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Climate-change scenarios require
volatility e�ects to imply
substantial credit losses: shocks
drive credit risk not changes in
economic trends

Scott D. Aguais* and Laurence R. Forest Jr.*

Aguais and Associates, LTD, London, United Kingdom

Introduction: Long-run Macro-Prudential stability objectives for the banking

system have recently motivated a detailed focus on potential future credit risks

stemming from climate change. Led by regulators and the NGFS, early approaches

apply smooth, top-down scenarios that utilize carbon emissions data combined

with physical risk metrics. This general climate stress test approach assesses future

credit losses for individual firms and the banking system.While the NGFS approach

is in its infancy, a number of discussion points have been raised related to how

the approach assesses future credit risks. In contrast to the NGFS approach that

focuses on changes to long-run economic growth trends, higher credit risks

generally arise from unexpected economic shocks to cashflows and asset values.

Systematic shocks that impact many firms like those observed during the last three

economic recessions clearly produce higher volatility and systematic deviations

from average economic trends.

Methods: In this paper we briefly review aspects of current climate stress

test approaches to set the context for our primary focus on assessing future

climate induced credit risk and credit risk volatility using a multi credit-factor

portfolio framework applied to a benchmark US C&I credit portfolio. First we

compare various NGFS climate scenarios using NGFS GDP measures to a CCAR

severely adverse stress scenario. We then undertake two additional assessments

of future climate driven credit risk by applying an assumed relationship between

NGFS global mean temperatures (GMTs) and credit-factor volatilities. All three

prospective climate credit risk assessments utilize an empirically-based, credit-

factor model estimated from market-based measures of credit risk to highlight

the potential role for climate induced increases in volatility. The potential future

drivers of volatility could stem from narrower physical risks or broader macro-

economic, social or other systematic shocks driven by climate change. All three

predicted credit loss assessments suggest that volatility not changes to economic

trends ultimately drives higher potential credit risks relating to climate change.

Contributions: The key contributions of this paper are the application of

empirically based credit factor models combined with higher climate-driven

volatility assumptions that support statistical assessment of how climate change

could impact credit risk losses.

KEYWORDS

climate stress testing, credit risk, climate risk, credit cycles, credit factor models, climate

change
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1. Introduction

Due to recent increased concerns over the long-term effects of

climate change, regulators in several jurisdictions have worked with

banks to assess climate stress tests (“CST”) for both the possible

effects of climate change on their clients and the financial losses that

a bank might incur as a consequence to those effects on company

debt levels. Some regulators notably the ECB/ESRB and Project

Team on Climate Risk Monitoring (2021) working with the NGFS

(2022a,b) have proposed that banks try to identify the credit losses

associated with a range of “top–down” style scenarios involving

varying amounts of mitigation and climate-change intensities.

While the NGFS scenarios are “top–down,” they are applied to

individual companies on a “bottom-up” basis to assess scenario

impacts on levels of debt and associated company probabilities of

default (“PD”).

In most of these climate scenarios as currently applied, climate

change slows economic growth, but does not affect the cyclical

variability of the factors influencing credit risk. As a result, climate

change in these scenarios has little impact on credit losses. This

unsurprising result, is in contrast, to potentially larger climate

change impacts that produce more (volatility) through extreme,

weather events, related larger, political, or economic unexpected

future shocks, that yields more severe physical-damage and higher

economic and social costs. The lack of larger credit risk impacts in

current CST efforts can also be contrasted with current, traditional,

short-run regulatory capital stress testing that, in extreme (adverse)

scenarios does impart larger economic shocks through sudden

impacts on company cashflows.

Some of these recent CST studies, notably those from the

Alogoskoufis et al. (2021) and ECB/ESRB and Project Team on

Climate Risk Monitoring (2021), trace climate-change’s effects on

companies to rising costs caused by greater physical damage, more

stranded carbon assets, and higher carbon taxes. Those studies

use a key assumption that see these cost increases as incompletely

passed through in prices. Thus, company profit margins decline and

in response default rates and credit losses rise. However, under

the alternative view that long-run cost increases are typically fully

passed through in firm’s output prices, the credit effects would

for the most part be potentially small. The gradual decline in

output growth and the slow progression of cost increases as usually

represented in mainstream economic models, offer businesses

ample time to adapt. But in contrast, in most credit models,

only unanticipated shocks produce material increases in observed

defaults and credit losses.

Here, we show that if, contrary to the NGFS scenarios, climate

change increases the volatilities of systematic, credit-risk factors,

then, in more severe climate scenarios, deeper credit downturns

and higher credit losses could occur. Therefore, any assessment of

future climate induced credit risks must assess systematic volatility

not just trends in economic variables such as GDP. Luckily there

is substantial objective and empirical evidence on credit cycles

available from the last 40 years and a credit-factor framework to

assess credit risk volatility, that can also be complementary to early

CST approaches.

Recently in discussions and feedback concerning the primary

NGFS CST scenario approach there is also a growing industry

discussion concerning a set of more general points related to the

application of these primarily top-down, smooth, scenario-based

approaches. These include:

(1) The use of deterministic scenarios that are based on quite

limited objective, empirical data,

(2) Application of IAM-derived mostly “smooth trend-like”

scenarios—these don’t include the usual drivers of systematic

credit risk “shocks,”

(3) A lack of incorporation of more extreme near-catastrophic

future “states of the world,” which limits NGFS assessments

of potential extreme climate risks, and their related, potential

probabilities, and,

(4) A limited ability to assess granular risk, as “top down”

approaches cannot assess detailed industry and financial

sector behavior.

Climate risk impacts are highly uncertain and assessing

future credit risks over long 30-year or more horizons is

a quite complicated task. The current CST NGFS scenario-

focus generally seems to stem from the lack of, measurable,

historical climate impacts on detailed economic, financial and

industry sector data. Therefore, regulators and the NGFS have

developed “stylized” scenarios derived from simplified “top–down”

models. These NGFS scenarios provide a good start to thinking

about long-run financial impacts of climate change as well as

a standardized framework that can be applied in individual

regulatory jurisdictions. However, current historical climate data

limitations are one key constraint that limits the ability to better

assess climate uncertainty and develop more empirical, statistical

analysis including assessing implied probabilities of extreme

climate scenarios.

In the context of developing risk models generally, the goal

is focused on assessing an unbiased range of potential future

outcomes and estimating (as best as possible) related empirical

probabilities for these potential future outcomes. Adding more

extreme, complex long-run climate scenarios are a contribution

to developing a more unbiased “candidate set of possible future,

climate and risk outcomes.” In the current, general NGFS CST

approach, while good progress has been made, the NGFS approach

seems to lack, both of these aspects inherent in general risk

prediction models. Specifically, the inclusion of a wider unbiased

candidate set of potential future “climate states of the world”

coupled with related probabilities developed at least in a reasonably

objective, empirically based way.

In this paper, we briefly review these key climate stress test

discussion points but focus primarily on the role of systematic

volatility. We present three climate risk assessments using the

empirically based credit-factor framework we have developed in

the Z-Risk Engine (“ZRE”) portfolio solution (Chawla et al., 2016;

Forest and Aguais, 2019a,b,c).1 The credit-factor approach applied

in these assessments has been developed over the last 15 years and

is well documented in the literature, and is developed from credit

factors estimated from the full history ofMoody’s CreditEdge EDFs,

(Nazeran and Dywer, 2015; Moody’s Analytics, 2016). A similar

1 The foundation of the Z-Risk Engine approach using a systematic credit-

factor approach, “Z,” was first outlined in Belkin et al. (1998a,b).
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approach to applying credit-factor simulations to assess climate risk

can also be found in Garnier et al. (2022).

In the first assessment we compare the NGFS scenarios with

the CCAR (Severely Adverse Capital Stress) scenario produced

by the US Federal Reserve (Board of Governors of the Federal

Reserve System, 2022b).2 To accomplish this we apply the ZRE

Scenario ForecastingModel (“SFM”) utilized to assess deterministic

scenarios such as the NGFS and CCAR scenarios. The SFM starts

with predetermined, macroeconomic-variable (“MEV”) scenarios,

transforms MEVs into credit indicators called MEV Zs, and

the approach then bridges from those MEV Zs to industry and

region Zs, and through a series of further steps obtains credit-loss

scenarios for a benchmark portfolio of corporate and commercial

exposures.3 See Section 5 for more details.

The second assessment applies the ZRE Industry Region

Monte-Carlo (“IRMC”) model, which begins with Monte Carlo

simulations (“sims”) of the industry and region systematic factor

Zs that in turn, through a series of further steps, leads to portfolio,

credit-loss distributions. The third assessment, referred to as

the Scenario-Forecasting, Monte-Carlo (“SFMC”) model, adds a

Monte Carlo simulation engine for the MEV Z factors to the

SFMC just described and thereby produces alternative credit-loss

sims. Applying these models in estimating the credit losses of a

hypothetical portfolio representative of US bank, commercial-and-

industrial (C&I) loans, we find that, only after making credit-

factor volatilities sensitive to global warming, do more severe,

climate scenarios imply substantially higher credit losses, especially

in downturns.

The climate-sensitive results in this paper involve an assumed

relationship between global mean temperatures (GMTs) and credit-

factor volatilities. Thus far, we have no empirical results to

substantiate this or any other relationship between a climate metric

and credit-factor volatilities. As additional research not included

here, we have compared the CCAR series onmarket volatilities with

GMTs and have found an insignificant (but positive) correlation.

Thus, the quantitative results presented here for the direct GMT

climate impacts remains illustrative, however the credit-factor

models applied to assess these hypothetical climate impacts on

credit losses is empirically based.

To highlight the key, new contributions presented in this paper,

the empirical application of the macro-factor model discussed

in more detail below juxtaposes NGFS scenarios with a CCAR

scenario to highlight discussion point (1) in the literature that

the current NGFS scenarios lack a more objective empirical

foundation. The application of the CCAR scenario comparison

also highlights concerns expressed above about the NGFS approach

lacking the ability to apply unexpected systematic shocks consistent

with past economic discontinuities as highlighted in discussion

point (2). Applying long-run shocks for climate stress testing is

2 For clarity, the time horizon for CCAR scenarios is “short-run” and the

NGFS scenarios are usually applied to longer-run horizons. The comparison

we make focuses on the e�ects of systematic factors on credit risk not the

time horizon di�erences.

3 The “Z” notation is used throughout the paper to denote systematic

variables. These include systematic variables derived from MEVs and are also

applied to industry sectors and geographic regions.

key given the large uncertainty and the potential for higher future

volatility as outlined, relating to major climate change.

The paper also runs detailed, empirical macro and

industry/region credit-factor model assessments of climate

risk impacts on credit losses whose results provide more clarity

on discussion points (3) and (4), by assessing statistical “tail”

climate related credit losses and applying detailed, dedicated

industry/region factor models. Both assessments make new

contributions to the climate change CST literature.

2. Brief review of current climate stress
testing literature

Climate stress testing is a quite new topic, generally, and most

research and articles have been published over only the last roughly

5 years. This includes the key focus on this topic by regulators. In

this brief literature review, we highlight key recent contributions

on two threads in the literature: the application of climate financial

impact analysis in assessing company-specific climate impacts on

PDs, and recent, related work by the regulators and the global

NGFS consortium. We also link the four key industry discussion

points we cited in the introduction to the related literature to set

the context for the primary contributions of this paper focused on

applying a more elaborate credit risk framework to assess climate

change impacts.

Enhanced general stress testing of bank regulatory capital by

financial regulators over the last roughly 20 years has been part of

the overall Basel financial regulatory efforts to reform and enhance

the global rules regarding bank capital and therefore overall macro-

financial stability. For credit risky assets within banks, this effort has

included the implementation of various regulatory enhancements

to the core credit models (probability of default, loss-given default

and exposure-at-default) used by banks. These efforts around the

world have been substantial and form the enhanced foundation

on which regulators oversee banking capital and risk management

in banks.

The specific focus by regulators in conjunction with the banks

they oversee on CST has only really become part of the overall

climate change landscape in the last 3–5 years. This means that,

CST models, methodologies and various sources of climate data

to support CST are all in a very early stage of discussion and

development. To support this global effort, the NGFS (“The

Network of Central Banks and Supervisors for Greening the

Financial System”) was formed in late 2017 following the 2015

Paris Climate Agreement. The NGFS is an umbrella, voluntary,

cooperative organization focused on sharing best practices on

the relationship between the environment and the development

of climate risk management frameworks for the financial sector.

Research efforts by the NGFS have therefore supported the

development of a “common scenario-based” framework that forms

the foundation generally of early CST research and modeling.

Focusing specifically, on recent key CST publications, see

Battiston et al. (2017) for an initial framework for assessing climate

impacts on financial asset classes, for European equities and debt,

through the application of a “Climate VaR” approach. This research

like other recent climate analysis applies a network approach to

assess direct and indirect climate effects on a portfolio of financial
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assets. Focusing on climate impacts on financial assets, Battiston

et al. (2019) assessed “pricing forward-looking climate risks under

uncertainty.” Climate risk modeling based upon a Merton-Style

company default model Baldassarri Höger von Högersthal et al.

(2020), assessed various carbon price, price elasticity and cost pass-

through assumptions of climate change on public-company PDs.

The focus on Merton-style PD approaches across various time

horizons, can also be found in Bouchet and Guenedal (2020),

Capasso et al. (2020), and Adenot et al. (2022).

Key contributions from the regulators in recent years, include

work by the Dutch Central Bank, Vermeulen et al. (2021) who

focused on the aggregate Dutch Banking System, in applying

a “topdown” stress test approach centered on various “shocks”

including carbon price and technology shocks. From the French

Regulators, Allen et al. (2020) also develops a CST approach for the

French Banking System.

On the overall NGFS approach, see Boirard et al. (2022) and

Monasterolo et al. (2022), for a general discussion, and NGFS

(2022a, b). These models utilize primarily top-down scenarios, with

the scenario approach motivated generally like others by very high

levels of future climate uncertainty over long time horizons coupled

with a lack of historical data available to build detailed empirical,

predictive CST models.

Focusing on the four key industry discussion points, as pointed

out in Aguais (2022), using the Rumsfeld risk taxonomy, climate

risk is usually thought of as a “known–unknown.”What is “known”

is that broad measures of global temperature (driven by CO2 levels)

most likely will increase and climate change policy responses have

the potential to substantially impact carbon usage (carbon asset

stranding) and economic and financial activity globally (GDP).

Increasing severe weather volatility which is creating physical

climate risk is already being observed.

What is “unknown” is how much these broad measures of

potential temperature change and atmospheric CO2 will impact

GDP globally, economic activity generally, future volatility, and

society overall. Future carbon policy in the form of carbon pricing

primarily and future technology changes in energy markets could

make positive contributions to the climate transition but remain

highly uncertain. Climate change is fundamentally embedded in

the last roughly 50–60 years of observed economic and financial

data—but detailed statistical measures of climate impacts are hard

to directly extract to calibrate better climate credit risk models.4

Narrower physical climate impacts through measured CO2

emissions, rising global mean temperatures and increasing severe

weather volatility are generally observable, but highly uncertain

over long run horizons. Therefore, any climate risk assessments

are dominated by large uncertainties over the long-run horizons

currently under discussion. As already highlighted, credit risk in

principle is driven by unexpected economic shocks not smaller

deviations to trend variables like mean temperature and CO2 levels.

Finally, substantial climate uncertainty is also assessed to have “fat

tails” (Wagner and Weitzman, 2015).

4 As we discuss in more detail below, we use an illustrative GMT-to-

Volatility approach because of the lack of statistically identifiable climate

impacts on credit factor models generally.

Scenario-based approaches however have their own limitations,

as they are ultimately hard to validate because they basically

represent “what if,” usually deterministic, views of possible future

states of the world (Hughes, 2021a,b, 2022). CST approaches are

also usually driven top-down primarily, focused on IAM-style

models which also have a hard time assessing disaggregated sectors

in detail (Pitman et al., 2022).5 ,6 ,7

Current CST approaches not only have a hard time

“distributing climate risk” to lower levels—as has been pointed out

Aguais (2022) and Cliffe (2021)—in addition, Kemp et al. (2022)

also states; “prudent risk management requires consideration of

bad-to-worse-case scenarios. . . for climate change, such potential

futures are poorly understood. . . could anthropogenic climate

change result in worldwide societal collapse or even human

extinction?”8

The recent Real World Climate Scenarios (Cliffe, 2022; Cliffe

et al., 2022) roundtable has elaborated on some of these concerns

suggesting that better andmore detailed “climate narratives” should

also be part of enhanced CST approaches.9

Khanna (2022) has recently asked, “What Comes After the

Coming Climate Anarchy?” suggesting potential extreme scenarios

could have substantially negative impacts. David Wallace-Wells

highlighted potential long-run existential concerns at plus 6 degrees

C ormore in the Uninhabitable Earth (Wallace-Wells, 2019). Kemp

et al. (2022) also express substantial concerns about the lack of

inclusion of catastrophic scenarios, stating: “climate catastrophe

is relatively under-studied and poorly understood. . . cascading

impacts are underexamined” (see text footnote 8).

The ultimate existential metaphor for the potential impact of

climate change uncertainty was developed in the 2021 Paramount

film, “Don’t Look Up”—we call this the “DiCaprio Scenario”,

(McKay, 2021). Overall, building on early CST work requires a

5 There is an entire literature discussing the pros and cons of using IAM-

style models to drive CST approaches, which we exclude from this brief

discussion of industry concerns, see Monasterolo et al. (2022) for a more

detailed discussion of IAM-style models generally.

6 CST approaches like the one under development at the ECB, complement

the top-down NGFS scenarios with disaggregated variables linked to a large

sample of European-wide commercial firms including geo-location data to

assess firm-level credit risks. However, this approach is still primarily driven

top-down.

7 Concerns with more “top–down” model approaches not successfully

capturing lower-level, sectoral variation is also just as relevant for projecting

expected credit losses under the IFRS9 or CEC accounting rules. Nearly

all banks currently use a combination of their IRB credit models regressed

on macro-economic variables (MEV). Using just MEVs in general to predict

systematic changes in credit risk for IFRS9 does not fully capture the PIT credit

risk variability observed at the industry sector and region level during the last

3 recessions.

8 Kemp et al. (2022), p. 1.

9 Adding climate narratives given substantial uncertainty is a positive

suggestion and seems to stem directly from frustration with the use of

“stylized” NGFS scenarios.We agreewith these points but also suggest amore

solid objective and statistical foundation for assessing systematic climate

risk, as presented in these papers is also a key part of a more “holistic”

CST framework.
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much “broader” range of possible future risks—however, Stern et al.

(2022) suggest including a “DiCaprio Scenario” for the end of the

world would usually make CST models intractable.

Overall, the recent extensive research supporting climate stress

testing, as outlined above, has focused mostly on, “stylized”

deterministic, standardized scenarios developed by the NGFS

consortium. Our three climate stress test assessments presented

in this paper are meant to provide complementary ways to assess

these key topics, adding to the overall debate by focusing on more

detailed approaches to assessing systematic credit risks and the

impacts of climate volatility.

3. Assessing NGFS and CCAR scenario
credit losses using an empirical multi
credit-factor approach

3.1. Overview of multi credit factor
approach

For the empirical results presented in this article we apply

various modules of the Z-Risk Engine (www.z-riskengine.com)

multi credit-factor portfolio model to a benchmark C&I USA

credit portfolio generally designed to replicate the indices reported

by the FRB (Board of Governors of the Federal Reserve System,

2022a). The ZRE portfolio credit-factor approach was developed to

support assessments of both Point-in-Time (“PIT”) and Through-

the-Cycle (“TTC”) credit measures for Basel capital, stress testing

and IFRS9.10

In implementing MEV-based Z indexes as presented below

for the first assessment, we also translate GDP into a credit-cycle

indicator, which requires one to first de-trend it. We accomplish

that here by forming the ratio of GDP to an AR1 moving average

of GDP. In this ratio, the moving average represents a debt

proxy. Thus, GDP over its moving average corresponds roughly

to cash flow over debt or debt service. For other credit-related

series, we perform similar transformations before adding the

normalizations that produce credit-cycle, Z indexes. See Section 5

for more detail.

3.2. NGFS climate scenarios imply
uniformly small, credit losses

The first credit risk assessment presented focuses on comparing

GDP projections from various NGFS scenarios to the well-known

CCAR capital stress scenario to highlight the role of unexpected

shocks. Applying the ZRE SFM we find that the NGFS scenarios

imply credit losses that are small compared with those realized

in past recessions. Further, the differences in losses estimated for

moderate and severe, climate scenarios fall short of the differences

estimated for regulatory baseline and stress scenarios. Thus, based

on the climate scenarios now available, climate-change appears to

have relatively little effect on credit losses.

We attribute these findings to the smoothness of the NGFS

scenarios. The scenarios differ in economic growth rates but show

10 See the DBS Bank Case Study for a review how a ZRE implementation

supports both stress testing and IFRS9 (Z-Risk Engine Case Study, 2022).

little volatility around long-run trends. Evidently the scenarios seek

to describe the long-run, welfare (consumption) losses related to

climate change and not any systemic instabilities. But successful,

credit models trace most defaults and losses to sharp declines in

asset values and cash flows relative to trend and not to gradually

slowing trends.

3.3. Large credit losses occur occasionally
and suddenly

Experience indicates that credit crises arise in the manner

described by Dornbusch’s Law11:

“The crisis takes a much longer time coming than you

think, and then it happens much faster than you would

have thought.”

Paraphrased for credit, one might state this as follows:

“Credit crises occur only occasionally, but, when they do,

they happen suddenly, caused by sharp declines in asset values

or cash flows relative to debt or debt service.”

We see the pattern of intermittent, large credit risk events in

the history of US C&I credit losses assessed by the FRB. Over

the past 32 years, C&I losses have risen sharply three times, in

1990–1991 and especially 2001–2002 and 2008–2009, with each

episode lasting about a year (see Figure 1). About half of past, C&I,

credit losses trace to these roughly once-a-decade, major spikes.

During the 2020–2021, COVID-19 induced recession, loan losses

rose only moderately, perhaps due to forbearance inspired by the

recognition that the downturn involved a necessary pause rather

than fundamental failure of some businesses.

3.4. NGFS scenarios show climate change
as a�ecting economic trends and not
volatility

The NGFS scenarios specify slightly different GDP growth rates

in different climate scenarios (Table 1). However, the scenarios only

indicate that growth rates may differ, but say nothing about cyclical

instabilities around growth trends. To obtain quarterly projections,

we must also resort to interpolation—the result; extremely smooth

GDP scenarios.

3.5. NGFS scenarios imply uniformly
smooth credit-factor scenarios

Transformed into quarterly, credit-cycle, Z indexes for GDP,

we get extremely smooth, credit-risk scenarios showing no major

11 Dornbusch’s Law is usually ascribed to “overshooting” or excess volatility

in foreign exchange markets but is applied here as well to credit risk. See

Dornbusch (1976).
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TABLE 1 Annual GDP growth rates in NGFS scenarios.

NGFS scenario Time period

2023–
2030

2030–
2040

2040–
2050

Current policies 5.86% 4.36% 4.03%

Below 2◦C 5.85% 4.36% 4.06%

Delayed transition 5.85% 4.35% 4.06%

Divergent net zero 5.86% 4.38% 4.08%

Nationally determined

contributions (NDCs)

5.86% 4.36% 4.04%

Net zero 2050 5.86% 4.37% 4.07%

Real-GDP growth from 2022 GCAM 5.3+ NGFS model. Converted to nominal-GDP growth

by adding annual inflation of 2 per cent.

Data Source: 1662723618051-V3.2%20NGFS%20Phase%203.zip.

downturns and immaterial differences across scenarios (Figure 2).

One sees very little difference between the severe climate-

change, Current Policies Scenario and the moderate climate-

change, Net Zero 2050 one. In contrast, the 2022 CCAR Severely

Adverse Scenario has a strikingly different profile, exhibiting large

deviations from the average setting of zero and from the baseline

(no stress) scenario. While we don’t show it here, the 2022 CCAR

Baseline Scenario implies a Macro-Z path that sits almost on top of

the NGFS Macro-Z paths.

3.6. Low volatility NGFS credit scenarios
imply uniformly small, credit losses

Entering these scenarios into the SFM applied to a

representative, C&I portfolio, we find that the NGFS scenarios

imply uniformly small losses, with charge-off rates staying below

the 1990Q1–2022Q2 average of 0.72%. In striking contrast, the

2022 CCAR Severely Adverse Scenario implies very large losses,

with charge-off rates rising to more than 3x the historical average,

see Figure 3.

As a secondary factor explaining the insensitivity of losses to

the NGFS scenario, those scenarios provide only GDP projections

as possible credit factors. The historical record indicates that GDP is

mostly a through-the-cycle (TTC), credit indicator, not explaining

much of the past variation in observed default and loss rates. When

running SFM we generally find empirically that the best predictors

of observed credit losses are credit spreads and equities along

with GDP. As shown in Section 5, in applying the SFM “Bridge”

model, the application of the CCAR scenario uses all three macro-

economic indicators, (spreads, equities and GDP) while applying

the NGFS scenarios uses only GDP.

4. Adding climate-change volatility
multipliers to credit models

The above discussion suggests that, to have a substantial

effect on credit losses, climate change must generate greater

volatility in the factors driving credit risk. Higher potential future T
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FIGURE 1

Annualized charge-o� rates (%), US C&I loans, quarterly, seasonally adjusted. Source: board of governors of the federal reserve system.

FIGURE 2

US macro credit-factor paths under CCAR and NGFS scenarios. Source: board of governors of the federal reserve system and Z-risk engine, NGFS.

climate driven volatility is expected in general and could be

driven by a range of factors from; increasingly severe weather

and physical damage, abrupt carbon policy changes, social and

population migration and war “tipping points”—our application

of volatility multipliers driven by projected GMT increases should

be considered an aggregate measure of all of the future uncertain

drivers of climate change. This allows us to illustrate the statistical

impacts of future volatility on credit risk from the potential impact

of climate and to also develop statistical probabilities attached to a

given scenario.

We introduce this into the IRMC and SFMC models by

applying climate-sensitive multipliers to the random, Z shocks

underlying credit risk. We express these multipliers as a

function of global mean temperature (GMT). As GMT rises, the

volatilities of shocks increase, contributing to a wider range of

Z outcomes. GMTs vary across the different climate scenarios

and this implies different, volatility multipliers (Figures 4, 5). We

calculate the climate-change, volatility multipliers (CMs) using

the formula:

CMt =

(

1+
(GMTt − GMT2020)

14.5

)4

.

Explanation of GMT/Vol formula: 14.5 C is approximately

the average GMT over 1990–2020 (NASA, 2020). That’s 13.9 C

(approximate pre-industrial GMT) + 0.6 C average anomaly over

1990–2020. Thus, the vol-multiplier formula expresses the increase

in GMT since 2020 in each simulation quarter as a ratio to the

1990–2020 average GMT. Then the formula raises that ratio to the

fourth power.

4.1. Volatility multipliers produce higher
credit losses related to climate change

Applying alternatively the climate-sensitive, IRMC and SFMC

models, we’ve run 1,000 loss sims from 2022Q2 to 2050Q4 for each
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FIGURE 3

Estimated, C&I charge-o� rates: CCAR and NGFS scenarios. Source: board of governors of the federal reserve system, NGFS and Z-risk engine.

FIGURE 4

GMT anomalies in NGFS scenarios. Source: NGFS and Z-risk engine.

of the following climate scenarios: Baseline (no climate effects);

NGFS Net Zero 2050; NGFS Delayed Transition; and NGFS

Current Polices. The Baseline involves no volatility multipliers,

whereas the other three include the multipliers displayed above

(Table 2, Figure 5). In these sims, we’ve estimated credit losses for

a portfolio representative of US, C&I loans.

The results for the year 2050 show that credit losses increase

as climate change and the volatility multipliers rise above one in

the application of both the IRMC and SFMC models predicting

credit losses. We also see that the climate effects become greater

in the upper tail of the loss distribution. Thus, as estimated by

the IRMC model, the expected credit losses in the NGFS Net

Zero 2050, NGFS Delayed Transition, and NGFS Current Policies

scenarios rise relative to the baseline by 1.13×, 1.21×, and 1.36×,

respectively. The 99th percentile losses in those scenarios rise

relative to the baseline by 1.25×, 1.39×, and 1.65×, respectively.

The SFMC model produces similar results, but the loss estimates

particularly at high percentiles fall below those from the IRMC

model (Figure 6).

For broad comparison purposes, the 2008/2009 “Great

Recession” produced a roughly 2.3% realized credit loss rate for

2009 as measured by the FRB C&I index. For 2002, the realized

credit loss rates were about 1.8% vs. the 1990–2022 average C&I

credit loss rate from the FRB index of about 0.72%. Therefore

these illustrative credit loss simulations using the hypothetical

climate-to-volatility model coupled with the statistical industry-

region credit factor model produce higher losses for all NGFS

scenarios in the tail, 99% percentile.
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FIGURE 5

GMT-implied volatility multipliers in NGFS scenarios. Source: NGFS and Z-risk engine.

FIGURE 6

Alternative model estimates of 99th percentile losses in 2050. Source: NGFS and Z-risk engine.

In this paper, we’ve presented results for scenarios up to the year

2050. Note, however, that particularly in the NGFS Current Policies

scenario, the GMT continues to rise up to more than 3 degrees

above the pre-industrial mean value by 2100, implying credit losses

considerably higher than those estimated for 2050 in these results.

ZRE is also flexible and therefore can run scenarios over various

time horizons for example up to the year 2100.

As a final note, observe that the loss results presented

below involve summing estimates for 20 distinct, US industries

(Figure 7). While the exposure shares vary across sector to

represent the approximate composition of US C&I loans, the

TTC risk parameters of the facilities within each industry are the

same. This simplifies the modeling, although some industries (i.e.,

banking) surely have below average, credit risk. Some industries

have greater cyclical volatilities than others and this as well as

the varying exposure shares accounts for the different amounts

of expected loss by industry. If, as is possible, we were to

introduce different TTC parameters or different climate multipliers

by industry, this would also affect the industry composition

of losses.

4.2. Future research needs to seek a
statistical calibration, add industry and
region e�ects, and TTC e�ects

These estimates rely on hypothetical climate-change

multipliers, not yet estimated empirically. In future research,

analysts will want to explore calibrating the climate/credit volatility
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FIGURE 7

Industry composition of 2050 expected losses in no-climate-e�ects baseline. Source: NGFS and Z-risk engine.

relationship. To obtain credible estimates of the effect of climate

change on credit losses, one hopes for a formulation that is

both theoretically plausible and has been found to be potentially

statistically reliable.

Additionally, the above results come from a model with

proportionately the same climate-change effects on volatility in

every industry and region. Future work might introduce varying

effects, with more climate-sensitive industries and regions having

higher climate-volatility multipliers. Finally, future climate stress

testing that applies multi credit-factor models can also allow or

changing TTC risk attributes.

5. ZRE measures and models used in
this study

This section describes the credit-cycle measures and models

used in this study. All three models produce loss estimates for a

hypothetical, dynamic portfolio with attributes that imply long-

run loss rates similar to those experienced by US bank, C&I loans.

As a common convention for mimicking a dynamic portfolio, the

through-the-cycle (TTC) attributes of the hypothetical portfolio

remain fixed over time. Then, in each future quarter, the models

draw on the industry-region, simulated Zs in converting the TTC

attributes to PIT ones and in estimating PIT PDs, LGDs, EADs, and

credit losses.

5.1. Industry and region Z indices

ZRE’s industry and region Zs derive from point-in-time (PIT)

PDs estimated for a comprehensive set of listed companies across

the world. In this study, we useMoody’s CreditEdge EDFs (Nazeran

and Dywer, 2015; Moody’s Analytics, 2016) as the source of the

listed-company PDs. We obtain the industry and region Zs by

• transforming the monthly, listed-company EDFs into default-

distance (DD) measures by applying the negative of the

inverse-normal function (DD=−Θ (−1) (EDF)),

• summarizing those DDs for selected, industries and regional

grouping by taking medians,

• detrending the monthly median, DD series,

• forming DDGAPs for each industry and region by expressing

the detrended, monthly median DDs as deviations from long-

run means, and

• dividing the DDGAPs for each industry or region by the

standard deviation of annual changes in those DDGAPs.

In most ZRE applications, the industry and region, Z indices

get combined to form industry-region ones, which in turn enter as

inputs into the PD, LGD, and EAD models. The combinations are

weighted averages, with the weights set so as to best explain the past,

quarterly changes in listed-company, DDs. We see below in the

case of North America that the industry-region Zs have common

cyclical fluctuations and some sector specific ones (Figure 8).
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FIGURE 8

Historical values of selected North American industry Zs. Source: Z-risk engine.

5.2. MM models for the stochastic
evolution of Zs

ZRE applies mean-reversion-momentum (MM) models in

generating quarterly, Z sims. The MM models involve formulas of

the kind below.

1ZS
(q+1) = mS

1Z
S
q +mS

21ZS
q + εS(q+1) (1)

In (1) q denotes an integer index identifying quarters, 1ZS
q the

change in the Z for segment S from quarter-end q−1 to quarter-end

q,mS
1 the quarterly mean-reversion coefficient for segment S,mS

2

the quarterly momentum coefficient for that segment, and εSq+1 the

unexpected shock (or innovation) to 1ZS
q+1. In the IRMC model

S identifies various, industries and regions, whereas in the SFMC

model, S identifies the different, MEV Zs.

In this study, the shocks driving the Z sims have volatilities that

rise as the climate warms as measured by the GMT. Thus, under

more severe climate scenarios, the sims include more disparate Z

values implying greater downturns and higher credit losses.

5.3. IRMC model overview

The IRMC model runs Monte Carlo, industry and region,

Z sims that ultimately lead to credit-loss sims. In producing a

credit-loss sim, ZRE-IRMC:

• draws jointly, from a multivariate-normal or historical-

empirical distribution, a quarterly series of Z shocks for each

industry and region,

• enters those Z shocks into the related, MM models and, by

solving iteratively starting from an initial quarter with known

Z and Z values, simulates future, industry and region Zs,

• combines the simulated, industry and region Zs for each

permissible, industry-region pair and obtains the related,

quarterly, industry-region Zs,

• enters the industry-region Zs into PD, LGD, and EAD models

for the facilities in a corporate and commercial portfolio and

thereby produces a quarterly sim for defaults and credit losses.

For each climate scenario, we’ve run 1,000 sims extending 114

quarters staring in 2022Q3 and ending at 2050Q4. The IRMC sims

in this study involve random selection of historical shocks.

5.4. SFM model overview

The SFM runs d scenarios conditional on assumed MEV paths,

including those used in implementing the regulatory scenarios. The

SFM:

• draws on predetermined, MEV paths,

• converts those MEV paths into paths for stationary, credit-

cycle measures denoted MEV Zs,

• applies a bridgemodel in determining the industry and region,

Z paths implied by the MEV-Z ones,

• combines the industry and region Zs into composite, industry-

region Zs,

• enters the industry-region Zs into the PD, LGD, and EAD

models for the facilities in the representative, C&I portfolio

and thereby estimates the related, credit losses.

5.5. SFMC model overview

The SFMC model used in this study appends a Monte Carlo

engine to the SFM. This involves MM models for simulating MEV
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Zs. The SFMC sims jointly select shocks for both the Macro-

Z MM models and the bridge models. In running the sims,

SFMC

• draws at random, for each projection quarter, a row of values

from a table of historical, calendar-quarter, Macro-Z and

bridge-model residuals,

• enters into each MEV-Z, MM model the selected residual,

known values of ZM
q and 1ZM

q , and solves for 1ZM
(q+1)

and

ZM
(q+1)

,

• puts, into each bridge-model equation, the selected, industry

or region, bridge-model residual, the ZS
q , 1ZS

q values, and, for

all MEV-Z variables, the 1ZM
(q+1)

, and 1ZM
q values, and solves

for 1ZS
(q+1)

and ZS
(q+1)

,

• combines the industry and region Zs for each valid IR pair

and derives the industry-region Zs, and places the related,

industry-region Zs into the PD, LGD, and EAD models for

each facility classified within each industry-region sector and

solves for the related losses.

5.6. MEV Zs used in this study

The SFMC model applied in this paper includes MEV Zs

that derive, respectively, from the Wilshire 5000 stock-price

index, US GDP, and Baa spreads. We explain the derivations

next.

ZRE translates a stock-price index to a stock-price Z (ZE) by

• forming ratios of the quarterly, stock-price index to

autoregressive-first-order (AR(I)), moving averages of that

index;

• calculating natural logarithms of the ratios; and vexpressing

the logarithmic ratios as deviations from the mean value with

that result in turn divided by the standard deviation of annual

changes in the logarithmic ratios.

ZRE converts a GDP series to a GDP Z (ZG) in the same way by

• forming ratios of quarterly GDP to AR(1) moving averages of

quarterly GDP;

• calculating natural logarithms of those ratios; and

• expressing the logarithmic ratios as deviations from the long-

run, average value with that result in turn divided by the

standard deviation of annual changes in the logarithmic ratios.

ZRE converts Baa spreads to spread-Z indices (ZS) by

• dividing by 0.6, representing the conventional, risk-neutral,

LGD for corporate bonds, and obtaining imputed PDs,

• applying the negative of the inverse-normal function to the

imputed PDs and thereby deriving estimated DDs,

• subtracting the 1990-to-date average value of the DDs and

dividing by the standard deviation of 1990-to-date, annual

changes in the DDs.

TABLE 3 US bridge model variables and coe�cients.

Variable
type

Variable∗ Parameter CCAR
Estimate

NGFS
Estimate

Dependent 1Z

Explanatory Z (−1) mr −0.05 −0.08

1Z (−1) mm 0.11 0.16

1ZE b(0) 0.39 0.00

1ZE(−1) b(1) 0.03 0.00

1ZS c(0) 0.23 0.00

1ZS(−1) c(1) 0.03 0.00

1ZG d(0) 0.02 0.10

1ZG(−1) d(1) 0.02 0.05

Goodness

of fit

R2 0.53 0.09

∗Z denotes an industry or region, Z index. ZE, ZS, and ZG represent the Macro Zs for equity

prices, spreads, and GDP, respectively. As the NGFS scenarios available do not include credit

spreads and equities, for running the NGFS scenarios we only use the Macro Z GDP variable

so the table above has zero coefficients on spreads and equities as they are excluded.

5.7. Bridge model

For this study, we’ve estimated the bridge models using pooled,

least-squares regression of one-quarter changes in the Zs for each

of 21 industry and the two, North American, regional groupings on

(1) one-quarter lagged values of those Zs; (2) one quarter lagged

values of one-quarter changes in those Zs; and (3) current and one-

quarter-lagged values of quarterly changes in the ZE, ZS, and ZG,

MEV-Z indexes (Table 3). The estimation uses data from 1990Q3

to 2022Q1. The bridge model for the CCAR scenarios and SFMC

sims include three, MEV Zs. Due to the NGFS scenarios including

values only for GDP and not stock prices and credit spreads,

the bridge model used in those cases includes only one, MEV Z

(GDP Z).

5.8. Estimating scenario losses for facilities
in the hypothetical portfolio

The quarterly, industry-region Zs enter into facility PD, LGD,

and EADmodels and thereby produce quarterly estimates of losses.

See below for more detail.

5.8.1. Facility PDs
In each scenario in each quarter for each facility in the

representative portfolio, we apply a Probit PD model in deriving a

quarterly PD. A Probit model uses a standard-normal, cumulative

distribution function (CDF) in transforming a DD measure into

a PD. As applied here, th e model has the following inputs: the

quarterly, TTC PD transformed into a DD; the industry-region

Z expressed relative to a normal Z consistent with the TTC PD;

and various volatility parameters that convert the Z factor into

a DD variation scaled for a quarterly model. The Z factor input
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together with the volatility parameters convert the TTC PD into

a PIT one.

5.8.2. Facility LGDs
The facility LGDs arise from a Tobit LGD model. This model

has point masses at 0% and 100% and uses a normal CDF for the

frequency of LGD outcomes above 0% and below 100%. In this

study, the model has the following, facility inputs: TTC LGD; and

the relevant, industry-region Z. The parameters of the model come

from past, empirical results. We solve for the expected value of

LGD, conditional on the scenario Z.

5.8.3. Facility EADs
We use a CCF model sensitive to the credit cycle in deriving

EADs for each facility in each scenario quarter. In such a model, the

utilization in default rises above the performing facility’s expected

utilization rate by a proportion (CCF) of the fraction unutilized

under non-default conditions. The CCF in this study comes from

a Probit model with the relevant, industry-region Z as an input.

We scale the model so that, if Z is zero, the CCF equals the TTC

value that appears as an attribute in the portfolio file. We’ve set the

Z sensitivity of CCFs to that estimated in past empirical work.

Each facility’s expected credit loss (ECL) in a scenario quarter

derives as a product of the facility’s, PD, expected LGD (ELGD) and

expected EAD (EEAD) values for that quarter. The ECL and all of

the component, expected values are conditional on the Z value in

the quarter. We obtain the ECL for the C&I portfolio or various,

sub-portfolios by summing the constituent, facility ECLs.

5.9. Attributes of the representative, C&I
portfolio

The hypothetical, C&I portfolio includes a broad set of

industries roughly representative of all, C&I loans (Table 4). Each

industry-region Z index arise as a weighted average of a global

industry, Z index and a regional, Z index. In the case of non-

financial industries, the regional index in the combination includes

only non-financial companies in its construction. In the case

of financial industries, the regional index in the combination

includes only financial companies. The weights involved in forming

industry-region indexes derive from regressions of quarterly

changes in DDs of listed companies within each industry on

quarterly changes in the associated, industry and region, median

DDs. Note that ZRE also creates an agriculture industry, but, in

the Fed/OCC loan-loss data, agricultural loans are in a separate

category outside of C&I. Thus, in this study, we exclude agricultural

as a relevant industry.

The portfolio in the scenarios includes a mixture of revolving

(RCF) and term loan (TL) facilities with TTC attributes that

remain fixed over time (Table 5). This practice of holding the TTC

attributes constant represents a tractable way of running dynamic

portfolio simulation under the assumption of a fixed, risk appetite.

To simplify the model, we assume that the attributes are the same

for every industry-region segment.

TABLE 4 Industry composition of the representative C&I portfolio.

Weight C&I industry Associated
region grouping

1% Aerospace and defense North America

5% Banking North America FI

5% Basic industries North America

20% Business and consumer services North America

2% Chemicals and plastic products North America

10% Construction North America

2% Consumer products North America

10% Finance, insurance, and real estate North America FI

5% Hotels and leisure North America

3% Machinery and equipment North America

5% Media North America

5% Medical North America

1% Mining North America

5% Motor vehicles and parts North America

3% Oil and gas North America

6% Retail and wholesale trade North America

4% Metals North America

4% Technology North America

3% Transportation North America

1% Utilities North America

100% All All

5.10. Background on validation of the ZRE
approach

The validation of ZRE comes from empirical studies in which

we find that:

• adding ZRE’s industry-region Zs to PD and LGD models

drawing on financial ratios and judgmental scores increases

the goodness-of-fit by a statistically significant, order of

magnitude (Table 6),

• applying ZRE in back tests involving a representative, C&I,

loan portfolio, we get estimates that align closely with actual

C&I losses (Figure 9), and

• replacing the longstanding random-walk models with

ZRE’s mean-reversion-momentum ones, we get statistically

significantly better estimates of Z indices.

6. Summary

In this paper we have extended the climate stress test literature

by presenting three different assessments of future credit risk

losses potentially related to climate change. The assessments utilize

the well-known NGFS scenario climate stress test approach in

conjunction with an empirical credit-factor portfolio model. We
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TABLE 5 Industry composition of the representative C&I portfolio.

Weight Entity
grade

Facility
type

Limit in
$s mm

Primary
region

Primary
industry

EU 1-Qtr
PDTTC

LGDTTC CCFTTC FCF

10% A RCF 300 North

America

Utilities 10% 0.01% 35% 75% 1.00

TL 300 100% 35% 100%

25% BBB RCF 300 20% 0.03% 30% 45% 1.00

TL 300 100% 30% 100%

45% BB RCF 300 30% 0.14% 30% 45% 1.00

TL 300 100% 30% 100%

15% B RCF 300 30% 0.97% 25% 45% 1.00

TL 300 100% 25% 100%

5% CCC RCF 300 50% 6.84% 20% 45% 1.00

TL 300 100% 20% 100%

100% All All 600 All All 63% 0.56% 23% 73% 1.00

TABLE 6 Estimates of PIT-PD models for S&P-rated and Moody’s-rated, non-financial companies.

S&P model Moody’s model

Variable Parameter Estimate Std error T-Stat Estimate Std error T-Stat

Constant a0 −0.39 0.06 −6.77 0.13 0.06 3.06

DDG a1 1.10 0.03 3.33 0.98 0.03 −5.00

Level shift s0 −0.14 0.09 −1.59 −0.11 0.09 −1.58

Slope shift s1 0.24 0.05 4.73 0.29 0.05 6.16

DDGAP1 b 0.87 0.01 87.00 0.80 0.01 80.00

1The DDGAP coefficient varies by region. We show above the result for global, non-financial-corporate companies. The coefficients and standard errors for the b parameters come from

preliminary, instrumental-variable regressions of DDGAPs created from a sample of listed companies rated by S&P or Moody’s on industry-region, DDGAPs derived from the entire sample

of companies covered by CreditEdge. The resulting instruments, measuring the gaps between PIT and TTC DDs of each S&P or Moody’s rating within each sector, enter the final equation

with coefficient of one. Source: Authors calculations using CreditEdge data from Moody’s and ratings and default data from S&P and Moody’s. See Forest, L, Chawla, G, and Aguais, S, “Biased

Benchmarks,” Journal of Risk Model Validation, June 2015. Also, at https://www.z-riskengine.com/media/1026/biased_benchmarks-after-jrmv-comments-draft-main-and-appendix.pdf.

FIGURE 9

Back test over 1997Q4-2018Q4 for a C&I- loan portfolio.
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also apply a non-empirical, illustrative NGFS GMT-to-volatility

approach to assess the potential impacts of future aggregate

climate shocks and volatility. We also use these assessments to

highlight some of the recent industry discussion points related

to the complexity surrounding developing climate stress tests

generally.

The familiar NGFS climate-change scenarios show global

warming as slowing economic growth rates, but not increasing

the amplitude of economic cycles. As a result, climate change

assessments undertaken to-date have suggested quite limited effects

on future long-run credit losses. This paper assumes, in contrast,

that climate change increases the volatility of credit shocks which

have historically been a key contributor to cyclical credit losses.

This general assumption in these three assessments resembles the

presumption that climate change leads to more extreme weather,

leading to higher future physical risk impacts and the potential

for additional complex social and other cascading (tipping point)

economic impacts. Not surprising, with climate change raising the

volatility of credit factors, we find that credit losses increase as

global warming continues. Moreover, the largest impact occurs in

severe recession scenarios.

While the focus here is on aggregate shocks and volatility, there

are natural extensions to the research presented that include: (1)

calibrating an empirical relationship between climate change and

volatility, (2) applying differential volatilities to specific industry

sectors and regions, and, (3) allowing for industry TTC risk

parameters to vary.
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