Figure 2, TOTs trends show a mixture of

regional wetting and drying patterns. These results illustrate that

increases in seasonal total precipitation is most pronounced in

the eastern andmid-western CONUS in spring and winter, while

increases in the Gulf Coast region are focused in summer and

fall. A summer drying trend is also identified across the NGP

and Florida in all quantiles.

SDII

The precipitation intensity index in Figure 4 shows a

consistency in the spatial pattern of spring SDII across

quantiles. A general intensifying pattern is projected

in SE, NE, and MW in spring precipitation intensity

(Figures 4A,E,I,M). On the contrary, SW and SGP project

no change to drying patterns in southern Texas. Florida is also

projected to experience a drying pattern in the 95th quantile

in spring.

Summer shows a mixture of wetting and drying in

addition to regions with no changes in precipitation intensity

(Figures 4B,F,J,N). At the lower quantile (25th), most of NE,

southern MW, and the majority of SW show no change

in the daily intensity. Texas is projected to have a higher
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FIGURE 4

CONUS spatial distribution of projected SDII (mm/day/year) Sen’s long-term trends of projected SDII (mm/day/year) from 2015 to 2100 using

CESM2-LE for di�erent quantiles (rows) across seasons (columns). Cold (blue) colors represent wetting trends, whereas warm (red) represents a

drying trend, and no change is highlighted in the white color. The trend magnitudes are shown as; lower 25th [spring (A), summer (B), fall (C),

and winter (D); median 50th, (E–H); above median 75th, (I–L); and extreme 95th (M–P)].

magnitude of change at the 95th quantile. Fall shows no

change in NGP, MW, SW, northern SGP, and wetting

patterns in the SE and NW in the 25 and 50th quantiles

(Figures 4C,G). At the higher quantile, i.e., 95th many of these

no-change regions are projected to have slightly intensified

precipitation. Winter shows higher magnitudes of change

in the NE and SE, even in the lowest quantile (25th). A

similar spatial pattern is illustrated in the NGP and SGP

in 25 and 50th (Figures 4D,H). At the higher quantiles,

a wetting pattern is projected to cover most parts except

Texas (drying).

Regional changes

Figures 5–7 illustrate normalized percent change in the

NCA regions. The bars represent normalized average change

(colored according to the NCA regional map, Figure 1), and

error bars represent the standard deviation of the changes

representing uncertainty in regional changes. Figure 5 illustrates

the seasonality of such regional changes of RX1 at two

quantiles, i.e., 50 and 95th. In contrast to the southern

and western parts of the country, in the 50th quantile,

the SE, MW, NE, and NGP exhibits larger normalized

increases in spring (Figure 5A). At the 95th quantile, the

standard deviation increases across regions implying the

variation among the normalized pixels within a region

is higher.

Summer shows a greater change in southern and western

parts of CONUS (i.e., SGP, SW, NW) than in the eastern

and northern parts in both the 50 and 95th quantiles

(magnitude and standard deviation vary in different quantiles).

Both quantiles found a higher average percent change in

the NW during the fall. However, the smallest change is

found in SGP at 50th and SE at 95th. The eastern (SE, NE)

and northern (NGP, MW) regions have higher magnitudes

of average percent change during winter. The normalized

average change across regions reveals a seasonal pattern.

The 95th normalized changes are bigger than the 50th in

most regions.
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FIGURE 5

Normalized regional average change of maximum daily precipitation (mm) represented across seasons for the 50th and 95th quantiles compared

to historical climatology from 1951 to 2014. Di�erent color bar plots represent the regions of the National Climate Assessment (as shown in

Figure 1), and the error bar represents the standard deviation of the normalized change within a region [spring (A), summer (C), fall (E), winter

(G), spring (B), summer (D), fall (F), and winter (H)].

The seasonal variation of normalized average changes in

total precipitation ranges from ∼+10 to +40% in Figure 6.

Unlike the daily maximum, for which the Southeast shows

the greatest change in the spring at 95th, the seasonal

total in Midwest is shown to exhibit a greater increase

(Figure 6B). Summer precipitation totals indicate bigger shifts

with higher variability (standard deviation) in the southern

and western regions (SW, SGP, and NW) (Figures 6C,D).

On the other hand, the eastern (SE and NE) and the

Midwest have the lowest shifts in both quantiles (50 and

95th). Fall (Figures 6E,F) also has a similar pattern of change

as daily maximum in both quantiles (NE lowest change

and NW greatest change). Except for SGP and NW, most

regions see a larger change in the winter (Figures 6G,H).

During the winter, however, the change in SW declined

in the 95th. In general, in spring, fall, and winter, the

relative rate of the total seasonal precipitation changes is

similar in the middle and high-end distribution. However,

higher increases are only notable in the SGP, SW, and NW

during summer.

Frontiers inClimate 08 frontiersin.org

https://doi.org/10.3389/fclim.2022.954892
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Dollan et al. 10.3389/fclim.2022.954892

FIGURE 6

Normalized regional average change of maximum seasonal total (mm) represented across seasons for the 50th and 95th quantiles compared to

historical climatology from 1951 to 2014. Di�erent color bar plots represent the regions of the National Climate Assessment (as shown in

Figure 1), and the error bar represents the standard deviation of the normalized change within a region [spring (A), summer (C), fall (E), winter

(G), spring (B), summer (D), fall (F), and winter (H)].

The projected changes in the intensity index are illustrated

in Figure 7. MW and NGP are expected to experience greater

changes on the 50 and 95th during spring (Figures 7A,B).

Summer shows a higher percentage change in the southern

(SGP) and western (SW and NW) regions, with 50th

having a greater change than 95th (Figures 7C,D). Fall

has a relatively smaller change in each region compared

to other seasons (Figures 7E,F). The pattern of change

in each region is similar for both the quantiles during

fall. The NE region is projected to have the greatest

change among the rest regions during winter (both 50

and 95th), followed by MW (Figures 7G,H). The intensity

index also has a seasonal dependency on the average

change across the region. Even though the average shift

varies by region, a similar regional shift is expected in the

seasonal total.

Trend detection is studied in each ensemble distribution of

the RX1, TOTs and SDII to explore the uncertainty in detecting

a trend from the ensemble distribution. We define a grid as

capturing the sign of change if it detects a statistically significant

trend and the majority (>50%) of the ensembles agree on that

detection. The RX1 trend varies with season, resulting in varying
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FIGURE 7

Normalized regional average change of maximum SDII (mm/day) represented across seasons for the 50th and 95th quantiles compared to

historical climatology from 1951 to 2014. Di�erent color bar plots represent the regions of the National Climate Assessment (as shown in

Figure 1), and the error bar represents the standard deviation of the normalized change within a region [spring (A), summer (C), fall (E), winter

(G), spring (B), summer (D), fall (F), and winter (H)].

ensemble agreements. For example, fall agrees on no trend in

the eastern areas, winter agrees on a positive trend in the eastern

regions, summer agrees on no trend in the western regions, and

spring agrees on no trend in most regions (except MW and SE)

in Table 1.

SDII shows a different trend detection than RX1 in

summer, where parts of the southwest agree on positive

trends. However, the regional agreement shows similar

results in winter (NE positive) and fall (no trends

in most regions). An increasing trend in the eastern

(NE, SE) and northern plains is detected in winter.

The eastern regions agree on positive trends in the

three indices.

Discussion

Understanding the Earth’s hydroclimatic response to

global warming necessitates knowledge of changes in mean

precipitation and other distributions (Giorgi et al., 2019). The

study demonstrates projected long-term (2015–2100, under

SSP3-7.0) trends of extreme daily maximum and precipitation

intensity indices (RX1 and SDII) and precipitation climatology

(TOTs) at regional and seasonal scales over CONUS using

CESM2-LE simulations. The long-term trend of these indices

is characterized across a range of quantiles. Since LEs can

circumvent the issue of complex model uncertainties created

by averaging different climate models (Deser et al., 2012), the
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TABLE 1 Ensemble agreement on the signs of change (no trend, 0; positive trend, +1; and negative trend, −1) across the indices, i.e., RX1 (mm),

TOTs (mm), and SDII (mm/day) in each season.

Indices Seasons No trend Positive Negative

Seasonal Maximum Daily Precipitation

(RX1)

Spring Most regions Parts of MW and SE –

Summer Parts of NW and SW Most regions –

Fall All regions except eastern NW Eastern NW –

Winter All regions except NE and SE NE and eastern SE –

Seasonal Daily Precipitation Intensity

Index (SDII)

Spring NW, SW, SGP, SE, NE Southern MW and

western NGP

–

Summer SGP, NGP, SE, NE, MW, northern NW Northern SW and

southern NW

–

Fall All regions – –

Winter MW, SW, NW, SGP, northern NGP NE –

Seasonal Total (TOTs) Spring Most regions Southern MW and

western NGP

–

Summer Most regions Southern NW,

northern SW,

northern MW

–

Fall All regions – –

Winter MW, SW, NW, SGP, and most of SE

except VA and NC

NE, parts of SE,

NGP, and SW

–

ensemble mean allows for studying externally imposed changes

in precipitation as the mean reduces the internal variability

(Zhang and Delworth, 2018).

In general, we find that the spatial distribution of extreme

indices at different quantiles projects a wetter extreme over

most of the regions of CONUS toward the end of the twenty-

first century in SSP3-7.0. The indices exhibit regional patterns

with wetting in the northeastern regions during spring and

winter and relative drying in the MW in summer. Figure 2

illustrates that most SE region shows projected wetting in

daily maximum summer at the 95th quantile. TOTs (Figure 3)

and SDII (Figure 4) show similar spatial patterns as Figure 2

at the 95th quantile, and the wetting is mostly concentrated

over the southern part of the domain. The TOTs in Figure 3

show a drying summer in NGP and a wetting winter in

NE and SE. Our findings complement a study by Hayhoe

et al. (2007) that illustrates a consistent increase in winter

but no change to the drying during summer in the NE in

nine atmosphere-ocean general circulation model simulations

(AOGCMs). Marvel et al. (2021) corroborate the increasing

amplitude of NW and SE during the winter-wet season.

Akinsanola et al. (2020b) employed CMIP6models to investigate

variations in extreme summer and winter precipitation over the

U.S., finding that winter precipitation intensity is expected to

increase in the twenty-first century. While the authors illustrate

model agreement on the winter increase, models agree less

during summer.

Our results show that the MW will experience wetting in

spring by the end of the twenty-first century under the mid

to high emission scenario. The finding is consistent with a

recent study by Grady et al. (2021), which finds a regional

increase in projected wet spring in the late-century (30-year

study period) in the downscaled CMIP5 RCP8.5. Feng et al.

(2016) explain the changing characteristics of spring mesoscale

convective systems (MCSs) that dominate the central US and

the increased rainfall that results. Pressure gradient increases

caused by surface warming over RockyMountain were identified

as a potential cause of the MCSs changing characteristics in

the earlier study, spanning from 1979 to 2014. A wetting

pattern also dominates in the Midwest regions during spring

at the 95th quantile (Figure 3). Cook et al. (2008) found that

warming temperatures intensify the low-level jet, resulting in

more spring precipitation in the upper MW. High-resolution

modeling efforts with convection-permitting models (CPMs)

will be beneficial for understanding the mechanisms of MCSs

and the associated changes in spring total precipitation.

The projected changes in Figures 2, 3 show that the MW and

eastern regions (NE, SE) are expected to have greater changes in

RX1 and SDII during spring and winter. In contrast, summer is

expected to change the most in the southern parts of the country

(SW, SGP). In the NW, a noticeable change is expected in the

fall. The SW region varies from no change to drying in TOTs

and SDII during spring. In a warmer climate, the Southwest’s

water availability is projected to decline during spring (due to
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decreased precipitation and increased evapotranspiration) (Gao

et al., 2014). Figure 2 shows that the southeast is projected to

have a higher magnitude increase in the 95th quantile of RX1.

A previous study attributes the intense precipitation in the SE

fall to tropical cyclones (Dourte et al., 2015). Summer daily

maximum trend magnitudes at lower quantiles (25, 50, 75th)

project no change in the upperMW, which is in the drying range

in the seasonal total precipitation trends.

In conclusion, the three research questions set in the

Introduction are addressed as follows:

1. How is future precipitation expected to vary in extreme

indices across quantiles seasonally in the twenty-first century?

Our results corroborate findings from previous studies on

the projected change of extreme indices, showing that the

magnitude of change depends on seasons, regions, and

the index itself. Extreme indices (getting either drier or

wetter) also vary among quantiles, making it difficult to

provide a single answer to this question. For instance,

fall precipitation accumulations in the central US show

trend magnitudes ranging from no change in the lower

quantiles (i.e., 25, 50th) to wetting trends in the highest

quantile (95th).

2. Which quantiles are more likely to drive future precipitation

changes? As stated above, the spatial patterns of trends

depend on seasonality. With a few exceptions, the three

indices used in the study show similar spatial patterns of

trend magnitudes, implying that seasonal climatology, daily

maximum, and daily intensity are projected to have similar

spatial patterns. In particular, the highest quantile analyzed

in the study, i.e., 95th, is most likely to drive higher wetting

trends, especially in the NE and the SE US in spring

and winter.

3. What changes in precipitation are likely to occur at the

regional scale, and what are the associated uncertainties?

Normalized average changes (representing regional

changes) show consistent seasonal patterns among

the three indices. Positive and statistically significant

trends are found in the eastern parts of the country

during winter and in the MW during spring. No

regions with dominant negative trends were identified in

this study.

Lastly, this study attempts to provide a robust estimation of

the seasonal change in extreme indices and climatology across

different regions of CONUS. The study uses an ensemble of

simulations to increase the sample size and evaluate the changes

of future extreme quantiles (end of the twenty-first century) to

that of the climatological quantiles of the earlier century in a

new “scenario-matrix architecture” (SSP3-7.0). Outcomes from

this work advance our understanding of extreme precipitation

in the latest large ensemble spread of the Community Earth

System Model.

Conclusion

This study analyzes the large ensemble of the CESM-2 for a

medium to high emission scenario range (SSP3-7.0) in terms of

daily maximum in a seasonal window, seasonal total, and daily

precipitation intensity. We compare the projected changes of

selected quantiles to the climatology of those quantiles (1951–

2014). Examining the future extreme precipitation change

of distinct quantiles provides insights into the variability of

regional precipitation regimes.

Projected seasonal climatology (TOTs) shows wetting and

drying patterns, specifically wetter spring and winter in the

eastern regions with drying summer in the Midwest. We have

seen uncertainties within ensembles in detecting trends, further

influenced by seasons and indices. Among all the indices

employed in the study, the northern regions, particularly the

NE and SE, consistently detect increasing projected trends

during winter. In the fall, most regions exhibit no trend in

any indices considered. The central U.S. is projected to have

no change at lower quantiles which transitions to wetting at

the 95th quantile in fall. On the other hand, the seasonal daily

maximum is projected to have an overall wetting pattern at the

95th quantile. Results also show that the normalized average

change in fall is minimal across the indices and consistent

across different parts of the distribution (50 and 95th). The

spatial distribution of projected trends primarily represents the

climatological patterns in different parts of CONUS. Because

climatemodels’ coarse resolution limits their ability to accurately

depict precipitation at the local scale, the magnitudes of the

trendsmay not be well simulated at the local to subregional scale.

Numerous studies discussed the systematic biases of the global

and regional climate models in simulating the precipitation

properties, which result in overly-frequent light precipitation

and an underestimation of extreme precipitation (Kharin et al.,

2005). When convection-permitting models (CPMs) become

available for climate simulation, the identified patterns at the

regional scale may be better captured in terms of magnitudes.

Additionally, to better understand wetting and drying patterns,

future studies should concentrate on long-term trends in other

hydrological variables, such as evaporation and soil moisture,

along with extreme precipitation changes. Incorporating other

wet and dry extreme indices and other emission scenarios will

aid in the development of comprehensive regional analyses

of precipitation.

Despite the model uncertainties, investigating the projected

changes in upper and lower quantiles of extreme indices

can provide insight into regional vulnerability to wet and

dry extremes in a warmer climate by considering many

simulations. Also, while examining the trends captured within

the models may not necessarily predict the exact magnitudes

of precipitation changes, it can provide a valuable tool

in determining the relative rate of precipitation changes
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across CONUS. Exploring the regional response in projected

precipitation in emission scenario SSP3-7.0 from only a single

large ensemble (CESM2-LE) is one of the limitations of

the present study. However, the inclusion of multi-model

simulations in the current approach should provide a robust

signal in exploring the changing characteristics of climatology

and extreme indices. Moreover, future research incorporating

such analysis under different emission scenarios is expected to

provide insight into the full range of uncertainties emerging

from differences in modeling structure and methods applied.

Furthermore, regional climate models are likely to provide

geographical variability in the projected trends, but they are

computationally expensive; therefore, LE simulations are useful

for exploring projected regional changes in extremes and the

associated uncertainties.
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