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A�orestation as a climate change mitigation option has been the subject of

intense debate and study over the last few decades, particularly in the tropics

where agricultural activity is expanding. However, the impact of such landcover

changes on the surface energy budget, temperature, and precipitation remains

unclear as feedbacks between various components are di�cult to resolve and

interpret. Contributing to this scientific debate, regional climate models of varying

complexity can be used to test how regional climate reacts to a�orestation. In this

study, the focus is on the gauged Nzoia basin (12,700 km2) located in a heavily

farmed region of tropical Africa. A reanalysis product is dynamically downscaled

with a coupled atmospheric-hydrological model (WRF-Hydro) to finely resolve the

land-atmosphere system in the Nzoia region. To overcome the problem of Nzoia

river flooding over its bankswe enhanceWRF-Hydrowith an overbank flow routing

option, which improves the representation of daily discharge based on the Nash-

Sutcli�e e�ciency and Kling-Gupta e�ciency (from −2.69 to 0.30, and −0.36 to

0.63, respectively). Changing grassland and cropland areas to savannas, woody

savannas, and evergreen broadleaf forest in three synthetic numerical experiments

allows the assessment of potential regional climate impacts of three a�orestation

strategies. In all three cases, the a�orestation-induced decrease in soil evaporation

is larger than the a�orestation-induced increase in plant transpiration, thus

increasing sensible heat flux and triggering a localized negative feedback process

leading to more precipitation and more runo�. This e�ect is more pronounced

with the woody savannas experiment, with 7% less evapotranspiration, but 13%

more precipitation, 8% more surface runo�, and 12% more underground runo�

predicted in the Nzoia basin. This study demonstrates a potentially large impact of

a�orestation on regional water resources, which should be investigated in more

detail for policy making purposes.

KEYWORDS

regional climate modeling, WRF-Hydro, landcover change, vegetation atmosphere
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1. Introduction

The intertwined relationship between landcover change and

climate change is well recognized but highly complex and not

fully understood (e.g., Dale, 1997; Pielke et al., 2011; de Noblet-

Ducoudré et al., 2012; Bright et al., 2017; Lejeune et al., 2017, 2018;

Duveiller et al., 2018; Davin et al., 2020; Sy and Quesada, 2020;

Achugbu et al., 2023; Breil et al., 2023; Liu et al., 2023; Mortey et al.,

2023; Mwanthi et al., 2023; Smiatek and Kunstmann, 2023; Wang

et al., 2023). According to Duveiller et al. (2018), the agricultural

expansion in the tropics has intensified global warming, an effect

which could be mitigated locally with an afforestation policy. Such

agricultural expansion also has a local effect on the availability of

water resources, as shown for example by Githui et al. (2010) for

the Nzoia basin in tropical Africa.

A better understanding of how changes to landcover modify

climate at the regional scale is crucial for developing and assessing

climate change mitigation strategies (e.g., Wulfmeyer et al.,

2014; Harper et al., 2018; Roe et al., 2019; Duveiller et al.,

2020). For afforestation, besides a greater carbon sequestration

potential, local temperature changes would be dominated by

two competing processes that are enhanced evaporative cooling

and enhanced radiative heating due to a lower albedo (Bonan,

2008). As pointed out by Breil et al. (2021), the evaporative

cooling effect triggered by afforestation is also modulated

by the saturation deficit of the near-surface atmosphere,

which adds additional complexity to afforestation effects on

temperature. Wulfmeyer et al. (2014), Liu et al. (2023), and

Wang et al. (2023) brought evidence that afforestation in an

arid region can trigger more precipitation, although enhanced

precipitation can be associated with deforestation as well

(Achugbu et al., 2023).

Land-atmosphere processes are represented in a simplified

manner in regional climate models, which allow investigating the

climatic response to afforestation at a regional scale (Davin et al.,

2020). However, this modeling approach is hindered by large

uncertainties in the numerical results that likely arise from the

simplifying assumptions that are among its assets (e.g., de Noblet-

Ducoudré et al., 2012; Lejeune et al., 2017; Davin et al., 2020).

In the case of a model ensemble experiment for Europe, Davin

et al. (2020) could not identify a robust temperature change related

to afforestation. The effect of landcover change on precipitation

in such numerical experiments is even more uncertain with

low signal-to-noise ratios (e.g., Laux et al., 2017). These model

uncertainties could be partly alleviated by improving the realism

of the physical processes included in the model itself (de Noblet-

Ducoudré et al., 2012).

Regional climate models’ representation of land-atmosphere

interactions is usually limited to a vertical transfer of energy

and water at the land-atmosphere interface. This is a crude

approximation of terrestrial hydrology at the river basin scale.

Studies with coupled atmospheric-hydrological models, such

as with the hydrologically enhanced Weather Research and

Forecasting model WRF-Hydro (Gochis et al., 2020), have shown

that the consideration of surface and subsurface lateral flow

improves the simulated runoff and modifies the atmospheric

branch of the simulated water cycle, with generally more

evapotranspiration and more precipitation (e.g., Rummler et al.,

2019; Zhang et al., 2019; Fersch et al., 2020; Arnault et al., 2021;

Furnari et al., 2022).

Applying the uncoupled version of the WRF-Hydro

hydrological model, Achugbu et al. (2022) investigated the

impact of landcover change scenarios on evapotranspiration and

runoff in a SahelianWest African river basin. Achugbu et al. (2022)

confirmed that the increase of evapotranspiration associated with

afforestation leads to a decrease in river discharge.

In another hydrological model experiment on landcover change

for the Nzoia basin in tropical Africa, Githui et al. (2010) attributed

the runoff increase between 1973 and 2001 to an increase of

agricultural area and a reduction of forested area. However, the

uncoupled hydrological modeling approach does not account for

potential feedbacks between the terrestrial hydrological system and

the overlying atmosphere, especially for precipitation. As such, the

landcover change effect on climate is only partially addressed in

such uncoupled model studies (Githui et al., 2010).

A more comprehensive effect of landcover change on both

the terrestrial and atmospheric branches of the water cycle

can in principle be evaluated with the atmospheric-hydrological

coupled version of WRF-Hydro, although no such study is

known to us so far. Our study therefore aims at presenting

the first landcover change experiment with the coupled WRF-

Hydro, exemplarily investigated for the hypothetical case of

afforestation in the Nzoia basin. The choice of the study

region is motivated by (1) its location in the tropics, (2) an

expanding agricultural area which raises the question of the

potential benefits of an afforestation policy, and (3) the availability

of river discharge data to assess the ability of the model to

represent water resources in this region. The objective of the

study is to evaluate, from a coupled atmospheric-hydrological

modeling point of view, whether a climate change mitigation

policy such as afforestation in a tropical region would be

hydrologically significant, particularly in terms of precipitation and

river discharge.

In the following, Section 2 details the study region and

available datasets, the WRF-Hydro model, a model extension

to account for overbank flow, the calibration and evaluation

strategy and the landcover change experiments. The results are

discussed in Section 3, and concluding remarks are finally given in

Section 4.

2. Materials and method

2.1. Study region and datasets

The Nzoia basin is situated in the tropical zone at the

northeastern edge of Lake Victoria in western Kenya, as shown

in Figure 1. It covers an area of about 12,700 km2 with

altitudes ranging from 1,140m.a.s.l in the lower plains near Lake

Victoria to 4,300m.a.s.l in the northern mountainous areas. The

precipitation regime in the region is trimodal, with precipitation

peaks in April-May, in August, and in October, and with annual

precipitations varying from around 1,000mm in the lowlands

to above 2,000mm in the highlands (Githui et al., 2010). More

than half of the Nzoia basin is covered by agricultural areas,

which leads to over-exploitation of resources and land degradation
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FIGURE 1

Topography (in m above sea level) of (A) the outer and inner domains D1 and D2 at 50 and 10 km resolution, respectively, and (B) the sub-domain

D2sub at 1 km resolution coupled with D2 for water routing computations. The black rectangle in (A) gives the location of D2. The red contour line,

blue curved lines, and black cross in (B) give the locations of the Nzoia basin, main rivers, and outlet gauge station 1EEF01, respectively. The

topography color scale provided by the color bar on the left side of (A) is the same for both panels.

to fulfill the growing food demand of increasing population

(Githui et al., 2010).

The climatic characteristics in the Nzoia basin are evaluated

with gridded observational products of precipitation, temperature,

energy fluxes, and discharge data. The Integrated Multi-satellitE

Retrievals for Global precipitation measurement dataset (IMERG;

Huffman et al., 2014) is a near-global and daily product, provided

on a regular grid with a 0.1◦ horizontal resolution and available

for the period 2001–2020. The Climate Research Unit temperature

dataset (CRU; Harris et al., 2014) is a global and monthly product

provided on a regular grid with a 0.5◦ horizontal resolution and

available for the period 2001–2020. The energy fluxes dataset

from the machine-learning based initiative to upscale biosphere-

atmosphere fluxes from FLUXNET sites to continental and global

scales (FLUXCOM; Jung et al., 2019) is a global and monthly

product provided on a regular grid with a 0.5◦ horizontal resolution

and available for the period 2001–2013 for FLUXCOM. The

discharge data comes from the gauge station 1EEF01 located at

the basin outlet (0.124◦N, 34.090◦E), as displayed in Figure 1B, and

was provided by the Water Resource Authority of Kenya as a daily

timeseries for the period 2009–2017.

2.2. Coupled WRF-Hydro modeling setup

The regional climate model WRF-Hydro selected for this

study is based on version 4.4 of the Weather Research and

Forecasting model (WRF; Skamarock et al., 2019) coupled with

the version 5.2 of the WRF-Hydro hydrological module (Gochis

et al., 2020). WRF-Hydro resolves the equations of atmospheric

motion on a three-dimensional grid over a limited area, with a

set of parameterization options to represent subgrid scale physical

processes, such as radiation, turbulence, cumulus convection,

cloud microphysics, and terrestrial hydrology. The two model

domains shown in Figure 1 are selected for this study. The outer

domain covers most of East Africa with an area of 4,000 km

× 6,000 km at 50 km resolution and 50 vertical levels up to 10

hPa. The initial condition and lateral boundaries of the outer

domain are constrained by the air pressure, geopotential, zonal and

meridional winds, temperature and water vapor provided by the

ERA5 reanalysis (Hersbach et al., 2020) on pressure levels at a six-

hourly interval, with a 0.25◦ resolution. The inner domain, which

encompasses the study region with an area of 800 km × 800 km

at 10 km resolution and the 50 vertical levels, is driven by the

outer domain using a one-way nesting method. The equations of

atmosphericmotions in the outer and inner domains are resolved at

180 s and 60 s timesteps, respectively, to ensure numerical stability.

The outer and inner domains share the following physics

parameterization setup: the long-wave and short-wave radiation

schemes of Dudhia (1989) and Mlawer et al. (1997), the Mellor-

Yamada-Nakanishi-Niino Level-2.5 version turbulence scheme of

Nakanishi and Niino (2004), the cumulus convection scheme of

Grell and Freitas (2014), the six-class microphysics scheme of Hong

and Lim (2006), and the community Noah land surface model with

multi-parameterization options of Niu et al. (2011) referred to as

Noah-MP. This choice of physics parameterization is motivated

by its relatively good performance in terms of basin-average daily

precipitation for the Nzoia basin during the period chosen for

discharge calibration, with a correlation coefficient of 0.74 and a

percentage bias of 7 %, as displayed in Figure 2A. Additionally, the

inner domain includes lateral terrestrial flow with the WRF-Hydro

hydrological module (Gochis et al., 2020).

Noah-MP is the land surface module in WRF-Hydro and

describes the fate of snow cover, vegetation canopy, and soil
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FIGURE 2

(A) Daily timeseries of Nzoia basin-averaged precipitation P (in mm/day) for a four-year period spanning from 1st January 2010 to 31st December

2013 and filtered with a 30-day Gaussian filter, as derived from the observational product IMERG and from the inner domain of the default and

calibrated WRF-Hydro simulations. (B) Daily timeseries of discharge Q (in m3/s) at the Nzoia basin outlet for a four-year period spanning from 1st

January 2010 to 31st December 2013, as derived from the gauge measurement and from the default and calibrated WRF-Hydro simulations. The

calibrated simulation employs the modified WRF-Hydro source code presented in Section 2.3 with the best set of parameters values according to the

calibration exercise illustrated in Figure 3, that is (Hthres = 6m, S = 0.01, M045).

moisture within a soil column of 2-m depth divided into four layers,

to update the upward energy and water vapor fluxes at the lower

boundary of themodeled atmosphere. The upward water vapor flux

provided by Noah-MP is divided into five components that are the

snow sublimation, the intercepted canopy water evaporation, the

plant transpiration, the soil water evaporation below the canopy,

and the soil water evaporation outside the canopy. Moreover,

the plant stomatal resistance is calculated according to the Ball-

Berry option (Eq. B1 in Niu et al., 2011) and the leaf area index

is derived from a leaf dynamics model (Eq. 10 in Niu et al.,

2011). The parameters used in these equations, such as, among

others, root zone depth, carboxylation rate, leaf reflectance, leaf

transmittance, leaf turnover, leaf stress death coefficient and leaf

maintenance respiration, are prescribed as a function of landcover

classes from the moderate resolution imaging spectroradiometer

(MODIS) landcover map (Friedl et al., 2002). The soil hydraulic

parameters are prescribed as a function of soil classes from the State

Soil Geographic/Food and Agriculture Organization soil database

(FAO, 1991). The initial condition of the land surface state is

deduced from the ERA5 reanalysis.

The WRF-Hydro routing modules are activated for the inner

domain through a coupling between the inner domain grid at

10 km resolution and the subgrid at 1 km resolution displayed in

Figure 1B, generated with the WRF-Hydro Pre-processing Tool

and the digital elevation data from the hydrological data and

maps based on Shuttle Elevation Derivatives at Multiple Scales

(HydroSHEDS) database (Lehner et al., 2008). At each time step,

the surface water and soil moisture variables from Noah-MP are

disaggregated on the subgrid, routed overland, in the subsurface,

and in the river channels according to diffusive wave formulations
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TABLE 1 List of model parameter sets employed in a series of preliminary experiments with the WRF-Hydro setup of section 2.2, and their

corresponding Nzoia discharge results for a 4-year simulation period beginning on 1st January 2010.

S
L
O
P
E

R
E
F
K
D
T

L
K
S
A
T
F
A
C

O
V
R
O
U
G
H
R
T
F
A
C

R
E
T
D
E
P
R
T
F
A
C

M
a
n
n
N

N
S
E

B
ia
s

Default run 0.1 3 1,000 1 1 Default −2.68 −5%

“Percolation increase” run 0.5 3 1,000 1 1 Default −1.13 −49%

“Infiltration increase” run 0.1 9 1,000 1 1 Default −1.70 −20%

“Subsurface flow decrease” run 0.1 3 100 1 1 Default −1.65 −42%

“Overland flow decrease” run 0.1 3 1,000 10 1 Default −0.95 −27%

“Retention depth increase” run 0.1 3 1,000 1 10 Default −2.62 −12%

“River roughness increase” run 0.1 3 1,000 1 1 ×10 −1.38 −9%

The first column gives a short description of the experiments conducted. The next six columns give the values of the percolation parameter (SLOPE), the runoff-infiltration parameter (REFKDT),

the lateral hydraulic conductivity factor (LKSATFAC), the overland flow roughness (OVROUGHRTFAC), the retention depth factor (RETDEPRTFAC), and the river roughness Manning

coefficients (MannN). The two last columns give the Nash-Sutcliffe Efficiency (NSE) and percentage bias of simulated discharge at the Nzoia outlet gauge with respect to observation.

detailed in Gochis et al. (2020), and aggregated back to the Noah-

MP grid. The disaggregation between the coarse grid and fine

subgrid is obtained with a so-called disaggregation factor, which is

defined for each variable as the ratio between the variable value on

the fine subgrid and its corresponding value on the coarse grid and

is updated at the end of each time step (Gochis et al., 2020). The

aggregation is done as a linear averaging, so that the soil moisture

field on the coarse grid is updated with the averaged effect of

terrestrial water transport resolved on the fine subgrid. This fully

coupled formulation allows for a comprehensive description of the

water cycle at basin scale.

As in the WRF-Hydro setup of Arnault et al. (2016) for a

West African Sahelian river basin, no groundwater bucket option

is considered, because the baseflow produced with this approach

would bring more water into the stream compared to what is

observed. The groundwater bucket option being disabled, the water

percolating below the 2-m soil column is considered as pure

groundwater recharge, which can be calibrated with the so-called

SLOPE parameter (e.g., Rummler et al., 2019) referred to as the

percolation parameter S.

2.3. Two-way land–river water flow model
extension

A WRF-Hydro simulation using the setup detailed in section

2.2 with default parameters produces too high daily discharge peaks

according to gauge observation, as displayed in Figure 2B, with a

Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970) of −2.68

and a percentage bias of −5%. Furthermore, the ratio of total

discharge to the total volume of precipitation is 23% according to

the observational data, and 20% according to the simulation. This

shows that the total amount of discharge obtained with the default

WRF-Hydro setup is approximately well calibrated, although the

surface runoff generation occurs too quickly.

The usual approach to improve the WRF-Hydro simulated

discharge is to calibrate the most sensitive parameters, such as

the percolation parameter, the runoff-infiltration parameter, the

lateral hydraulic conductivity factor, the overland roughness factor,

the retention depth factor, and the river roughness Manning

coefficients (Senatore et al., 2015; Rummler et al., 2019; Zhang et al.,

2019; Camera et al., 2020; Fersch et al., 2020; Gochis et al., 2020;

Li et al., 2020). However, the preliminary sensitivity experiments

summarized in Table 1 show that the tuning of these parameters

keeps on producing the high discharge peaks characterized by a

negative NSE. These unrealistically high discharge peaks can be

only minorly improved at the expense of larger underestimation

of the total discharge. This suggests a process is missing in WRF-

Hydro to slow down the simulated runoff generation in the case of

the Nzoia basin.

As mentioned by Onencan et al. (2016), the Nzoia basin is

prone to floods as the river flow pushes over its banks. Such an

overbank flow is not considered in WRF-Hydro, which could be a

reason for the much smoother observed discharge peaks compared

to the simulated ones in Figure 2B. In order to circumvent this

issue, the WRF-Hydro source code has been updated with an

overbank flow option to allow for water flow between land and

river in a two-way manner. In default WRF-Hydro, the surface

water enters a channel if it exceeds the retention depth and never

comes back to the land (Gochis et al., 2020). With the overbank

flow option, a new parameter, referred to as the overbank flow

parameter Hthres in meters, is introduced. When the water head in

a channel pixel exceeds Hthres, then it does not receive the water

flow originating from the upstream channel pixel, and this upper

channel pixel water flow is moved toward the land surface instead.

To achieve this in a numerically balancedmanner, the upstream

channel pixel water flow calculated in the channel flow module

is saved at each time step in an additional model variable. In the

overland flow routing module, when the river head exceeds Hthres,

the upstream channel pixel water flow is added to the surface water
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FIGURE 3

Performance of the simulated discharge at the Nzoia river gauge location with the WRF-Hydro setup of Sections 2.2 and 2.3, in terms of (A)

percentage bias, (B) Nash-Sutcli�e e�ciency NSE and (C) Kling-Gupta e�ciency KGE, as a function of the overbank flow parameter Hthres (in m) on

the x-axis, percolation parameter S (–) with the colored lines, and river roughness Manning coe�cients M (–) of Table 2 with the plain lines and

symbolled dashed lines. The three configurations with a bias lower than +/– 5 % and a positive NSC, namely the configurations using (Hthres = 6m, S

= 0.01, M040), (Hthres = 6m, S = 0.01, M045), and (Hthres = 7m, S = 0.01, M050), are highlighted with bolded symbols. KGE in (C) is calculated with a

bias scaling factor set to 3 (see Section 2.4) to favor the less biased good result, in this case with (Hthres = 6m, S = 0.01, M045).
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TABLE 2 List of river roughness Manning coe�cients as a function of

stream order tested in the WRF-Hydro calibration experiment of Section

2.4.

Stream
order

Mdefault M050 M045 M040 M035

1 0.55 0.50 0.45 0.40 0.35

2 0.35 0.45 0.40 0.35 0.30

3 0.15 0.40 0.35 0.30 0.25

4 0.10 0.35 0.30 0.25 0.20

5 0.7 0.30 0.25 0.20 0.15

The default set of coefficients is labeled as Mdefault and four additional sets are labeled as

M050, M045, M040, and M035.

and removed from the channel inflow. In this numerical framework

the channel inflow can be negative due to the removed water from

the channel which has been brought back to the land. However,

since this overbank flow process occurs only when the channel

pixel is completely filled with water, that is with a water head of

Hthres, this additional process intrinsically cannot generate negative

streamflow in the channels. As shown in Figures 2B, 3 the tuning

of Hthres results in a clear improvement of the simulated discharge

results, which is detailed in the following sections.

2.4. River discharge calibration strategy

A four-year period, beginning on 1st January 2010, is chosen

for the calibration of the WRF-Hydro discharge, using the setup

of Section 2.2 enhanced with the overbank flow option of Section

2.3. This period is considered to be long enough to obtain

robust calibration results with WRF-Hydro. No spin-up period

is considered as no apparent spurious effects were detected at

the beginning of the simulation, such as a spurious discharge

peak that would be triggered by a too wet initial soil condition

for example, as demonstrated by the daily timeseries shown in

Figure 2. It is emphasized that the basin-averaged daily timeseries

of precipitation simulated by WRF-Hydro is remarkably close to

the IMERG observational dataset in Figure 2A, which justifies the

suitability of this coupled setup for discharge calibration.

The simulated discharge is calibrated manually by tuning three

sensitive parameters, namely the percolation parameter S, the

overbank flow parameter Hthres, and the river roughness Manning

coefficients. The reason behind this calibration strategy is that

reducing Hthres smooths the discharge peaks but also removes

too much water from the channels, which can be corrected by

decreasing S to partially seal the soil column bottom and force

more water to exfiltrate back to the surface. Reducing the Manning

coefficients also tends to reduce water accumulation in the streams

so that Hthres is less often reached, thus allowing to further

modulate the overbank flow effect. The channel network displayed

in Figure 1B has five stream orders in the Nzoia basin, which means

that five Manning coefficients need to be calibrated in this case, as

shown in Table 2.

For this calibration exercise the four-year WRF-Hydro

simulation is run 8× 6= 48 times for all combinations among eight

Hthres values (3, 4, 5, 6, 7, 8, 9, 10, in meters) and six S values (0.1,

0.05, 0.04, 0.03, 0.02, 0.01) with the default Manning coefficients

Mdefault given in Table 2. Additionally, 8 × 2 × 4 = 64 runs are

conducted for all combinations among the eight Hthres values, two

S values (0.02, 0.01), and four sets of Manning coefficients M050,

M045, M040, M035 given in Table 2. This makes a total of 112

calibration runs to identify a robust set of parameters’ values for

the Nzoia river discharge simulation with the WRF-Hydro setup of

Sections 2.2 and 2.3.

The simulated discharge timeseries are assessed with three skill

scores: the percentage bias, the Nash-Sutcliffe efficiency (NSE, Nash

and Sutcliffe, 1970), and the Kling-Gupta efficiency (KGE, Gupta

et al., 2009), as shown in Figure 3 and discussed in Section 3.1,

with the best discharge result being displayed in Figure 2B. In this

study the KGE formulation employs a bias scaling factor sβ set to 3

(see Eq. 11 of Gupta et al., 2009) to enhance the discrimination of

biased results.

2.5. Landcover change numerical
experiment strategy

To conduct afforestation experiments for the Nzoia basin with

WRF-Hydro, the calibratedWRF-Hydro from section 2.4 is used to

generate a reference 20-year simulation from 1st January 2001. The

realism of the reference result is evaluated with the observational

datasets presented in Section 2.1, as displayed in Figures 4–6 and

discussed in Section 3.2. This evaluation is important to assess to

which extent themodel is suitable for a landcover change numerical

experiment (de Noblet-Ducoudré et al., 2012; Sy et al., 2017).

The default landcover map considered in the reference

simulation, which is displayed in Figure 7A, is modified in

a synthetic manner according to three extreme afforestation

scenarios. All grasslands and croplands areas in the Nzoia basin,

which represents about 54% of the basin area, are replaced

with a more natural vegetation category: savannas in scenario

1 (Figure 7B), woody savannas in scenario 2 (Figure 7C), and

evergreen broadleaf forest in scenario 3 (Figure 7D). The 20-year

simulation is reconducted for each of these three scenarios, and

the differential results with respect to the reference are displayed in

Figures 8–11, Table 3, and discussed in Section 3.3. The robustness

of the areal climate change signal induced by the afforestation

scenarios is assessed in a bootstrap approach by calculating for

eachmodel pixel the percentage of 17-year subset mean differences,

among the 1,140 possible 17-year subset combinations out of the

20 simulated years, that have the same sign as the 20-year mean

difference. The areal climate change signal is considered to be

robust at the model pixels where this percentage exceeds 90%.

The choice of 17 years for the subset size is motivated by the fact

it is the highest subset size allowing to generate more than one

thousand combinations.

The result of these extreme and purely synthetic afforestation

experiments aims at giving an indication of the largest climatic

impact that could be expected with an afforestation policy

in the region of the Nzoia basin in tropical Africa, and to

which extent this climatic impact depends on the vegetation

cover type.
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FIGURE 4

Maps of (A) annual precipitation P (in mm/year) from the observational product IMERG, (B) mean temperature T (in K) from the observational product

CRU, (C, D) annual precipitation and mean temperature from the inner domain of the WRF-Hydro reference simulation, (E) precipitation bias (in %)

between IMERG and WRF-Hydro reference, and (F) temperature bias (in K) between CRU and WRF-Hydro reference. Mean values are calculated for a

20-year period spanning from 1st January 2001 to 31st December 2020. The annual precipitation maps (A, C) have the same color scale indicated by

the color bar on the right side of (C), and the mean temperature maps (B, D) also have the same color scale indicated by the color bar on the right

side of (D).

3. Results and discussion

3.1. Calibrated discharge

The results of the three skill scores in terms of percentage

bias (Figure 3A), NSE (Figure 3B), and KGE (Figure 3C) from the

experimental discharge simulations of 2010–2013 are summarized

in Figure 3. Figure 3A confirms that reducing S (Hthres) increases

(reduces) discharge. With the tested sets of Manning coefficients

M050, M045, M040, and M035 (see Table 2), it also appears that

discharge increases with decreasing river roughness, thus reducing

the river-emptying effect of overbank flow. According to the NSE in

Figure 3B, the best-simulated discharge performances are generally

obtained for the configurations with a pronounced dry bias, such

as for example with the four following parameters values sets (S =

0.01, Hthres = 4m, M035), (S = 0.01, Hthres = 5m, M040), (S =

0.01, Hthres = 5m, M045), (S = 0.01, Hthres = 6m, M050), with

NSEs of 0.42, 0.42, 0.42, 0.39, respectively, and with biases of −24,

−15,−20,−10%, respectively.

To distinguish the least biased best-performing configuration,

a KGE formulation with an enhanced bias scaling factor is

considered in Figure 3C. Accordingly, the best KGE is obtained

for (Hthres = 6, S = 0.01, M045), with an NSE of 0.30

and a bias of −5%, as displayed in Figure 2B, so that (Hthres

= 6, S = 0.01, M045) is the retained set of parameters

values for the 20-year WRF-Hydro simulations presented in the

following sections.

It is noted that an NSE of 0.30 remains relatively weak, but

lies in the range of published discharge performances with WRF-

Hydro for various river basins in the world (e.g., Senatore et al.,

2015; Arnault et al., 2016, 2018; Kerandi et al., 2017; Rummler

et al., 2019; Zhang et al., 2019; Camera et al., 2020; Fersch et al.,

2020; Li et al., 2020; Sofokleous et al., 2023). As highlighted

by Senatore et al. (2015), simulated discharge performance with

WRF-Hydro is intrinsically limited by the quality of simulated

precipitation, which is a drawback of the atmospheric-hydrological

coupled modeling approach. Still, the WRF-Hydro results over

the calibration period are realistic (Figure 2), which gives us

confidence that the climate response to landcover change will

be plausible.

3.2. Climatology evaluation

Climatological results for the period 2001–2020 are evaluated

with maps of annual precipitation and mean temperature in

Figure 4, with maps of mean energy fluxes in Figure 5, and with

mean monthly timeseries for the Nzoia basin in Figure 6.
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FIGURE 5

Maps of (A) mean net radiation flux Rnet (in W/m2), (B) mean sensible heat flux Hsensible (in W/m2) and (C) mean latent heat flux Hlatent (in W/m2) from

the observational product FLUXCOM, (D–F) mean net radiation, sensible and latent heat fluxes from the inner domain of the WRF-Hydro reference

simulation, (G–I) net radiation, sensible and latent heat fluxes biases (in %) between FLUXCOM and WRF-Hydro reference. Mean values are calculated

for a thirteen-year period spanning from 1st January 2001 to 31st December 2013, when the FLUXCOM data is available. The energy flux maps (A–F)

have the same color scale indicated by the color bar on the right side of (D), and the energy flux bias maps (G–I) also have the same color scale

indicated by the color bar on the right side of (G).

The annual precipitation pattern from WRF-Hydro in

Figure 4C resembles that from IMERG in Figure 4A, with a

southwest-northeast gradient and enhanced amounts toward Lake

Victoria. However, as can be seen in the bias map of Figure 4E,

WRF-Hydro is drier in the lowlands and much wetter in the

highlands. The fact that IMERG does not display clearly enhanced

precipitation in mountainous areas is a well-known limitation

of satellite-derived products (Pradhan et al., 2022). Furthermore,

the 1,000mm of annual precipitation in the parts of the Nzoia

basin close to Lake Victoria described by Githui et al. (2010)

cannot be seen in IMERG, but do appear in WRF-Hydro.

Still, according to the timeseries in Figure 6A, IMERG captures

the three precipitation peaks, exactly in April-May, in August,

and in October as mentioned by Githui et al. (2010), whereas

WRF-Hydro only exhibits two precipitation peaks in May and

September with an overall precipitation bias of +13%. This

precipitation overestimation is also reflected in the mean monthly

discharge timeseries of Figure 6B, with a discharge bias of +16%,

despite an underestimation of low flow between January and

March. These results indicate that the simulated climate in the

Nzoia basin with the calibrated WRF-Hydro setup presented in

Section 2 is too wet, even though this positive bias was not
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FIGURE 6

Climatological monthly timeseries of (A) Nzoia basin-averaged precipitation P (in mm/month), (B) Nzoia basin outlet discharge Q (in m3/s), (C) Nzoia

basin-averaged temperature T (in K), (D) Nzoia basin-averaged net radiation, sensible and latent heat fluxes Rnet, Hsensible , Hlatent (in W/m2), as derived

from (A) the observational product IMERG, (B) the gauge measurement, (C) the observational product CRU, (D) the observational product FLUXCOM,

and from the inner domain of the WRF-Hydro reference simulation. Climatological monthly values of (A) precipitation, (B) discharge, (C)

temperature, (D) energy flux values are calculated from (A) a 20-year period spanning from 1st January 2001 to 31st December 2020, (B) a nine-year

period spanning from 1st January 2009 to 31st December 2017, (C) a 20-year period spanning from 1st January 2001 to 31st December 2020, and (D)

for a thirteen-year period spanning from 1st January 2001 to 31st December 2013, when the corresponding observational data is available.

so pronounced during the period 2010–2013 used for discharge

calibration (Figure 2A). As highlighted by the multi-physics

ensembles of Otieno et al. (2018, 2020), the WRF precipitation

bias in the region northeast of Lake Victoria largely depends

on the choice of cumulus convection scheme, which suggests

that future research efforts should focus on further adapting the
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FIGURE 7

Maps of landcover distribution in the inner domain following the MODIS classification, as used in (A) the reference WRF-Hydro simulation, (B) the

savannas WRF-Hydro simulation, (C) the woody savannas WRF-Hydro simulation, and (D) the evergreen broadleaf forest WRF-Hydro simulation. The

black contour line in all panels indicates the location of the Nzoia basin where the landcover change experiment is conducted. Landcover outside

the Nzoia basin is maintained as in the reference. The color classification of MODIS landcover classes is provided in the upper right side of the figure.

atmospheric modeling setup of Section 2 to improve WRF-Hydro

precipitation results.

Themean temperature patterns fromWRF-Hydro in Figure 4D

and from CRU in Figure 4B are remarkably similar, however, there

is a cold bias over much of the region (Figure 4F). This cold

bias is even more pronounced in the mean monthly timeseries

(Figure 6C), between 2 and 3K, which is potentially due to

unresolved high-elevation cold temperatures in the CRU data. The

large amounts of simulated precipitation in September–October

may also have enhanced the cold bias at that time.

The mean values and patterns of net radiation, sensible,

and latent heat flux from WRF-Hydro in Figures 5D–F and

from FLUXCOM in Figures 5A–C are relatively similar, especially

in the region of the Nzoia basin. This is confirmed by the

timeseries in Figure 6D which reveals only small discrepancies. The

overestimation of latent heat flux from October to April could

be related to the large precipitation overestimation in September–

October and too wet soils in the subsequent months. The

underestimation of latent heat flux from June to August could be

related to the underestimation of net radiation during that period,

and potentially also inaccuracy in the vegetation parameters.

Nevertheless, these results indicate that the WRF-Hydro setup

captures the surface energy partitioning, and especially the

evapotranspiration flux, realistically.

3.3. A�orestation impacts

The climatological differences induced by the extreme and

synthetic afforestation scenarios presented in Section 2.5 and

Figure 7 are visualized as differential maps of annual precipitation,

mean temperature, mean energy fluxes, mean evaporation fluxes,

and mean runoff fluxes in Figures 8–10, and as differential mean

monthly timeseries of the terrestrial water budget terms for

the Nzoia basin in Figure 11. The surface runoff flux shown in

Figures 10, 11 is calculated as the sum of overland flow and channel

inflow and is added to the WRF-Hydro outputs following the

procedure detailed in Arnault et al. (2019).

Remarkably, all savannas, woody savannas and evergreen

broadleaf forest scenarios result in a robust precipitation increase in

the Nzoia basin and near surrounding areas toward the South,West

and East, as displayed in Figures 8A, C, E. There is also a robust

but small precipitation decrease over the highest mountains of the

Nzoia basin and also outside of the basin toward the Southwest and

Southeast, which indicates that the tested afforestation scenarios in

the Nzoia basin increase precipitation locally at the expense of other

regions, to some extent.

Concerning temperature, only the evergreen broadleaf forest

scenario in Figure 8F robustly induces a cooling on the annual

scale in the Nzoia basin, up to 0.5 K, whereas the savannas and
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FIGURE 8

Maps of (A, C, E) annual precipitation di�erence 1P displayed as a percentage of the annual IMERG precipitation and (B, D, F) mean temperature

di�erence 1T (in K) between the reference WRF-Hydro simulation and the (A, B) savannas, (C, D) woody savannas, (E, F) evergreen broadleaf forest

WRF-Hydro simulations. Mean di�erential values are calculated as the mean value from the a�orestation experiments minus the mean value from the

reference experiment, for a 20-year period spanning from 1st January 2001 to 31st December 2020. The annual di�erential precipitation maps (A, C,

E) have the same color scale indicated by the color bar on the right side of (E), and the mean di�erential temperature maps (B, D, F) also have the

same color scale indicated by the color bar on the right side of (F). In all maps, the crossed areas correspond to the areas where the climate change

signal is not robust, that is where <90% of the 1,140 subsets of 17-year mean di�erences have the same sign as the 20-year mean di�erence.

woody savannas scenarios in Figures 8B, D rather robustly induce

a very slight warming in the Nzoia basin. The reason for this model

behavior can be partially elucidated with the maps of mean energy

flux differences in Figure 9.

Remarkably, savannas, woody savannas, and evergreen

broadleaf forest scenarios result in a robust slight increase in

net radiation flux in Figures 9A, D, G, a robust large increase

in sensible heat flux in Figures 9B, E, H, and a robust large

decrease in latent heat flux in Figures 9C, F, I in the Nzoia basin.

The slight increase in net radiation flux, which is related to the

cloud cover change associated with the precipitation increase,

the surface albedo change associated with the landcover change

and a skin temperature change, is much smaller in amplitude

compared to the changes in sensible and latent heat fluxes and is

not discussed further.

The large decrease in latent heat flux, especially for the savannas

and woody savannas scenarios in Figures 9C, F, is surprising, but

consistent with the large sensible heat increase in Figures 9B, E,

and the slight temperature increase in Figures 8B, D. For the case

of the evergreen broadleaf forest scenario, the latent heat-decrease

in Figure 9H and sensible heat increase in Figure 9I are much less

pronounced. Temperature still decreases in this case (Figure 8F),

which is related to the fact that the energy fluxes in Noah-MP are

calculated above the canopy, whereas the temperature includes a

below-canopy cooling effect that is much more efficient for the

evergreen broadleaf forest type (Noah-MP, Niu et al., 2011). The

in-situ measurements of Ceperley et al. (2017) in the West African

Sahelian region confirm that savannas can increase the sensible heat

flux in comparison to agricultural land, although Ceperley et al.

(2017) attributed this heating enhancement to a larger number of

exposed rocks rather than a diminution of latent heat as in our

modeled case.

Among our afforestation modeling experiments the sensible

heat flux increase is largest in the case of the woody savannas

scenario in Figure 9E, and is associated with the largest

precipitation increase in Figure 8C. This is an indication that

simulated precipitation increase in these experiments is the

result of enhanced atmospheric heating and enhanced convective

instability induced by a reduction of the latent heat, which

corresponds to the negative feedback process described for

example by Taylor et al. (2012).

The latent heat flux decrease triggered by the afforestation

scenarios is related to a robust large decrease in soil evaporation

flux in the Nzoia basin (see Figures 10A, E, I), that is only partially

balanced by a robust smaller increase in plant evapotranspiration

flux (see Figures 10B, F, J). Indeed, the calculation of the soil
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FIGURE 9

Maps of (A, D, G) mean net radiation flux di�erence 1Rnet (in W/m2), (B, E, H) mean sensible heat flux di�erence 1Hsensible (in W/m2), and (C, F, I)

mean latent heat flux di�erence 1Hlatent (in W/m2) between the reference WRF-Hydro simulation and the (A–C) savannas, (D–F) woody savannas,

(G–I) evergreen broadleaf forest WRF-Hydro simulations. Mean di�erential values are calculated as the mean value from the a�orestation

experiments minus the mean value from the reference experiment, for a 20-year period spanning from 1st January 2001 to 31st December 2020. All

di�erential energy flux maps have the same color scale indicated by the color bar on the right side of (G). In all maps, the crossed areas correspond

to the areas where the climate change signal is not robust, that is where <90% of the 1,140 subsets of 17-year mean di�erences have the same sign

as the 20-year mean di�erence.

evaporation in Noah-MP also considers the soil evaporation which

happens below the canopy. Thus, according to Noah-MP the

savannas and woody savannas vegetation types are more efficient

in reducing soil evaporation loss compared to grasslands and

croplands. This soil water loss-reducing effect is almost completely

canceled in the case of the evergreen broadleaf forest scenario,

where the plant evapotranspiration flux in Figure 10J is very much

enhanced as expected. It is worth noting that a comprehensive

panel of in-situ observations would be needed to verify these

detailed model behaviors (Ceperley et al., 2017; Bliefernicht et al.,

2018).

The overall robust increases in surface runoff flux (Figures 10C,

G, K), and underground runoff flux (Figures 10D, H, L) in the

Nzoia basin mainly arise from the precipitation increase triggered

by the negative feedback process mentioned above. To a lesser

extent the evapotranspiration flux decrease plays a role in this

runoff increase, following the above-discussed water balance-based

mechanism proposed for example by Achugbu et al. (2022) and

more specifically for the Nzoia basin by Githui et al. (2010). The

mean-monthly timeseries of Figure 11, Table 3 further illustrate

the runoff increase response to a dual precipitation increase—

evapotranspiration decrease, a process much exacerbated in the
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FIGURE 10

Maps of (A, E, I) annual soil evaporation di�erence 1Esoil (in % of IMERG annual precipitation), (B, F, J) annual plant evapotranspiration di�erence

1Eplant (in % of IMERG annual precipitation), (C, G, K) annual surface runo� di�erence 1Rsurface (in % of IMERG annual precipitation), and (D, H, L)

annual underground runo� di�erence 1Rground (in % of IMERG annual precipitation), between the reference WRF-Hydro simulation and the (A–D)

savannas, (E–H) woody savannas, (I–L) evergreen broadleaf forest WRF-Hydro simulations. In (A, E, I) the soil evaporation is calculated as the sum of

the soil evaporations outside and below the canopy. In (B, F, J) the plant evapotranspiration is calculated as the sum of the plant transpiration and

intercepted canopy water evaporation. Mean di�erential values are calculated as the mean value from the a�orestation experiments minus the mean

value from the reference experiment, for a 20-year period spanning from 1st January 2001 to 31st December 2020. All di�erential water flux maps

have the same color scale indicated by the color bar on the right side of (I). In all maps, the crossed areas correspond to the areas where the climate

change signal is not robust, that is where <90% of the 1,140 subsets of 17-year mean di�erences have the same sign as the 20-year mean di�erence.
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FIGURE 11

Climatological monthly timeseries of di�erential water flow terms of the terrestrial water budget spatially integrated in the area of the Nzoia basin,

namely the di�erential precipitation 1P (in m3/s), the di�erential total evapotranspiration 1E (in m3/s), the di�erential surface runo� 1Rsurface (in

m3/s), the di�erential underground runo� 1Rground (in m3/s), and the di�erential soil water storage change 1StorageChange (in m3/s), between the

reference WRF-Hydro simulation and the (A) savannas, (B) woody savannas, (C) evergreen broadleaf forest WRF-Hydro simulations. Climatological

monthly di�erential values are calculated as the climatological monthly value from the a�orestation experiments minus the climatological monthly

value from the reference experiment. In each panel, the lines indicate the 20-year average monthly di�erences for the period spanning from 1st

January 2001 to 31st December 2020. The shaded areas represent an error margin calculated as the spread obtained from the 1,140 subsets of

17-year average monthly di�erences among the 20 simulated years. The legend is provided in the upper-right side of (A).

case of the woody savannas’ scenario in Figure 11B and much

attenuated in the case of the evergreen broadleaf forest scenario

in Figure 11C. In the case of the woody savannas’ scenario, water

resources would bemuch increased, by about 13% for precipitation,

8% for surface runoff and 12% for underground runoff or

groundwater recharge, as summarized in Table 3. The relatively

narrow error margins displayed in Figure 11 and indicated in

Table 3 demonstrate the significance of the simulated climate

change signals presented in this article.

It is recognized that the tested afforestation scenarios are

idealized and difficult to apply in the real world, but they

demonstrate the potential of landcover change to modulate climate

change. More generally, these results highlight the importance of

the coupled modeling approach for a comprehensive assessment of

landcover change impacts on climate (Sy and Quesada, 2020).

4. Summary and concluding remarks

The first application of the coupled atmospheric-hydrological

model WRF-Hydro to synthetic landcover change numerical

experiments was presented, exemplarily realized for the case of

the Nzoia basin in Kenya. As part of the calibration, WRF-Hydro

was enhanced with an overbank flow option. With this additional

realism, the calibrated discharge performance was greatly improved
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TABLE 3 Simulated annual water flow changes in km3/year, and relative annual water flow changes as a percentage of the reference annual

precipitation, induced by a�orestation type for precipitation 1P, total evapotranspiration 1E, surface runo� 1Rsurface, underground runo� 1Rground, as

derived from the di�erences between the reference WRF-Hydro simulation and the savannas, woody savannas, evergreen broadleaf forest WRF-Hydro

simulations during the period spanning from 1st January 2001 to 31st December 2020.

Savannas Woody savannas Broadleaf forest

Annual water
flow change

(km3/year)

Relative
water flow
change (%)

Annual water
flow change

(km3/year)

Relative
water flow
change (%)

Annual water
flow change

(km3/year)

Relative water
flow change (%)

1P 1.9 (±0.2) 7.9 (±1.0) 3.1 (±0.3) 12.7 (±1.3) 1.1 (±0.2) 4.4 (±0.9)

1E −1.2 (±0.2) −5.0 (±0.8) −1.6 (±0.2) −6.7 (±0.9) −0.3 (±0.2) −1.1(±0.4)

1Rsurface 1.3 (±0.1) 5.3 (±0.6) 1.8 (±0.2) 7.6 (±0.8) 0.4 (±0.1) 1.7 (±0.4)

1Rground 1.8 (±0.3) 7.6 (1.2) 2.9 (±0.4) 11.8 (±1.7) 1.0 (±0.2) 3.8 (±0.8)

In this table a differential value is defined as the value from an afforestation experiment minus the value from the reference experiment. The numbers in parenthesis give the error margin

estimated as the range of the results from the 1,140 combinations of 17-year subsets among the 20 simulated years.

in the study basin. Then, the calibrated model was run for a 20-

year historical period using the default landcover map, and three

modified landcover maps according to the following afforestation

scenarios: grasslands and croplands of the Nzoia basin replaced by

(1) savannas, (2) woody savannas, (3) evergreen broadleaf forest.

These synthetic afforestation scenarios led to robust results in the

area of the Nzoia basin. A large reduction of the soil evaporation

was only partially balanced by a smaller increase in plant

evapotranspiration, which reduced the latent heat flux, increased

the sensible heat flux, and finally triggered more precipitation,

surface runoff, and groundwater recharge. This mechanism was

particularly pronounced with the woody savannas scenario, but

much attenuated with the evergreen broadleaf forest scenario,

which suggests that an afforestation policy can have a large impact

on the regional climate and water resources availability, depending

on the planting strategy. For decision-makers, the woody savannas

scenario would imply to build more infrastructures to store water

and bring it to less humid parts of the country, protect the

population from increased flood risks, and relocate the farmers

having lost their land for cropping.

To increase the value of such idealized synthetic numerical

results for decision-makers, observation and model improvement

efforts should be jointly conducted. The establishment of in-

situ measurement stations, as realized for example in West

Africa (Bliefernicht et al., 2018), is crucial for validating the

representation of physical processes in the model for a specific

region. A parameter sensitivity study would be beneficial to better

understand the physical mechanisms associated with the modeled

impacts of afforestation on climate. Enhancing the horizontal

resolution of the model grid would enable the implementation

of more realistic landcover change scenarios, although this would

require several additional tests to identify suitable sets of physics

schemes for the atmospheric modeling, and to recalibrate the

hydrological parameters. Additional model developments, such as

soil parameterization (Zhang et al., 2023), groundwater coupling

(Rummler et al., 2022), vegetation dynamics (Glotfelty et al.,

2021; Warrach-Sagi et al., 2022), carbon-nitrogen biogeochemistry

(Chang et al., 2018), should also be considered to further

enhance the realism of simulated land-atmosphere interactions

with coupled WRF-Hydro.
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