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Floods are major hazard in Mzuzu City, Malawi. This study applied geospatial

and hydrological modeling techniques to map flood incidences and hazard

in the city. Multi-sensor [Sentinel 1, Sentinel 2, and Moderate Resolution

Imaging Spectroradiometer (MODIS)] Normalized Di�erence Vegetation Index

(NDVI) datasets were used to determine the spatio-temporal variation of flood

inundation. Ground control points collected using a participatory GIS mapping

approachwere used to validate the identified flood hazard areas. A Binary Logistic

Regression (BLR) model was used to determine and predict the spatial variation

of flood hazard as a function of selected environmental factors. The Hydrologic

Engineering Center’s Hydrologic Modeling System (HEC-HMS) was used to

quantify the peak flow and runo� contribution needed for flood in the city. The

runo� and peak flow from the HEC-HMSmodel were subjected to extreme value

frequency analysis using the Gumbel Distribution approach before input into

the Hydrologic Engineering Center River Analysis System (RAS) (HEC-RAS). The

HEC-RASmodel was then applied to map flood inundated areas producing flood

extents maps for 100, 50, 20, and 10-year return periods, with rain-gauge and

Climate Prediction Center MORPHed precipitation (CMORPH) satellite-based

rainfall inputs. Results revealed that selected MODIS and Sentinel datasets were

e�ective in delineating the spatial distribution of flood events. Distance from

the river network and urban drainage are the most significant factors (p < 0.05)

influencing flooding. Consequently, a relatively higher flood hazard probability

and/susceptibility was noted in the south-eastern and western-most regions of

the study area. The HEC-HMS model calibration (validation) showed satisfactory

performance metrics of 0.7 (0.6) and similarly, the HEC-RAS model significantly

performed satisfactorily as well (p < 0.05). We conclude that bias corrected

satellite rainfall estimates and hydrological modeling tools can be used for flood

inundation simulation especially in areas with scarce or poorly designed rain

gauges such as Mzuzu City as well as those a�ected by climate change. These

findings have important implications in informing and/updating designs of flood

early warning systems and impacts mitigation plans and strategies in developing

cities such as Mzuzu.
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1 Introduction

Urban flash floods are a rapid rise of water along a stream

or low-lying sections of the urban area, usually caused by

heavy rainfall (Jimme et al., 2016; Chang et al., 2021; Hamdy

et al., 2023). Urban areas have a relatively higher risk of

flash flooding due to the presence of large impervious areas

and sometimes inefficient drainage system (Sowmya et al.,

2015; Tomar et al., 2021). In addition, limited conveyance

capacity of urban channels and rivers, as well as drains and

decades of urban development without upgrading of the drainage

infrastructure contributes to urban flooding (Pedersen et al., 2012;

Otokiti et al., 2019; Haghbin and Mahjouri, 2023). Statistics

from the International Disaster Database indicates that floods

have the greatest damage potential of all natural disasters

worldwide and affect the greatest number of people including

those in vulnerable human settlements in southern African

countries such as Mozambique, Zambia Zimbabwe and Malawi

(Lumbroso, 2020).

Malawi faces a number of hazards, both natural and human

made (Dewa et al., 2021; Chirwa, 2023). The intensity and

frequency of disasters have been increasing in the face of climate

change, population growth, urbanization and environmental

degradation (Nhemachena et al., 2020). Between 2013/14 and

2015/2016 seasons, flash floods were recorded almost in all

the major cities of Malawi (Government of Malawi, 2015;

Makwinja et al., 2021). During the 2015/16 season about

1,300 households (representing 5,800 people) were affected by

flash floods, with six fatalities and many others injured in

Mzuzu City (Government of Malawi, 2015). These flash floods

normally develop over a short period of time but cause

extensive damage to life and property (Prama et al., 2020).

Over and above the lack of advanced tools to deliver timely

and accurate measurements, few studies on flood hazard and

risk mapping have been carried out to in the city to guide

decision making and mitigate against further loss of life and

property (Abdelkarim et al., 2019). In this regard, geospatial

tools and techniques have over the past decade taken center

stage in augmenting scientific exploration and generation of new

information on flooding.

Advances in key geospatial tools and data e.g., Geographic

Information System (GIS), availability of remotely sensed data

and high-resolution digital elevation models have greatly improved

flood modeling (Ding et al., 2021; Sudalaimuthu et al., 2022).

Integration between GIS software and hydrologic/hydraulic models

assist in examining the risk of floods and greatly improve

spatial data visualization of flood prone areas (Jiang and Yu,

2022). Thus, hydrologic/hydraulic models play an important

role in improving a better understanding of the dynamics and

behavior of fluvial systems (Chomba et al., 2021). However,

most hydrological and hydraulic models are data driven and

require spatially distributed information regarding topography,

land cover and soils hence the development of alternative more

robust forms of models (Damayanti, 2011; Ha and Bastiaanssen,

2023).

In recent years, there has been a rapid development and

application of semi-distributed models such as the Hydrologic

Engineering Center’s Hydrologic Modeling System (HEC-HMS)

and River Analysis System (HEC-RAS) to quantify the hydrologic

and hydraulic dynamics of various river systems globally (Natarajan

and Radhakrishnan, 2020). This has been further enhanced by the

proliferation of high-quality quantitative data (e.g., topography,

remotely-sensed imagery) and increasing computational power

(Hunter et al., 2007; Fleischmann et al., 2019). However, data, end-

user and computational constraints also need to be considered

(Beven and Freer, 2001; Chomba et al., 2022). In order to select an

appropriate model to use, one needs an in depth understanding of

the model since each model has its own limitations and advantages

(Beven and Freer, 2001; Chomba et al., 2022). This study therefore

sort to demonstrate and test the application earth observation,

GIS, hydrological and hydraulic modeling techniques to better

understand the flash flood occurrences in Mzuzu City in Malawi

from 2014 to 2016. This also entailed assessing the performance of

satellite rainfall products and their suitability for flood modeling

while developing an optimal hydrodynamic flood model for flood

inundation extent for different return periods.

To this end, this study provides the needed precise and timely

urban flood risk assessment information for developing improved

flood early warning, preparedness andmanagement plans inMzuzu

City, Malawi. Therefore, it also demonstrates how contemporary

technologies may be used to help address challenges of flash floods

in urban areas—over and above the potential to advance scientific

knowledge the field of urban flood modeling.

2 Materials and methods

2.1 Study area

The study was conducted in the City of Mzuzu in Malawi. The

city is located at −11.47◦ latitude and 34.02 longitude (Figure 1).

The city covers a total land area of 143.8 km2 (Gondwe andManda,

2021). The city had a population of 219,988 in 2018 (National

Statistical Office, 2008) and an estimated population of 273,018 in

2023. Approximately 85% of the city is covered by built-up areas

and <15% is covered by green areas. The area receives an average

annual rainfall of ∼1,225 mm/year. The highest average rainfall

is experienced in March, while the least rainfall falls in August.

The average monthly temperature is 18.1 ◦C, with a mean monthly

maximum of 22.0 ◦C mostly experienced in November. The city is

predominantly underlain by alluvial and colluvial deposits with the

higher elevation areas composed of metamorphic gneiss. The soils

are mainly ferruginous in the low-lying areas and drained by the

Lunyangwa River and the Ching’ambo stream.

2.2 Gauge based and satellite rainfall
estimates

Time series of daily rainfall data (2010–2015) from Mzuzu

Airport meteorological station were obtained. Climate Prediction

Center MORPHed precipitation (CMORPH) time series data

(2010–2015) with a 30-min temporal resolution at a 0.25◦ (∼28 km)

spatial resolution were used. Satellite image data were downloaded

from the GeoNETCAST in situ and Online Data (ISOD). Toolbox

through the ILWIS 3.72 software (http://52north.org/downloads/).
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FIGURE 1

Mzuzu City showing main rivers and meteorological stations.

CMORPH was aggregated to daily time step to match with

recording time step of gauge-based observations.

2.3 Runo� data

Daily runoff data for Lunyangwa River at MophoJere (07418)

flow gauging station for October 2008 to June 2015 was solicited

from the Department of Water of Malawi. The rainfall and

runoff daily time-step dataset had missing values of ∼1 to 2 days

per month and thus the mean value gap-filling method (which

estimates the symmetric distributionmean and standard deviation)

was employed to complete the datasets (Sivapalan et al., 2003;

Trubilowicz, 2016). The original (raw) time series with gaps were

then correlated with the gap-filled time series to check error level.

2.4 Rainfall data performance evaluation
against gauged based observations

2.4.1 Evaluation using standard statistics
To evaluate the performance of the satellite rainfall estimates,

six continuous statistics were used. These were, the Mean Error or

Bias, Mean Absolute Error (MAE), the Root Mean Square Error

(RMSE), the Correlation Coefficient (R), the Relative Bias (RB) and

the Nash Sutcliffe Efficiency (NSE). Detailed descriptions of the

standard statistics are found in Gumindoga et al. (2019; 2020).

2.4.2 Rainfall occurrence detection statistics
The categorical rainfall occurrence detection statistics included

Probability of Detection (POD), False Alarm Ratio (FAR),

Frequency Bias Index (FBI) and the Critical Success Index (CSI)

as shown on Equations (1)–(4), respectively.

P =
A

A+ C
range [0, 1], best : 1 (1)

FAR =
B

A+ B
range [0, 1], best : 0 (2)

FBI =
A+ B

A+ C
range [0, 1], best : 1 (3)

CSI =
A

A+ B+ C
range [0, 1], best : 1 (4)

where, A, B, C, and D represent hits, false alarms and

misses respectively.
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2.5 Bias formulation and estimation

The spatial-temporal bias correction method was applied in

this study as described by Habib et al. (2014) and modified for

southern African basins by Gumindoga et al. (2016). The bias

was corrected for individual rain gauge stations at daily time step

implying that bias correction varies in space and over time and is

based on the use of the BFSTB factor. The time window used in this

study was selected as 7 days with a minimum 3mm gauge rainfall

accumulation. This was derived at after several time windows and

thresholds were tested but were giving poor results. For rainfall

accumulation <3mm, no bias correction was applied for that

specific time window.

2.6 Mapping the spatial variation of flash
flood hazard and risks

Moderate Resolution Imaging Spectroradiometer (MODIS)

and Sentinel 1 and 2 satellite images were used in this study.

2.6.1 MODIS data acquisition
Thirty-six (36) NDVI images of Moderate Resolution Imaging

Spectroradiometer (MODIS) on-board the National Aeronautics

and Space Admiration (NASA)’s Terra and Aqua satellites, acquired

at 250m resolution from MODIS Rapid Response System (https://

lance-modis.eosdis.nasa.gov) were used as main input to map flood

inundated areas in this study. MODIS images were used because

the Terra and Aqua view the entire earth’s surface every 1–2 days

which gives them the ability to track all flood events and also

the ease to access them because of their open data policy (Dao

and Liou, 2015). Images were obtained for the wet season i.e.,

January to April for the years 2016, 2015, and 2014 based on ground

observations that Mzuzu City often experiences flash floods during

this period. To separate water and non-water areas, an ILWIS water

extraction algorithm was used, with the resulting map mosaicked

to the Mzuzu city boundary shapefile thus creating a flood extent

map (Ticehurst et al., 2014; Teng et al., 2017). The implemented

algorithm for water extraction is the following:

- red_222 = Mzuzu__3

- green_222 = Mzuzu__2

- blue_222 = Mzuzu__1

- water_red_222 = IFF (red_222 = 154, 1, 0)

- water_green_222 = IFF (green_222 > 210, 0, IFF

(green_222 < 180, 0, 1))

- water_blue_222 = IFF (blue_222 < 200, 0, 1)

- water_222 = water_red_222+ water_green_222

+
¯
water_blue_222

- flood_222 = IFF (water_222 > 1, 1, ?)

2.6.2 Sentinel-1 data acquisition
Sentinel-1 C-band Synthetic Aperture Radar (SAR) data from

the Copernicus Sentinel-1 mission (Torres et al., 2017) was used

in this study due to its sensitivity to water surfaces and all-

weather capabilities (Huang et al., 2018). The data was acquired

same period as the MODIS data. Google Earth Engine (GEE)

(Kumar and Mutanga, 2018) was used to catalog search, filter,

acquire, preprocess and analyse the imagery for the study area and

study period. The dual Vertical-Horizontal (VH) polarization was

selected for its enhanced sensitivity to land surface roughness and

change. Both the ascending and descending passes were applied

to capture comprehensive spatial information. Pre-processing of

the SAR images involved the speckle filtering functions after Rana

and Suryanarayana (2019), to improve floodwater classification.

A threshold approach was used to differentiate the flooded and

non-flooded areas for comparative analysis between the before and

after events.

2.6.3 Sentinel-2 data acquisition
To complement MODIS images as well as Sentinel-1C

Synthetic Aperture Radar (SAR) data, 4 optical Sentinel-2 images of

20m resolution were acquired and used as input to map the flood

affected areas. The images were acquired from Sentinels Scientific

Data Hub web portal (https://scihub.copernicus.eu/dhus/#/). The

images were obtained on 4th and 6th of January 2015 and 4th and

20th of April, 2016. Sentinel Application Platform 5.0 was used

for processing the datasets i.e., all pre and post processes such as

calibration using the backscatter coefficient, image filtering and

band maths calculation to separate water and non-water areas were

executed therein.

2.6.4 Digital elevation model
A 30m resolution Digital ElevationModel (DEM) was acquired

from the United States Geological Survey (USGS)’s EarthExplorer

website (https://earthexplorer.usgs.gov/) and used to create a slope

layer for the study area. The slope is a significant geomorphological

feature that influences a region’s steepness and flatness which

is key factor to consider in flood modeling. The DEM was

also manipulated to prepare the distance from rivers, elevation,

and drainage density layers maps and furthermore used to

generate drainage and flow accumulation maps through DEM-

hydroprocessing method in ILWIS software.

2.6.5 Environmental variables
An overview and description of the environmental variables

used in predicting flood hazards in the study area is presented

below. These include elevation, distance from rivers, slope, and

vertical channel height.

a) Elevation: A Digital Elevation Model (DEM) was used to

calculate flow direction, flow accumulation, and drainage

density. Furthermore, the drainage network and catchment

segmentation were extracted and some compound indices

were calculated to provide further hydrological model input

(Maathuis and Wang, 2006). Flow accumulation estimates the

amount of water that is available for runoff that concentrates

and accumulates in river channels (Roy and Mistri, 2013).
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The flow accumulation data were used in defining watershed

boundaries and stream networks (Mutelo, 2013).

b) Slope: This was calculated as a percentage with a

pixel size of 30m using Equation (5): Slope _ 100 _

HYP_DFDX_DFDY_/30 (5) where: HYP = the hypotenuse,

DFDX = change in the horizontal direction and DFDY =

change in the vertical direction. SLOPEPCT is the output map

name of the slope map in percentages.

c) Vertical channel distance: The DEM was used to derive

the height of each place in the study area above or below

the nearest channel bed level. The channel base elevations

were interpolated to form a channel height layer that, if

subtracted from the DEM, produces the vertical distance to

the closest channel of each location in the study area (Murwira

and Schmidt-Murwira, 2005). To do this, a segment map

of all rivers was converted to a point map. In the ILWIS

environment, elevation values were then assigned to the point

map of rivers using the map value command. The point map

was then interpolated to get a channel height layer of the

study area using the universal Kriging interpolation technique.

Lastly, the channel height layer was subtracted from the DEM

to produce the vertical channel distance.

2.6.6 Generation of water and non-water random
points

Random points representing flooded and non-flooded areas

were generated using QGIS 2.10.1 software. For each flood day,

a total of 50 random points representing non-water areas and

50 random points representing water areas were generated. Pixels

depicting water presence were coded “1” while the non- water

presence were coded “2” (Nharo et al., 2019).This data was used

as an input for the Binary Logistic Regression. Environmental

variables such as distance from the river, slope, elevation, land

cover and vertical channel distance were added to the table using

the MAPVALUE function in ILWIS. A binary logistic regression

technique was used in Statistical Package for the Social Sciences

(SPSS) to derive a function that links water presence or absence to

each of the environmental variables. The following binary logistic

(Equation 5) was used:

P =
e
(a+bx)

e(a+bx)
(5)

where P = probability of flooding, a = ß value for the constant,

b is the Beta value (ß) for the environmental variable, and x is the

environmental variable (e.g., elevation).

2.7 Development of flood hazard maps

Flood probability maps were developed in ILWIS using the

binary logistic (Equation 5) and reclassified into four flood hazard

classes. To obtain the value ranges of the classes, histograms of the

probability maps classes were used. The four hazard classes were

“Very low hazard,” “Low hazard,” “High hazard,” and “Very high

hazard” after Gumindoga et al. (2014).

Using the logistic regression model, the spatial relationship

between flood occurrence and factors influencing flooding

were assessed. The SPSS data analysis tool was used to

calculate the Pearson’s correlations between flooding and each

environmental factor. The coefficients obtained from SPSS and

each environmental factor were used in the formulation of the

multiple logistic regression model where all the significant factors

were combined. Thereon, the multinomial regression model was

developed by combining all the factors to obtain the probability of

flooding as shown in Equation (6).

P =
1

1+ e−Z
(6)

where P is the estimated probability of flooded areas. The value

of Z was obtained using Equation (6). The mathematical equation

was formulated as shown in Equation (7).

Z =
(

−0.005 ∗ Elevation
)

+
(

0.001 ∗ Distance from rivers
)

+ (−0.009 ∗ Vertical channel height) (7)

2.8 HEC-HMS model calibration and
validation

The HEC-HMS was employed in simulating runoff and

peak flows. The model simulates rainfall-runoff and routing

processes in both natural and controlled systems. It is designed

to be applicable in a wide range of geographic areas for

solving the widest possible range of problems. This includes

large river basin water supply and flood hydrology, and small

urban or natural watershed runoff hence its preference and

suitability in this current study (Scharffenberg and Fleming,

2008). Hydrographs produced by the model are used directly

or in conjunction with other tools for studies of water

availability, urban drainage, flow forecasting, future urbanization

impact, reservoir spillway design, flood damage reduction,

floodplain regulation, and systems operation (Feldman, 2000).

The HEC-HMS “continuous” simulation approach was adopted

and simultaneously done for each subcatchment by adopting the

same HEC-HMS model components. These components include

a model for: computing runoff volume or loss rate (Deficit and

Constant), overland flow and interflow transformation in an

ungauged catchment (the Snyder Unit Hydrograph), precipitation

and evapotranspiration (Gage Weights and Monthly Average,

respectively) and routing of reach and reservoir (Muskingum

method and Outflow Curve, respectively). The datasets used

in catchment delineation, transformation method, landuse/cover

classification were obtained from remote sensing, whereas routing

(reach and reservoir) and loss method parameters were derived

from both literature and remote sensing. Only the loss and

transformation were calibrated (USACE, 2000, 2008), using

streamflow data.

HEC-HMS has models for calculating runoff volume or loss

rate (Deficit and Constant), precipitation and evapotranspiration

(Gauge Weights and Monthly Average, respectively), overland
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flow and interflow transformation in an ungauged catchment, and

reservoir and reach routing (Muskingum method and Outflow

Curve, respectively). While routing (reach and reservoir) and loss

technique parameters were generated from both literature and

remote sensing, the datasets utilized for catchment delineation,

transformation method, and landuse/cover categorization

were from remote sensing. Using streamflow data, only

the transformation and loss were calibrated (USACE, 2000,

2008).

The HEC-HMS model has successful applications in

many African Basins. Gumindoga et al. (2016) used the

HEC-HMS model in simulating runoff in an ungauged

catchment in the Upper Manyame Catchment of Zimbabwe.

Nharo et al. (2019) also used the HEC-HMS model for

flood modeling in Mbire District of Zimbabwe. In Kigali,

Rwanda, Manyifika (2015) used HEC-HMS in modeling

urban floods.

2.8.1 Basin model creation
A basin model was created using the catchment

and drainage network which were derived from DEM

hydro processing in ILWIS software. For the study

area, three sub basins of Ching’ambo, Lunyangwa upper

stream and Lunyangwa downstream were used for

the model.

The SCS Unit Hydrograph was selected in estimating direct

runoff. Runoff depends on soil infiltration rates hence soil data

was considered as an important factor in the model development

(Fleming and Brauer, 2016). Soils helped to explain the loss method

through their infiltration rates. The predominant soils in the study

area are the alluvial and colluvial deposits with the higher ground

composed of metamorphic gneiss. The Muskingum method was

used as a routing method for the stream flow through the channel

reaches. “K” and “X” are parameters depending on the channel

and flow characteristics. The model was manually calibrated using

October 2008 to September 2010 flow datasets. The calibration

process was done through fitting the base flow recession, and

then the peak flows and finally the runoff volumes. The validation

was done using flow data for October 2010 to September 2012.

There are a number of performance criteria such as Bias, Nash

Sutcliffe Efficiency (NSE) and Relative Volume Error (RVE) and

that were used for calibration. We refer to Gumindoga et al.

(2014) for detailed descriptions of the equations. Bias ranges from

−10 to 10 with best value of 0. NSR ranges from –∞ to 1

with best value of 1. RVE ranges from –∞ and +∞ with best

value of 0.

Daily stream flow observations for the period 1st October,

2008 to 30th September, 2010 using stream flows at gauge station

07418 were used to calibrate the model. The trial-and-error

procedure was applied where model parameters are manually

changed and optimized in order to best simulate the stream flow

observed. Optimization was done through changing one parameter

at a time for each model run to control the effect on model

behavior and performance. The performance of the model was

evaluated with objective functions of Nash-Sutcliffe Efficiency and

the volumetric errors.

2.9 Extreme value analysis

In hydrology, the Gumbel distribution is frequently used to

simulate the frequency of extreme events, such as maximum

annual floods thus it was adopted in this study to determine

the recurrence period and magnitude of extreme flood events by

analyzing historical flood data in the study area. The possible

severity of flooding is better understood thanks to this statistical

analysis, which also influences decisions on infrastructure design

and flood risk management.

In order to prepare flows needed for the HEC-RAS model,

the design runoff for points of interest in the Mzuzu city was

determined using the Gumbel method. The generation of return

floods for maximum rainfall/runoff for selected catchments was

carried out for 100, 50, 20 and 10-year return periods (see

Equations 8, 9).

y = −lnln
T

T − 1
(8)

where y = Gumbel variate, T = return period (years).

The flood discharge (x) for each Gumbel variate and associated

return period was computed using Equation (9).

x =
¯
x+

y− y

σ
s (9)

where x = flood discharge (m3/s), x =mean peak flow (m3/s),

s = standard deviation, y = Gumbel variate, y and σ are the mean

and standard deviation for the Gumbel variate, respectively.

2.10 Hydraulic modeling principles using
the HEC-RAS hydraulic model

Hydraulic Modeling using HEC-RAS: The River Analysis

System (RAS) from the Hydrologic Engineering Center (HEC)

is a popular software programme for hydraulic modeling of

river systems, which includes bridge/culvert design and floodplain

study. The HEC-RAS hydraulic model has wide use in Southern

African catchments of Manyame (Muvuti, 2021), Runde and Save

catchments. The model has been successfully applied in other

international basins and regions in India such as Ghed (Trambadia

et al., 2023), Purna River (Pathan et al., 2022a,b), Vishwamitiri

River basin (Shah et al., 2022), Ozat River basin in Gujarat

(Trambadia et al., 2023).

HEC-RAS needs input data on flow characteristics, water

surface profiles, and boundary conditions, including exceptional

flood events, in the context of flood modeling. When extreme

occurrences (such peak flows obtained from the Gumbel

distribution) are statistically analyzed and used as input for

HEC-RAS simulations, the relationship between Gumbel extreme

value and HEC-RAS hydraulic modeling becomes relevant. In

order to mimic the hydraulic behavior of rivers and floodplains

under extreme flood circumstances, HEC-RAS uses the estimated

extreme event data, which includes peak flow rates and water

surface elevations.
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TABLE 1 Summary of statistics of gauge and CMORPH rainfall (2010–15).

Product type Mean (mm/day) Std dev. Max Sum Ratio

CMORPH 3.04 10.9 212.9 6,673.59

Gauge 3.07 8.96 142.0 6,723.40 0.99

Hydraulic modeling, unlike hydrologic modeling, simulates

the movement of fluid flow from one place to another. Variables

of interest include fluid velocity and depth of flow. The HEC-

RAS v.5.0 software along with the ArcGIS extension, RasMapper

were used for hydraulic simulations. Flow characteristics from

HEC-RAS are able to simulate depth, flow and velocity with

time and location. Data required for steady uniform hydraulic

modeling is primarily, topographic data, friction data, boundary

conditions, design runoff for return periods of interest as well

as validation data. A Triangulated Irregular Network (TIN) and

contours were created from the high resolution (ASTER 30m)

DEM. Geometric layers such as the stream centerline, bank lines,

flowpath centerlines and cross section cut lines were created from

the TIN and aerial photographs fromGoogle Earth. Using the QGIS

Bing Aerial plug-in, the river centerline, banks which are edges of

the river, flow lines which are flood plain extents and cross sections,

were digitized.

Water surface elevations are simulated using the

2D Saint-Venant equations or the 2D diffusion wave

equation as solved by the HEC-RAS, version 5. Detailed

descriptions of the model equations are found in

HEC-RAS manuals as well as Pathan et al. (2021,

2022b).

The model was calibrated using the Manning’s roughness

coefficient and data associated with the lower flowrate. The

calibrated coefficients were then used in the validation process

using data associated with the second, higher flowrate. An

n-value was first estimated based on consultation with field

observations, textbook guidelines and Google Earth images. Model

validation was performed by running the model at the high

flowrate with the calibrated n-values. The computed water surface

profile was compared to the measured profile and P and D

were determined. The actual validation of the HEC-RAS flood

inundated areas was further done using flood areas mapped

using the MODIS NDVI images as well as Sentinel 1 and

2 images.

The model was then exported from ArcView into the HEC-

RAS software, and in the Geometry Data menu, verification

was made, regarding the quality of the data. The Manning’s

coefficient was defined as 0.035 for the riverbanks and 0.030

for the main channel. The maximum flows were based on

the rainfall data. The maximum rainfall was estimated using

the Gumbel’s statistical distribution. The peak flow rate

was predicted for the different return periods. Flows were

provided to the model for the 5, 10-, 20-, 50, and 100-year

recurrence interval.

Once the HEC-RAS model was complete, output data was

exported to Geographical Information System (GIS). HEC-

GeoRAS was used to compile the data into useful graphical output

such as floodplain polygon shapefiles.

3 Results and discussion

3.1 Performance of CMORPH satellite
rainfall estimates in Mzuzu City

The mean, standard deviation, the maximum and sum of the

gauged and CMORPH rainfall estimates for the period 2010–2015

indicates an underestimation of rainfall by the CMORPH (Table 1).

As expected, theminimum recorded rainfall for both the CMORPH

and gauge estimates were 0.0 mm/day. These results are consistent

with results in the Zambezi basin by Gumindoga et al. (2016) and

Omondi (2017) in the Kabompo River basin in Zambia, where

CMORPH product was underestimating rainfall.

The detection skill scores are presented in Figure 2 CMORPH

satellite underestimated the frequency of rainfall at 0.9 for Mzuzu

airport (FBI < 1). The probability of detection (POD) was 0.6,

which indicate that 60% of the observed rain events were correctly

detected by CMORPH. The lower values for FAR indicates that

around 30% of the CMORPH retrievals were not observed on the

ground or did not occur. The CSI of 0.47 indicates that almost

50% of the rain events observed on the ground or estimated by

CMORPH were correctly estimated.

These results are similar to the results got by Ringard et al.

(2015) where POD by CMORPH rainfall was around 70% while

False Alarm Ratio was 30%.

Results in Table 2 indicates an RMSE of 12.96 mm/day while

0.51 was obtained for correlation coefficient which measures

the degree of linear association between the estimated and

observed distributions. An “R” value of exactly +1 indicates

a perfect positive fit, while value of exactly −1 indicates a

perfect negative fit. A bias of −0.04 mm/day was obtained,

4.40 for Mean Absolute Error while for NSE a value of −1.06

were obtained.

3.2 Seasonal comparisons

During the dry season (May to October), CMORPH is

underestimating rainfall by 85% as shown in Figure 3A while

during the wet season (November to April), there is an 18%

overestimation of the precipitation by CMORPH as shown in

Figure 3B.

The years 2010 and 2013 shows an underestimation of

CMORPH as compared to gauge. Further analysis on the annual

rainfall totals indicated an overestimation of the CMORPH rainfall

as compared to the rain gauge rainfall by 2.5%. These findings

are consistent with the findings by Serrat-Capdevila et al. (2016)

that CMORPH was overestimating rainfall by over 30% in Central

African region in which Malawi belongs.
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FIGURE 2

Detection skill score for CMORPH rainfall.

TABLE 2 Statistical indices for CMORPH satellite rainfall performance.

Station R Bias (mm/day) MAE (mm/day) RMSE (mm/day) NSE

Mzuzu airport 0.51 −0.04 4.40 12.96 −1.06

FIGURE 3

Dry (A) and Wet (B) season CMORPH—Rain gauge data comparison (May to Oct).

3.3 E�ects of bias correction

After applying the bias correction on the daily rainfall values,

the RMSE improved from 12.96 to 8.61 mm/day, however

the mean rainfall estimates for Mzuzu airport deteriorated

from 3.04 to 2.54 mm/day against the mean of the gauge

which is 3.07 mm/day. Likewise, the NSE moved from −1.06

to−0.62.

3.4 Satellite based flood mapping for
MODIS as well as Sentinel 1 and Sentinel 2
(SAR)

Flood maps and estimated flooded areas for Mzuzu City

for both MODIS NDVI and Sentinel 1 images are presented in

Figure 4. The accumulated flood extent of 32.2 km2 was observed

on the19th of April, 2014 and recorded the highest flood inundated
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FIGURE 4

The spatial and temporal variation of floods in Mzuzu city from 2014 to 2016.

area from all the acquired images MODIS or Sentinel. During the

2016 floods, the highest inundated area of 26.1 km2 was recorded

on the 10th of April with rainfall amount of 344mm received from

the 3rd to 10th April 2016. It can be noted that the floods waters

can be seen to have receded on the April 15 image, which has an

inundation area of 1.7 km2. During the 2015 floods, the peak on

the 6th of April, having an inundated area of 7.5 km2. Sentinel-1

images were used to map floods for the 8th of April 2016 and the

5th of January 2015.

The flood mapping obtained from the use of MODIS NDVI

and Sentinel-2 images is an indication of successful use of radar

and optical satellite images. This study findings are in line with

findings by Ahamed and Bolten (2017) on the effectiveness of using

MODIS NDVI images for flood mapping in similar environments.

Revilla-Romero et al. (2015) in their study using global flood events

concluded that satellite remote sensing provides useful near real-

time flood information that can be useful for risk management

which is also demonstrated in the current study.

Figure 5 shows the area covered by water before the floods.

The area covered by water before and after the floods was 0.57695

and 0.9428 km2 respectfully, which shows a +0.36585 km2 (i.e.,

+63.41%) change over the study period. Comparing the area with
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FIGURE 5

Area covered by water before and after floods using Sentinel 1 Synthetic Aperture Radar image for the study area environmental factors that a�ect

flooding.

floods MODIS image is showing more area covered by floods than

the sentinel 1 image.

In this study, a number of environmental factors that affect

flooding were assessed; these are vertical channel distance, slope,

elevation and distance from a river.

3.5 Distance from rivers and open water
bodies

Figure 6 shows the relationship between the probability of

occurrence of flooding and distance from a river. The results are

showing that areas which are close to a river have a high probability

of up to 86% flooding than areas that are away from rivers and open

water bodies. The relationship between probability of flooding (P)

and distance from the river was obtained using Equation (10).

P =
e
(−9.333−0.001

∗
distance fromriver)

(1+e(−9.333−0.001∗distance from river))
(10)

The flood hazard maps developed as a function of a distance

away from a stream network as well as urban drainage shows that

for areas that are close to the stream network and urban drainage

have more flood hazard than areas that are away.

3.5.1 Elevation and slope
Runoff movement is from higher to lower elevations and

therefore slope influences the amount of surface runoff and

infiltration. Flat areas associated with low elevation may flood

quicker than areas in higher elevation with a steeper slope. In this

study, high-elevation areas are in the eastern side of the city, where

the slope is also steeper (Figure 7).

3.5.2 Vertical channel distance
Figure 8 shows that the probability of a point being flooded is

higher for a point with lower height above channel base and lower

for a point with high height above the channel base. Equations (11),

(12) were applied to the height above channel base maps in ILWIS

to determine the probability (P) of an area being inundated with

water in a flood event.

P =
e(−4.455+0.002

∗
VCD)

(1+ e(−4.455+0.002∗VCD))
(11)

P =
e(−5.697+0.009

∗
VCD)

(1+ e(−5.697+0.009∗VCD))
(12)

where VCD is the Vertical Channel Distance.

Likewise, areas that have a low vertical channel height

have a high hazard to flooding than areas that have a

high vertical channel height. Distance from rivers and the

vertical channel distance were the most significant factors

that affected flooding in the area. Distance from the rivers

was significant in 9 out of the 21 flood days while the

vertical channel distance was significant in 6 of the 21

flood days.

Flood probability and hazard maps obtained after combining

multiple environmental factors show that most parts of the city

fall in the high to very high flood hazard category (Figure 9). This

puts people and their property at risk in case of flooding. The map

obtained can be used to guide decision making and planning in
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FIGURE 6

Flood probability and flood hazard with variation to distance to stream network.

as far as area suitability for infrastructure development in the city

is concerned.

3.6 Calibration and validation of HEC-HMS
model

Figure 10 shows that HEC-HMS model reproduced the

observed patterns of the peaks as well as the rising and falling limbs

during the calibration period. However, the model overestimated

the simulated flows. The observed flows were 10.5∗107 m3 against

the simulated flows of 11.3∗107 m3. The Nash Sutcliffe (NS) model

efficiency that determines the goodness of fit between simulated

and observed values is 70%, which is within the acceptable

ranges. Furthermore, the Relative Volume Error (RVE) used for

quantifying the volume errors is −6.9 % and suggest a good

performance error since it is within the acceptable ranges of −10

to 10% (Castellarin et al., 2004). The Bias was 0.12 mm/day which

was satisfactory.

Model validation used flow from 1st of October to 30th

of September 2012. For model validation, the optimized model

parameter set by the calibration is used. Validation results indicate

satisfactory model performance with the objective function values

for NSE 60% and for RVE is −8.1%. The observed outflows were

9.6∗107 m3 while the simulated flows were 8.8 ∗107 m3. This shows

that the model is underestimated the simulated flows.
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FIGURE 7

Probability and flood hazard maps with variation in elevation.

3.7 Model simulation for flood modeling
with satellite estimate forcing

CMORPH rainfall estimates were used as an input in the HEC-

HMS as a forcing to evaluate how the observed hydrograph can be

simulated. The bias corrected CMORPH estimates used were from

1st of October 2010 to 30th of June 2014. Evaluation of the model

performance in terms of the objective functions shows very good

model performance. The volumetric error is small (RVE=−4.1%)

suggesting very good model performance in terms of capturing

observed stream flow volume. The model performance is also good

in reproducing the pattern of the observed hydrograph (NSE =

0.66) as in Figure 11.

3.8 Flood routing using HEC-RAS

Flood routing was based on the statistically predicted flows

using the Gumbel distribution, steady flow simulations which

were performed for the return periods of 10, 20, 50, 100 years.

Flows that were produced from the return periods are as in

Table 3.

Figure 12 shows that as the return period increases, the spatial

extent of the flooded area also increases in both the CMORPH

and gauge rainfall simulations. The largest inundation was caused

by the 100-year return period. From the obtained results using

gauge rainfall for simulation, for a 100-year flood return period, the

model simulated 135m as reach length of the flood with a flooded

area of 2.3 km2. This had an average inundation depth of 0.98m,

with some areas experiencing a maximum depth of 1.5m, which

mainly occurred within the lower parts of the study area. The 50-

year flood return period simulated 125m as a reach length with

a flooded area of 2.07 km2 with an average inundation depth of

0.65m with some areas experiencing a maximum depth of 1.3m.

The same case applied to the 20-year return period which simulated

122m as the reach length with a flooded area of 1.8 km2 an

average inundation depth of 0.56m with some areas experiencing

a maximum depth of 1.25m. The 10-year return period had

a flood inundated area of 1.63 km2 with a simulated reach

of 111m.

Using CMORPH satellite rainfall, a 100-year flood return

period, the model simulated 125m as a reach length and

1.83 km2 as a flood inundated area. The 50-year flood return

period simulated 101m as a reach length with a flooded

area of 1.68 km2. The same case applied to the 20-year

return period which simulated 93m as the reach length with

a flooded area of 1.41 km2 while the 10-year return period

had a flood inundated area of 1.21 km2 with a simulated

reach of 85m. The obtained results agree with the area results

obtained which showed that CMORPH satellite rainfall obtained

in the study area underestimated rainfall when compared to the

gauge rainfall.

3.9 Elements at risk

Table 4 shows the elements affected by using different flood

return periods for the gauged and CMORPH rainfall. From

the results it can be seen that residential houses are at risk

for all the return periods. This indicates a high risk for

people as most of their homes were directly within flood

zones. On verification of the model, elements at risk from

the model were verified with ground control points. A Root

Mean Square Error of 0.45 was obtained (with a p-value of

0.05) showing that the model agrees with the ground control

points obtained.
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FIGURE 8

Flood probability and hazard maps with variation to vertical channel distance.

4 Conclusions and recommendations

4.1 Conclusions

The main objective of the study was to predict flood hazards

and model flood inundation in the Mzuzu city of Malawi.

The spatial analytical techniques presented are an effective

method of hazard mapping and delimitation of flood-prone

zones in the study area. By validating hydraulic modeling

techniques with satellite based approaches for flood mapping, the

results of this study give insights into priority areas for flood

management in the Mzuzu City. Five conclusions which can be

drawn are

i. MODIS and Sentinel 1 and 2 imagery shows

satisfactory competence in mapping the spatial

distribution of flood events with distance from the

river network and urban drainage being significant
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FIGURE 9

Flood probability and hazard maps combining multiple environmental factors.

FIGURE 10

Model calibration and validation.

FIGURE 11

Model simulation using CMORPH rainfall estimates.
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factors (p < 0.05) affecting flooding in Mzuzu city

of Malawi.

ii. A relatively higher flood hazard probability

and/susceptibility was noted in the south-

eastern and western-most regions of the

study area.

iii. CMORPH rainfall data can be used for flood

inundation simulation satisfactorily especially

in areas with scarce or poorly designed rain

TABLE 3 Gumbel distribution flows.

Return
period

Probability Gauge flow

(m3/s)

CMORPH
flow (m3/s)

10 10 50 45

20 5 55 50

50 2 62 55

100 1 70 64

gauges such as Mzuzu City. When used for

hydrological and flood extent simulation, the bias

corrected satellite rainfall can significantly improve

model efficiency.

iv. HEC-HMS model calibration and validation produced

satisfactory model performance (NSE) = 0.7 and

0.6, respectively thus providing useful information

(peak discharge) for flood routing and flood

extent forecasting in Mzuzu city following extreme

value analysis.

v. The validation of HEC-RAS model with GCPs produced

a satisfactory significant level p < 0.05. The flood

inundation maps produced in this study can be used

as a basis for development of a local flood early

warning system to help mitigate adverse impacts of

flood disasters in Mzuzu. Overall, the study shows

that flood inundation extents produced by MODIS

and Sentinel satellite products and hydraulic modeling

techniques match, thus proving the reliability of

indirect scientific approaches in disaster mapping

and prevention.

FIGURE 12

Di�erent flood return periods using gauge rainfall (Left) and CMORPH (Right).

TABLE 4 Elements at risk.

Elements
at risk

Flood return period in years

10 20 50 100

CMORPH Gauge CMORPH Gauge CMORPH Gauge CMORPH Gauge

Residential (#) 35 38 40 43 46 51 85 92

Road (m) 52 52 65 65 65 65 65 65

Farmland (Ha) 35 35 48 46 51 51 60 57
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4.2 Recommendations

i. A higher resolution DEM is recommended

for detailed characterization of the urban

terrain to improve the accuracy of the flood

inundation mapping.

ii. Techniques for integrating multiple satellite rainfall products

can be used. It is possible that one product—CMORPH in this

instance—is insufficient for characterizing the rainfall in the

research area.

iii. The Mzuzu City authorities are recommended to make sure

that residential and commercial buildings are not located in

regions with the highest risk of flooding by using the flood

hazard maps and adhering to specific zoning laws from the

river. The aforementioned data can be used by the local

government to inform the public and other interested parties

about the reasons behind the non-development of certain land

adjacent to rivers and streams. This can help avoid illegal

settlements, where people buy land without understanding

the variables that increase their risk of flooding, and increase

public awareness.

iv. More research may be done in the city to lessen the harm

that floods cause by examining the influence of climate change

on flood susceptibility and evaluating the efficacy of flood

mitigation strategies.
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