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Editorial on the Research Topic

Dynamics and impacts of tropical climate variability: Understanding trends

and future projections

Tropical climate variability such as the El Niño Southern Oscillation (ENSO) and the

Indian Ocean Dipole (IOD) exert significant socio-economic and environmental impact on a

global scale. El Niño, ENSO positive phase, is characterized by surface warming in the central-

eastern equatorial Pacific Ocean, weakened trade winds, suppressed upwelling, and atmospheric

convection displacements. Consequently, shifts in climate occur, in which anomalous drying

typically prevails over Indo-Pacific-rim countries (e.g., India, Indonesia, Australia) and increased

rainfall occurs over eastern Pacific-rim countries (e.g., southwest US, Peru). IOD positive

phase, with anomalous cooling in the eastern and warming in the western tropical Indian

Ocean, leads to drying over Indonesia and parts of Australia, while east Africa and India

generally experiencing wetter-than-normal conditions. Opposite impacts are generally seen in

their negative phases. ENSO and IOD also modulate intraseasonal variability like the Madden

Julian Oscillation and extreme weather phenomena like tropical cyclones.

Given the significant impacts, one critical question is how tropical climate variability

responds to greenhouse forcing, encapsulating various aspects, e.g., variability magnitude,

frequency, dynamics, detectability, teleconnections, impacts, and predictability. The latest

generation of models and paleo reconstructions have indicated a likelihood of changing ENSO

and IOD in a warming climate (Abram et al., 2020; Cai et al., 2021a,b; Karamperidou et al.,

2021; Lopez et al., 2022). However, uncertainties remain given persisting challenges in paleo

reconstructions (Emile-Geay et al., 2021) and modeling (e.g., McKenna et al., 2020). Research

efforts have accelerated in the last two decades to address these issues, leveraging on advances

in observations, models, theories, paleo reconstructions, data science, computing power, as

well as coordinated multi-institutional efforts such as the Coupled Model Intercomparison

Project (CMIP).
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Increasing capacity to perform long-integration and large-

ensemble climate simulations, for instance, has allowed a better

understanding of ENSO future projection uncertainties (e.g., Maher

et al., 2018). It allowed an identification of a link between future

and past ENSO variability through non-linear processes in that when

past ENSO variability is high, future ENSO variability tends to be

low, and vice versa (Cai et al., 2020). Such a link is reaffirmed

by Hyun et al. in terms of internal climate variability based on

global surface temperature, using two large-ensemble climatemodels.

They additionally infer that past/present internal variability in the

extratropics also influences future ENSO amplitude. The study

calls for an improved representation of global internal climate

variability to reduce ENSO projection uncertainty. ENSO projection

uncertainty is further highlighted by Rashid in a single model

with large ensemble members, detecting a modest but statistically

significant increase in future ENSO amplitude, found to be most

prominently linked to changes in zonal winds and zonal sea surface

temperature (SST) gradient.

A closely related issue which has been gaining attention is the

time by which greenhouse-forced signal emerges beyond the range of

internal variability, often referred to as “time of emergence” (ToE).

Recent studies based on CMIP models focusing on the tropical

Pacific Ocean have underscored the likelihood for ENSO-related SST

ToE toward the end of 21st century, with ENSO-related rainfall

emerging earlier by around 2040 (Cai et al., 2021b; Ying et al.,

2022). Assessment of ToE should be extended for teleconnection

over continents globally due to the more direct societal impact,

especially given the projected increase in ENSO teleconnection over

several land regions (McGregor et al., 2022). Here Johnson et al.

examine ensemble simulations with a high-resolution climate model,

finding that robust changes in temperature, precipitation, and 500-

hPa geopotential height at the peak of ENSO events emerge by

mid-21st century over tropical South America and Southeast Asia.

Their results suggest that the increased risk of greenhouse-forced

ENSO-related extremes, such as drought, floods, heatwaves, and cold

extremes, could be detectable in the coming decades. Determining

ToE is influenced by how the signal is identified; e.g., separating

ENSO into Eastern Pacific and Central Pacific types can lead to better

signal detectability, thus an earlier ToE (Geng et al., 2022).

Forced changes in tropical climate variability are linked to

changes in the mean-state; e.g., projected increase in ENSO

variability is tied to a weakened Walker Circulation and

associated changes in the equatorial Pacific Ocean (e.g., Cai

et al., 2021b). Investigating how the latest generation climate

models represent the mean climate and produce projected changes

is an important step toward projection uncertainty reduction.

Here, Stellema et al. examined the representation and projected

changes of the Pacific Equatorial Undercurrent (EUC) and its

sources in CMIP5, CMIP6 models, and an eddy-permitting

ocean model. They found that while these ocean circulations

can be largely reproduced by the models, there remain notable

biases (e.g., in terms of seasonality) with limited improvements

from CMIP5 to CMIP6. The EUC is projected to strengthen

in the Western Pacific, with CMIP6 models and the high-

resolution ocean model showing the least and most significant

change, respectively.

A realistic simulation of equatorial ocean dynamics is required

to capture tropical variability-induced changes in remote regions

through ocean teleconnection. In examining the relationship between

ENSO and South Pacific Meridional Mode (SPMM) in observations

and multiple models, Dewitte et al. found that many CMIP5 and

CMIP6 models do not properly capture strong SPMM events that

follow strong El Niño events. The associated ENSO-related equatorial

waves that lead to coastal warming off Central Chile that characterizes

the SPMM are not well-simulated by the models. On the other hand,

in investigating the predictability of SST variability in the eastern

region of the IOD utilizing a convolutional neural network (CNN),

a machine learning subclass, on a collection of CMIP5/6 models,

Feng et al. suggest that CMIP models can capture the dynamics of

Indian Ocean variability and its teleconnection with Pacific climate

variability. They found that employing the CNN method allows the

eastern IOD SST variability to be forecast up to 6 months in advance,

about double the persistence.

Continued research is needed to reduce projection uncertainty

in tropical climate variability, encompassing mechanisms,

teleconnections, impacts, and predictability; particularly because of

the complex dynamics which involve interactions between oceans

and atmosphere, between variability and mean state, across basins,

and across time scales.
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