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The consequences of climate change on different sectors of society are 
interrelated. The threats posed by rising global temperatures, intensifying extreme 
weather events, and shifting climatic patterns are becoming increasingly evident 
all around the world. Policymakers face the daunting task of assessing climate 
change risks, encompassing impacts and response strategies, to guide sustainability 
transformations. In this study, we introduce a four-step qualitative Decision Making 
Under Deep Uncertainty (DMDU) approach in the context of Climate Change 
Impact Assessments (CCIA). Our goal is to enhance the integration of CCIA into 
spatial planning, particularly in the Global South, using qualitative system dynamics 
simulation. Emphasizing the value of qualitative DMDU, we explore vulnerability 
and resilience through a lens of multi-sectoral and multi-scalar socio-ecological 
processes. We exemplify our approach by applying CCIA to the coastal zone of 
Yucatán, Mexico, accounting for social and environmental heterogeneity across the 
four Regions in which it is administered. Results identify the optimal allocation of 
climate change mitigation and adaptation policies to address specified resilience in 
each Region, all of which are required to achieve the overall resilience of the coastal 
zone. We argue that our qualitative DMDU approach provides an analytical platform 
to address the trade-offs inherent in the ranking of multiple vulnerabilities related to 
achieving general resilience.
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1 Introduction

The need for understanding and addressing the impacts of climate change dates back to at 
least the 1800s. Nowadays, there is a clear need for awareness and predictions of the effects of 
climate change on coastal resilience (Wright and Nichols, 2019). As pointed out by the IPCC 
(2023), climate change has already caused widespread impacts and associated damage to socio-
ecological systems, leading to changes in terrestrial, freshwater, and oceanic ecosystems 
worldwide. Predictions indicate that these effects will intensify on both natural and human 
systems, creating greater disparities among regions worldwide. For almost 20 years, international 
organizations (Dilley et  al., 2005; Gallina et  al., 2016; IPCC, 2023) have emphasized the 
importance of adopting a multi-risk approach in Climate Change Impact Assessments (CCIA) 
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across various spatial scales (Jones, 2001; Wilby, 2005; Murali et al., 
2020; Ha et al., 2021). In essence, CCIA can be understood as the 
process of identifying, evaluating, selecting, and designing actions to 
reduce risk to socio-ecological systems regarding the effects of climate 
change (Jones, 2001). However, developing climate change adaptation 
plans that take into account multi-risk at various levels can pose a 
difficult challenge (Anguelovski et al., 2014). Therefore, identifying key 
vulnerabilities at regional levels is crucial for creating effective adaptive 
strategies against climate change impacts. This will require 
transdisciplinary collaboration involving experts and professionals 
from academia, federal agencies, local and state governments, 
nongovernmental organizations, and the private sector to improve 
understanding and awareness of the various factors contributing to 
vulnerability in coastal zones (Wright and Nichols, 2019).

One prominent approach to creating effective adaptive strategies 
is Decision Making Under Deep Uncertainty (DMDU). DMDU 
encompasses various decision-making and risk management 
approaches tailored for complex and uncertain conditions (Marchau 
et al., 2019). DMDU leverages cutting-edge decision analytics, such as 
modeling massive computational experiments, to enhance decision-
making and climate change adaptation planning (Raso et al., 2019; 
Bartholomew and Kwakkel, 2020; Elsawah et al., 2020; Moallemi et al., 
2020). The underlying rationale of DMDU is that, given significant 
future uncertainties (Bojórquez-Tapia et al., 2022), planning tools 
should aim to reduce the multiple vulnerabilities of socio-ecological 
systems without being tied to a single, best-estimate prediction of the 
future which may turn out to be wrong (Malekpour et al., 2020). In 
the field of climate change, DMDU has been utilized to identify 
tipping points and intrinsic fragilities, as well as to design adaptation 
policies within the tourist and urban sectors (Lempert et al., 2021; 
Vaghefi et al., 2021; Mannucci and Morganti, 2022). In these matters, 
decision-making involves designing strategies considering projections 
toward a future time and committing to short-term actions (Mannucci 
and Morganti, 2022). The necessity of DMDU frameworks arises due 
to the socio-ecological system’s complexity in the face of various forms 
of uncertainties (Bojórquez-Tapia et al., 2022), such as Knightian, 
linguistic, epistemic, ontological, and deep uncertainty. Particularly, 
Knightian uncertainty (Knight, 1921) plays a key role in CCIA as the 
unpredictable and emerging unknown unknowns of the climate crises, 
which involve highly speculative elements for planning and decision-
making. Consequently, there is a need for CCIA approaches that 
incorporate DMDU so that society can better navigate the complexities 
of uncertain future scenarios and enhance the resilience of socio-
ecological systems.

CCIA involves dealing with four key concepts: vulnerability, 
resilience, robustness, and co-production of knowledge. Vulnerability 
refers to the condition of individuals or locations experiencing varying 
impacts from hazards (Eakin and Luers, 2006; Merino-Benítez et al., 
2020). The responses to these hazards depend on a combination of 
social, institutional, and environmental factors (Eakin et al., 2011). 
Resilience refers to the capacity of socio-ecological systems to recover, 
maintain functionality, learn, and adapt after a hazard (Eakin and 
Luers, 2006). Robustness pertains to the assessment of system 
performance using different metrics (McPhail et  al., 2018). These 
metrics focus on preventing catastrophic shifts when systems are 
exposed to hazards (Anderies et al., 2004, 2013). Co-production of 
knowledge involves the engagement of governments, researchers, and 
social actors in the planning and decision-making process 

(Ruiz-Mallén, 2020) to produce multiple outcomes, including new 
knowledge and innovative ways of integrating knowledge into 
actionable strategies for sustainability transformations (Wyborn et al., 
2019; Barth et  al., 2023). We  contend that DMDU simplifies the 
systematic and rigorous examination of these concepts to identify 
optimal strategies for addressing the impacts of climate change, 
considering multi-sectoral and multi-scalar socio-ecological processes.

The adoption of conventional DMDU, nevertheless, can be more 
difficult when applied to CCIA in the Global South (United Nations, 
2022, p.  4). The prevailing conditions in the Global South often 
preclude the application of quantitative simulation models to predict 
future scenarios to facilitate a rational delineation of public policies to 
address climate change at specific locations (Anguelovski et al., 2014; 
Campos et al., 2014). The lack of baseline data and the unavailability 
of scientific knowledge pose challenges to the development of detailed 
and accurate models needed for assessing the impacts of policy 
choices under various conditions or situations (Campos et al., 2014; 
Calliari et al., 2019; Escudero and Mendoza, 2021). In this setting, 
rigid reliance on advanced modeling often required by DMDU might 
not be  feasible due to various obstacles, including constrained 
timeframes, financial limitations, and a deficiency in technical 
capabilities. Given the intricate nature of CCIA in the Global South, 
there is a clear call for the development and implementation of 
innovative and comprehensive approaches that are sensitive to and 
accommodating of the mentioned limitations (Gallina et al., 2016). 
These alternative approaches should be  designed to offer a more 
customized and practical means of addressing the methodological 
hurdles inherent to the Global South’s circumstances.

In this paper, we introduce an approach to address the intricate 
context and distinctive challenges faced in the Global South regarding 
climate change adaptation in coastal areas. It addresses climate change 
as a wicked problem ─ multi-causal, technically complex, 
controversial, and contested problem that lacks definitive solutions 
(Rittel and Webber, 1973). Our approach involves implementing 
qualitative DMDU into CCIA for spatial planning. Our objective is to 
provide a DMDU option that applies to countries such as Mexico to 
facilitate long-term planning and policy-making. Our approach brings 
innovation to DMDU through the application of qualitative system 
dynamics modeling (Langsdale et al., 2009; Forbus, 2011; Harborne 
et al., 2017) to generate an array of what is technically called “future 
States of the World” (SOW) pertinent to a socio-ecological system 
(Herman et al., 2015; Marchau et al., 2019; Lempert and Turner, 2021). 
Results enable consensus building regarding adaptation and mitigation 
policies aimed to enhance resilience at regional scales.

While our approach can be  used to analyze socio-ecological 
systems in any territory at local or regional scales, we demonstrate its 
effectiveness through the CCIA conducted in the coastal area of 
Yucatán, Mexico. Mexico is a Global South country exposed to a 
heightened risk of climate change due to environmental factors such 
as low, seasonal, and unpredictable rainfall patterns (Samaniego, 
2009; Campos et  al., 2014). This situation renders the region 
vulnerable both environmentally and economically (Gay et al., 2006; 
Ibarrarán et al., 2010; Sáenz-Romero et al., 2012). As emphasized by 
Campos et al. (2014), climate change represents only one facet of the 
challenges faced by Mexico. The country has witnessed substantial 
transformations in its agricultural sector driven by trade agreements, 
migration, and the adoption of new technologies (Eakin and Luers, 
2006). Regarding Yucatán, Audefroy and Sánchez (2017) highlighted 
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that the coastal population has been steadily increasing, coinciding 
with a rise in the frequency of Category 5 hurricanes in the Gulf of 
Mexico over the past four decades. These hurricanes are inflicting not 
only structural damage but also profound impacts on human 
settlements and livelihoods. Despite preventive initiatives by 
non-governmental organizations, communities have endured 
escalating financial losses (Saldana-Zorrilla, 2014). To acquire a 
comprehensive understanding of the potential implications of climate 
change in Yucatan’s coastal area, it is imperative to analyze it within 
the context of its diverse regional characteristics (Wisner et al., 2003; 
Moser, 2010; Campos et al., 2014).

In this paper, Section 2 provides a brief literature review of the key 
concepts of our CCIA. Section 3 presents the methodological strategy 
and gives an example of one specific climate change impact in the study 
area. Sections 4 to 6, present the results, discussion, and conclusions of 
the multi-sector and multi-scale analysis through qualitative DMDU.

2 Background

2.1 Vulnerability

The vulnerability or susceptibility of a socio-ecological system to 
damage depends on the system’s exposure and sensitivity to stress, as 
well as its capacity to absorb or cope with the stressors’ effects (Eakin 
and Luers, 2006).

Vulnerability is frequently used in specialized studies and public 
policy design (Frerks and Bender, 2004; Ruof, 2004). This concept 
implies different dimensions depending on the field of study in which it 
is used (Eakin and Luers, 2006; Audefroy and Sánchez, 2017), for 
example in sociology (social vulnerability) (Cutter et al., 2003; Flanagan 
et al., 2011; Fordham et al., 2013; Fatemi et al., 2017; Merino-Benítez 
et al., 2020), economics (financial vulnerability) (Trussel, 2002; Anderloni 
et  al., 2012), architecture and construction (physical vulnerability) 
(Douglas, 2007; Kappes et al., 2012; Garuti et al., 2022), and anthropology 
(cultural and organizational vulnerability) (Cannon, 2008; Sabbioni 
et al., 2008; Gunaratnam, 2013). Nevertheless, disciplinary approaches 
often offer limited support in determining the relative vulnerability in 
specific locations, making it difficult to prioritize actions (Luers, 2005).

In DMDU, vulnerability is defined as the performance of decision-
making strategies under various uncertain management-relevant 
timeframes (Brown, 2010). According to Marchau et al. (2019), the 
assessment starts with a database of runs where each run represents 
the performance of a strategy in a specific future scenario. Then, 
classification algorithms, such as the Patient Rule Induction Method 
(PRIM) (Friedman and Fisher, 1999) or Classification and Regression 
Trees (CART) (Breiman et al., 1984), along with principal component 
analysis (Dalal et al., 2013), are utilized to create clear and decision-
relevant scenarios from complex strategy-stressing futures.

Our approach combines the DMDU and Luers et  al. (2003) 
concepts of vulnerability. This combination enables the identification 
of relative vulnerabilities for prioritizing actions at local and regional 
levels and incorporating multi-vulnerability implications (Gallina 
et  al., 2016) into policy and management decisions. Accordingly, 
we conceptualize vulnerability in terms of the system’s state relative to 
a threshold beyond which the system is assumed to be  damaged 
regarding the behavior of climate change stressors (Luers et al., 2003; 
Luers, 2005; Eakin and Luers, 2006).

2.2 Resilience and robustness

Resilience is a systemic property that stands in opposition to 
vulnerability. It refers to a system’s capacity not only to recover and 
maintain its functions after a disturbance but also to learn and adapt, 
thus reducing future vulnerabilities (Eakin and Luers, 2006). 
Resilience can be categorized as either general or specified. General 
resilience relates to the entire system and its ability to withstand all 
types of shocks, while specified resilience pertains to identifiable 
systemic components and functions, associated with particular cause-
effect mechanisms, and well-defined shocks (Folke et al., 2010).

In critical transition theory (Scheffer et  al., 2012; Dakos and 
Bascompte, 2014), low resilience is linked to tipping points at which a 
system undergoes “catastrophic” or nonlinear, rapid, and potentially 
irreversible shift from one stable state to another in response to 
disturbances, even those caused by minor changes in forcing factors. 
When a system crosses a tipping point or catastrophic threshold, its 
functions are significantly compromised, often resulting in 
undesirable outcomes.

In accordance with catastrophe theory, minimal parameter shifts 
may cause abrupt changes in system states (Roopnarine, 2008). These 
catastrophic changes have been studied in economics in terms of 
overshooting related to short-run fluctuations in exchange rates 
following monetary shocks and in political science in terms of collapse 
of socio-political systems (Trainter, 1988). The common denominator 
is the loss of systemic complexity and heterogeneity. Similarly, it has 
long been understood that there are limits to the rate of change 
beyond which coastal landscapes cannot cope and degradation 
processes will prevail. Therefore, current research emphasizes the 
determination of critical tipping points under different circumstances 
for predicting and managing potential undesirable shifts in coastal 
systems (Wright and Nichols, 2019, p. 145).

Efforts to maintain resilient systems depend on society’s 
“adaptability,” which is the ability to steer a system within a sustainable 
trajectory, as well as “transformability,” which is the capacity to create 
a fundamentally new system when ecological, economic, or socio-
political conditions become untenable (Walker et  al., 2004). 
Nevertheless, adaptability and transformability are challenged by 
conflict and disagreement among social groups over the normative 
dimensions of natural resource use, individual and collective 
economic goals, as well as the elements and attributes that constitute 
an “ideal” or “desired” system. This means addressing climate change 
hazard vulnerability through the lens of socio-ecological planning and 
ongoing resource management at various spatial scales (Bojórquez-
Tapia and Eakin, 2018), which in turn necessitates the collaborative 
generation or “co-production” of knowledge (see below).

Like resilience, robustness is concerned with maintaining systemic 
functions despite variations in forcing variables. Resilience helps define 
the decision-making context and centers on building long-term “safe-
fail” strategies aimed at enhancing the overall adaptive capacity of 
systems to withstand, self-organize, and recover from disruptions and 
uncertainties. Yet, the focus of resilience on system adaptation might 
have limited practical use. In contrast, robustness links system dynamics 
to performance and trade-off metrics, providing specific measures to 
identify vulnerabilities in complex socio-ecological systems and guide 
sustainability policymaking. Robustness centers on proactive short- to 
medium-term “fail-safe” strategies aimed at preventing systems from 
undergoing catastrophic shifts when exposed to disturbances (Anderies 
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et al., 2004, 2013). In DMDU, robustness usually aligns with Savage’s 
criterion of minimizing maximum regret (Lempert et al., 2021).

2.3 Co-production of knowledge

Within the context of climate change, the concept of co-production 
of knowledge is rooted in two distinct yet interconnected ideas (Ruiz-
Mallén, 2020): descriptive or denotative, and normative or 
connotative. Descriptive co-production of knowledge adopts an 
analytical focus on the lack of neutrality in science and policy, 
emphasizing how social and cultural norms influence the generation 
of both scientific knowledge and planning decisions (Jasanoff, 2004). 
This type of knowledge co-production helps in understanding the 
power dynamics involving multi-level research and policy concerning 
climate change (Avelino, 2017, 2021).

Normative co-production of knowledge underscores the 
importance of involving communities in decision-making to improve 
the scientific basis of projects (Van Kerkhoff and Lebel, 2015). It is 
considered essential for strengthening the links between science, policy, 
and society, and is a key component in effectively addressing climate 
change (Bremer and Meisch, 2017; Wyborn et al., 2019). As highlighted 
by Ruiz-Mallén (2020), p. 3 co-production of knowledge in practice 
“implies the recognition by climate change experts and decision-makers 
of the crucial role that local knowledge, expertise, and preferences have 
for developing innovative and successful adaptation strategies and 
preventing from maladaptation practices.” In this regard, co-production 
processes should address issues such as culture and heritage protection, 
inclusion, health, and information access (Muudeni, 2023), within a 
safe space of collaboration (Clark and Holliday, 2006).

In DMDU, as pointed out in Bojórquez-Tapia et  al. (2022), 
significant advancements have been achieved related to co-production 
of knowledge, including the inclusion of a broader array of stakeholders 
and the explicit consideration of multiple objectives and power 
dynamics in the way problems are being framed (Avelino et al., 2014; 
Moallemi et al., 2020; Jafino et al., 2021), the assessment of stakeholder 
interventions (Eriksen et  al., 2021), and the development of 
collaborative methodologies to facilitate sustainability transformations 
(Wyborn et al., 2019). We argue here that integrating qualitative DMDU 
methods with contexts of knowledge co-production can be particularly 
constructive for CCIA. It is worth noting that another context where 
DMDU methods could provide analytical support to collaborative 
CCIA is public–private partnerships. In this context, co-production 
takes place as the process of “co-creating” green business models to 
address social and environmental problems (Wamsler, 2016; Ruiz-
Mallén, 2020). In this way, DMDU may empower consumers to actively 
be  involved in corporate decision-making that shapes and sustains 
urban development through CCIA (Lan et al., 2017; Ma et al., 2020).

3 Methods

3.1 Study area

Yucatán state, located in the northern part of the Yucatán 
Peninsula (Figure 1), is predominantly on a plain formed by the rise 
of an underwater platform. This platform is composed of Tertiary 
limestone rocks exhibiting a sequential distribution, with the older 

rocks in the south (Eocene-Paleocene) and the younger rocks in the 
north (Pliocene–Miocene). The Pliocene sediments form a karstic 
system characterized by deposits of dolomite and evaporites (Perry 
et al., 1995), which contribute to the development of an extensive and 
mature aquifer (Marín and Perry, 1994; Escolero et al., 2000; Bauer-
Gottwein et  al., 2011). This karstic system has high porosity and 
permeability, making it highly vulnerable to contamination (Marín 
and Perry, 1994). In the karstic system, “cenotes”—dolines or sinkholes 
found in karstic systems globally—are mainly concentrated in the 
eastern part of the state due to natural calcite dissolution. In the 
western region, these cenotes align along the edge of the Chicxulub 
crater formed by a meteorite impact during the Cretaceous period, 
approximately 64 million years ago (Pope et al., 1993; Perry et al., 
1995; Pérez-Ceballos, 2011). Over the past two million years, the 
coastal zone has experienced notable variations in climate and 
geological features, particularly during the Pleistocene glaciations. The 
current coastline took shape during the Holocene transgression in the 
last ten thousand years. In the coastal region, there is an aquitard that 
confines the aquifer and exerts pressure on it, extending inland for 
approximately 20 km (Figure 1). This pressure results in a multitude 
of springs in marshy, estuarine, and marine areas (Canul-Macario 
et al., 2020). The depth of the aquifer and aquitard along the coast 
varies from a few meters to over 50 meters. The aquifer is at risk of 
overexploitation and saline intrusion due to excessive freshwater 
extraction in certain coastal areas.

Yucatán features a tropical climate marked by hot and humid 
conditions, distinct wet and dry seasons, and consistently high 
temperatures ranging from 25°C to 35°C throughout the year. The wet 
season typically spans from June to October, accounting for most of 
the annual rainfall, often with heavy and frequent rain accompanied 
by thunderstorms. Precipitation levels vary across the region, with a 
mean annual gradient of 200 to 400 mm in the central-northern 
coastal area and 1,000 to 1,200 mm toward the southeast (Orellana 
et al., 2009; SEDUMA, 2010). The dry season typically extends from 
November to May, characterized by lower humidity levels and reduced 
rainfall. Yucatán is susceptible to hurricanes, primarily during the late 
summer and early fall months, typically from August to October. 
Hurricanes and tropical storms can bring substantial rainfall, strong 
winds, and the potential for flooding to the region. Vegetation includes 
low deciduous forests in the semi-arid northern areas and 
sub-deciduous medium to tall jungles in the southern and 
southeastern Regions. In coastal wetlands, vegetation includes algae 
meadows and seagrass beds, whereas along the shoreline it includes 
dunes in sandy bars and beaches, mangroves associated with 
freshwater springs known as “petenes,” savannas, palm groves, reed 
beds, as well as floodable lowland jungles in the south (Casáres, 2006).

Yucatán is divided into seven administrative units known as 
“Regions” (Figure 1): I West, II Northeast, III Central, IV Central Coast, 
V Northeast, VI East, and VII South. Region II Northeast has the 
highest population, with 58% of the total population, including the 
cities of Mérida (890,000 inhabitants) and Kanasín (96,000 
inhabitants), with a population density of 300 people per square 
kilometer. The coastal zone includes Regions I, II, IV, and V (from now 
on RI, RII, RIV, and RV, respectively).

Among the initial measures to address climate change in the state, 
the Special Program of Action for Climate Change (Programa Especial 
de Acción ante el Cambio Climático, PEACC) was developed 
(DOGEY, 2014). This program outlines the steps to promote 
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adaptation and mitigation processes to climate change in the state. 
However, a limitation of the PEACC is the absence of prioritization 
regarding the actions and locations for implementing climate change 
adaptation measures. The research presented here contributes to 
identifying these priorities.

3.2 Methodology

Our qualitative DMDU approach draws from Herman et  al. 
(2015) taxonomy of robustness framework and incorporates three of 
the four taxonomy Steps while adding a fourth one to create a 
comprehensive methodological framework consisting of four steps: 
Alternatives, States of the world, Robustness measures, and Integration 
(Figure 2). In response to the imperative of empowering social actors 
to guide sustainability transformations (Bojórquez-Tapia and Eakin, 
2018), these four steps are tailored to the constraints prevalent 
throughout the Global South.

Essentially, our approach involves a stepwise application of 
Savage’s criterion of minimizing maximum regret to formulate a 
robust strategy to enhance general resilience. This strategy entails 
identifying and addressing the most critical risks in an order that 
minimizes the potential for undesirable outcomes. Since the worst 
SOW corresponds to the maximum risk of transitioning to a 
low-resilience state, minimizing maximum regret involves 
identifying the optimal order across Regions (minimum regret) for 
addressing the worst SOW (maximum regret) of each 
state variable.

Each Step (Figure 2) consists of various tasks conducted in parallel 
to a series of participatory workshops. Step I focuses on generating the 
socio-ecological system and conducting massive computation 
experiments to produce alternative SOW. Step II involves examining 
the specified resilience for each state variable in every Region and 
identifying the worst SOW based on the maximum regret criterion. 
Step III aims to identify the expected vulnerability of each variable in 
all Regions and determine the general resilience of the coastal zone. 
Step IV, the respective tasks aim to identify a robust strategy using the 
criterion of minimum overall regret. The details of these Steps are 
explained below.

One challenging aspect of qualitative DMDU is the validation 
of the simulation outputs regarding the alternative SOW. The key 
issue is whether the KSIM comprehensively captures the entire 
spectrum of relevant climate change vulnerabilities. The focus is on 
the capacity of the qualitative simulation in depicting the worst 
SOW, which, due to its undesirable and uncertain nature, should 
be prevented. Experts from diverse disciplines perform qualitative 
validation, assessing the model’s ability to capture key system 
dynamics, reviewing logic, causal relationships, and hypotheses. 
They provide feedback on conceptual validity and relevance in 
addressing climate change vulnerabilities. The experts then verify 
whether the simulation covers all dimensions of climate change 
vulnerabilities within the alternative system, ensuring reliable and 
representative outputs.

It is important to acknowledge that our approach enables the 
identification of vulnerabilities that require strategic attention from 
the standpoint of regional planning. It thus falls short in prescribing 

FIGURE 1

Yucatán, Mexico.
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specific actions. Instead, the method is confined to pinpointing the 
areas where prioritization of such actions is deemed necessary.

3.2.1 Step I: alternatives
Step I involves the identification of the decision alternatives to 

be considered in our CCIA. It includes three tasks: search, experiment 
design, and deep uncertainty analysis (Figure 2). Search entails the 
definition of the composition, structure, causal mechanisms, and 
context of a social-ecological system (Bunge, 2004). The composition 
refers to the set of ecological and socioeconomic variables of a system. 
The structure, or architecture, refers to the collection of all the 
connections among these elements. The causal mechanisms refer to 
the processes that occur within a system and endow it with its 
behavior. Typically, these mechanisms involve a long sequence of 
phenomena that occur in an orderly fashion within a specific 
timeframe and interact with each other. The context refers to the set 
of external factors with which a system interacts. To gather the set of 
variables, causal mechanisms, and knowledge about system 
performance under uncertainty, seven participatory workshops are 
carried out focused on seven key forcing variables of systemic change, 
namely (1) urban and industrial sprawl, (2) agriculture, (3) cattle 
ranching, (4) swine and poultry plants, (5) tourism, (6) power 

generation, and (7) climate change. During these workshops, 
we followed Van den Belt’s (2004) approach to the implementation of 
mediated modeling to develop an influence diagram of the socio-
ecological system model of Yucatán. Accordingly, seven influence 
diagrams are developed to establish a common language and 
understanding of the system dynamics with the participants. The goal 
is to address the challenges posed by the discursive interactions during 
the workshops, which ultimately include inaccurate expressions and 
polysemous terms concerning the causal mechanisms between the 
environment, socioeconomic activities, and climate change. The seven 
influence diagrams are merged into a single socio-ecological system 
model, comprised of 44 variables and 191 causal interactions, for each 
coastal administrative Region (RI, RII, RIV, and RV).

Experiment design involves the implementation of the 
K-Simulation (KSIM), a qualitative system dynamics algorithm (Kane, 
1972; Kane et al., 1973; Black et al., 1994). The advantage of using the 
KSIM lies in its relative simplicity, which enables laypeople to achieve 
a rigorous and replicable representation of the socio-ecological 
system. The KSIM entails the development of two matrices, Mα  and 
Mβ , the former representing cumulative interactions, referred to as 
αij , and the latter representing instantaneous interactions, referred to 
as βij . Participants, drawing on their expertise, evaluate both αij  and 

FIGURE 2

DMDU methodological strategy.
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βij  according to the interaction’s type and magnitude, using the 
influence diagram during the workshops. Regarding the type, 
participants evaluate an interaction as positive, when a change in the 
forcing variable led to a change in the state variable in the same 
direction, or as negative, when the change in the state variable 
occurred in the opposite direction. Regarding the magnitude, 
participants use a numerical-linguistic scale to estimate the values of 
αij  and βij  within the range 1 9,  :

 
α βij ij= =

( ) = ( ) =
( ) = ( ) =
VL very low ,L low ,M

moderate ,H high ,VH v

1 3

5 7 eery high( ) =










9

With this scale, users have the flexibility to apply the linguistic 
scale expressions as they see fit. This linguistic scale is derived from 
stimulus–response relations and includes absolute numbers ranging 
from 1 to 9, in line with Weber-Fechner and Miller laws of 
psychophysics (Vargas, 1982; Saaty, 2001). These values approximate 
to the nearest integer the relative dominance of either allegation or 
plausibility relative to randomness. Miller’s Law provides a guideline 
for determining the suitable number of linguistic variables in a scale, 
asserting that people can effectively process and remember 7 ± 2 
elements of information. This qualitative principle categorizes 
responses into high, medium, and low, with further subdivision 
yielding nine meaningful distinctions. Moving on, the Weber-Fechner 
law describes the logarithmic relationship between stimuli and 
perceived intensity.

The implementation of the KSIM involves solving for the 
following differential equation:

 

dx
dt

x x x x i I jit
it it

j
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ij jt
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


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where x jt  is the derivative of x j  with respect to time, t , αij  and 
βij  are the values of the two interaction matrices M = ×I J .

The KSIM allows for the formulation of a mathematical model as 
a qualitative representation. Qualitative variables are depicted within 
closed intervals, a b, , as continuous functions, f a b: , → , where 
f  is differentiable in a b,( ) , has a finite number of inflection points 

in a b, , and exhibits limits lim
t a

f a f a
→

′ ′( ) = ( ) and lim
t b

f b f b
→

′ ′( ) = ( )
. This technique is versatile, enabling the integration of quantitative 
and qualitative data into a single, organized, and coherent analytical 
framework. Thus, a team of experts with diverse backgrounds can 
explore the socio-ecological system’s structure until they find a 
representation that is satisfactory and sufficient. In this way, the KSIM 
streamlines the application of dynamic simulation as a tool for 
capturing, integrating, and interpreting diverse perspectives that, due 
to their disciplinary nature, are always incomplete and contradictory.

Subsequently, two distinct contexts of external factors interacting 
with the social-ecological system are examined: business-as-usual 
(BA-context) and climate change (CC-context). The calibration of the 
BA entails using information gathered from participants’ expertise, 
distribution maps of socioeconomic activities, and statistical data on 
past regional behavior. The calibration process includes iterative 
adjustments of parameters αij  and βij  to optimize the agreement 
between the simulated and empirical data. In the case of the 

CC-context, the calibration process includes variations in temperature, 
precipitation, and evapotranspiration, as well as the intensity and 
magnitude of extreme hydrometeorological and salinization events, 
considering the Representative Concentration Pathway scenarios, 
RCP4.5 and RCP8.5, set up for the 5th IPCC Assessment Report 
(IPCC, 2014; INECC, 2016 Gerstengarbe et al., 2015 and Pedersen 
et al., 2022). A deep uncertainty analysis is conducted to account for 
the diverse viewpoints among participants regarding model 
parameterization and the significant impacts of climate change on 
ecological and socioeconomic variables. The deep uncertainty analysis 
includes a Monte Carlo simulation of 1,000 alternative outcomes, 
utilizing uniform probability distributions for xi0,  αij , and βij , 
utilizing the Crystal Ball® software.

3.2.2 Step II: states of the world
Step II involves the selection of the most adverse SOW. It includes 

three tasks: key factors, experiment design, and deep uncertainty 
(Figure 2). Key factors of climate change are identified by participants 
and are corroborated with a literature review. For example, in our 
illustrative example described below, the key factors encompassed, as 
forcing variables of climate change, the impact of hurricane-related 
vulnerability (VHUR ), precipitation (PREC ), temperature (TEMP ), 
aquifer quality (CALH O2 ), and aquifer recharge (RECAR ); and as 
state variables, coastal wetlands (HUMC ), aquifer specific 
vulnerability (VACUI ), beach-dune ecosystems (DUNE ), urban 
zones URB( ) , and the traditional milpa systems characteristic of 
Maya communities (MMAYA ).

Experiment design identifies the most vulnerable SOW using a 
commensurate scale for comparing multiple vulnerabilities in relation 
to the corresponding critical thresholds. Accordingly, the vulnerability 
condition of a state variable, vm , is estimated as follows (Luers et al., 
2003; Luers, 2005):
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where mx∆  is the change in the state variable, lx∆  is the change 
in the forcing variable, κm  is the distance of the state variable to an 
undesirable condition threshold, ρm  is the predetermined threshold, 
xm
+  and xm

−  are the maximum and minimum values, respectively, 
and m  and l  are indices for state and forcing variables, respectively.

The numerator in vm  depicts the relative effect of a driver on a 
state variable, whereas the denominator depicts how important the 
effect is in relation to a critical threshold of xm . By calculating the 
ratio vm , this step provides a standardized metric for comparing 
multiple vulnerabilities within the system. This allows decision-
makers to prioritize actions based on a consistent measure that 
considers both the relative impact of drivers on state variables and 
their importance concerning critical thresholds. The goal is to focus 
on vulnerabilities that have a more substantial impact and are 
closer to or surpass critical thresholds, aiding in more effective 
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decision-making and resource allocation at the local and 
regional levels.

Deep uncertainty analysis aims to account for the multiple possible 
outcomes of public policies related to mitigation and adaptation 
strategies in the four coastal Regions. To this end, the SOW that 
corresponded to the worst effects of climate change during the 25-year 
simulation period are identified. Scenario discovery is then performed 
through Classification and Regression Trees (CART) to partition the 
simulation database, L , into orthogonal subsets, Bk (Breiman et al., 
1984; Hartshorn, 2016). The partition is based on ym , which 
determines the membership of the orthogonal subset from its 
vulnerability condition, vm , and the partition parameter, Cm  (either 
first quartile, median, mean, or third quartile):

 
y

beneath v C
above v Cm

m m

m m
=

<
≥







,
,

if
if

Cm  is systematically varied in pursuit of a Bk  that satisfies two 
criteria: (1) the inclusion of a causal mechanism and (2) the creation 
of more homogeneous subsets based on the Gini coefficient (Lerman 
and Yitzhaki, 1989).

3.2.3 Step III: robustness measures
Step III consists of the evaluation of the climate-change-related 

effects over the state variables in all Regions to estimate maximum 
regret. It includes four elements: multi-vulnerabilities, univariate 
thresholds, deviation from baseline, and expected vulnerability 
(Figure 2). Robustness is a function of expected vulnerability (or 
projected susceptibility of a region to climate impacts) and deviation 
from baseline (or divergence of a CC-context from BA-context). 
From the output of Step II, subset Bk  is identified as the worst 
SOW considering the causal mechanism reflected in the CART 
branching cuts, a probability of occurrence threshold (e.g., pmj  > 
0.05), and the Gini coefficient. The evaluation entails using expected 
vulnerability as the comparison of the system states at the initial 
( t0 ) and the final ( t25 ) simulation times. This comparison of multi-
vulnerabilities is visualized with parallel coordinates (Savoska and 
Loskovska, 2009; Johansson and Forsell, 2016). The expected 
vulnerability, ev , of the m -th state variable in the r -th region is 
obtained as follows:

 ev x pmr mr mr= ∆100

 ∆ = −x x xmr mr mr25 0

where is mrx∆  is the change in the mean of state variable x  at 
initial and final simulation times, p  is the probability 
of occurrence.

Estimating maximum regret involves the use of two metrics: 
univariate/multivariate thresholds and deviation from baseline 
conditions. We implement univariate threshold and deviation from 
baseline metrics to evaluate the regret associated with the multi-
vulnerabilities under both BA-context and CC-context. The univariate 
threshold metric involves establishing an undesirable condition 
threshold, ρm , as a measure of univariate regret. This threshold 
represents the specific location within the decision space under either 

BA-context or CC-context, such that if an SOW exceeds this threshold, 
it is considered regrettable.

The deviation from baseline conditions metric involves using the 
Euclidean distance between CC-context from BA-context (or base 
line) as a measure of deviation from the baseline, zmr , where the 
greater the deviation, the higher the level of regret, formally:

 
z x x p pmr mrCC mrBA mrCC mrBA= ∆ − ∆( ) + −( )2 2

The interpretation of the deviation from baseline conditions 
depends on the relative proximity between the zmr  values in the 
Euclidean space. Relatively close zmr  values imply low climate 
change effect, while relatively farther values imply high climate 
change effect.

3.2.4 Step IV: integration
Step IV involves the design of a robust climate change adaptation 

strategy that synthesizes the robustness measures of expected 
vulnerability and deviation from baseline for all the state variables and 
Regions (Figure 2). This synthesis is accomplished through trade-off 
analysis to prioritize climate change risks. Trade-off analysis involves 
finding a balance between the expected vulnerability under the 
baseline (BA-context) and climate change (CC-context). The optimal 
allocation of adaptive policies involves the implementation of Savage’s 
decision criterion. This criterion focuses on minimizing the overall 
regret while enhancing general resilience across the entire coastal 
zone. Savage’s decision criterion is implemented through the 
implementation of Gower’s residuals (Gower, 1966; Digby and 
Kempton, 1987) that quantify the relative degree of regret across 
Regions and state variables. Accordingly, the deviation from the 
baseline results was arranged in a m r×  matrix Z , which was then 
adjusted by rows and columns through Gower’s double-
centering procedure:

 g z z z zmr mr m r= − − +⋅ ⋅ ⋅⋅

where gmr  is the Gower’s residual, zmr  is the deviation from the 
baseline, zm⋅  is the mean deviation from the baseline of the m -th 
state variable, z r⋅  is the mean deviation from the baseline of the r -th 
region, z⋅⋅  is the mean of the whole matrix.

The robust strategy is associated with prioritizing positive 
residuals, indicating stronger regret, over average (values close to zero) 
and negative ones, which suggest weaker regret. Because the Gower 
residuals are in a ratio scale, the magnitude of the value is meaningful, 
and in this context, it indicates the level of priority. As the magnitude 
of the Gower residual value increases, the level of priority also 
increases proportionally. Gowers’s residuals capture and quantify the 
variations between BA- and CC-contexts across all 
Regions simultaneously.

3.3 Example

In this section, we illustrate Steps I, II, and III of our approach 
(Figure  2) for obtaining the SOW for one state variable (aquifer 
vulnerability) in the BA-context for Region I West (RI).

https://doi.org/10.3389/fclim.2024.1331945
https://www.frontiersin.org/climate
https://www.frontiersin.org


Merino-Benítez et al. 10.3389/fclim.2024.1331945

Frontiers in Climate 09 frontiersin.org

3.3.1 Step I
Let us consider a causal mechanism identified during the search 

involving the impact of climate change of the aquifer formally:

 CC PREC RECAR CANH O VACUI→ → → →2

where CC  is climate change, PREC  is precipitation, RECAR  is 
aquifer recharge, CANH O2  is aquifer volume, and VACUI  is 
aquifer vulnerability.

Experiment design involving the KSIM simulated the causal 
mechanism using value ranges for parameters xi0,  αij , and βij  (see 
Supplementary materials S2–S4) estimated by the stakeholders in the 
participatory workshops. Then, from the deep uncertainty analysis, 
1,000 alternatives were depicted for the five variables involved in the 
mechanism. The output accounts for the diverse viewpoints among 
participants regarding the model parameterization and the 1,000 
alternatives states of the five variables involved.

3.3.2 Step II
The vulnerability of the aquifer, vVACUI , was estimated as the 

proportion of the change in vulnerability, VACUIx∆ , attributed to the 
change in recharge, RECARx∆ , subject to the undesirable condition 
threshold, ρVACUI , corresponding to the maximum value, xVACUI

+ , 
at t0 0 6= . ; formally:
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The choice of ρVACUI  reflected the premise that the future state 
of the aquifer should not deteriorate beyond the worst vulnerability 
observed today. Results of scenario discovery (Figure 3) yielded that 
the worst state of the world for VACUI  in RI was 
B x x PREC RESP RECAR VACUIk = ∈ = < <{ | . , . , . , . }.25 0 34 25 0 48 25 0 53 25 0 64

Parallel coordinates (Figure 4) revealed that, as climate change on 
average increased during the simulation time 

CC CC0 250 50 0 60= =( ). ., , precipitation decreased 
PREC PREC0 250 45 0 30= =( ). ., , aquifer recharge decreased 
RECAR RECAR0 250 50 0 40= =( ). ., , aquifer volume decreased 
CANH O CANH O2 0 50 2 0 300 25= =( ). ., , and aquifer vulnerability 

increased VACUI VACUI0 250 46 0 55= =( ). ., .

3.3.3 Step III
The evaluation of the worst SOW showed that there is a 0.16 

probability that the aquifer vulnerability will increase by 9% due to 
a 0.5% annual decrease in aquifer recharge, regarding a 0.8% annual 
increase in climate change. The corresponding expected 
vulnerability, evmj , for m VACUI= and j RI=  was then calculated 
as follows:

 ev x pVACUI I VACUI I VACUI I, , ,=100∆

 
evVACUI I, . . )( . .= −( ) =100 0 55 0 46 0 16 1 44

4 Results

The results are presented in Table 1 and are explained as follows: 
in Section 4.1, the analysis focuses on the results by row, corresponding 
to specified resilience, i.e., for all state variables within a Region 
(Figure 2). To illustrate the analytical procedure, the results for Region 
I West (RI) are presented. In Section 4.2, the analysis shifts to the 
results by column, corresponding to general resilience, i.e., for one 
state variable across all Regions (Figure 2). Finally, in Section 4.3, the 
aggregated results are examined, corresponding to integration, i.e., for 
all state variables across all regions (Figure 2).

4.1 Specified resilience: Region I West

In this section, results related to specified resilience from Steps I, 
II, and III are presented, focusing specifically on RI as depicted in 
Figures 5–9. It is important to note that similar results were obtained 
for the remaining regions, but to avoid redundancy and maintain 
clarity, the presentation is restricted to the RI results in this section. 
This presentation encompasses the selected causal mechanism, a 
description of the effect each mechanism represents, 3D graphical 
depictions of the obtained alternatives, and visualization of the worst 
SOW using parallel coordinates, for BA-context and CC-context.

4.1.1 Beach-dune ecosystems
Causal mechanism: CC VHUR TUSP DUNE→ → →
Climate change (CC) amplifies the intensity and frequency of 

extreme hydrometeorological events, especially hurricanes (VHUR). 
Consequently, this exacerbates the vulnerability of tourist areas 
(TUSP) and causes a degradation of beach-dune ecosystems (DUNE).

Step I: Alternatives (Figure 5A).- With increasing climate change, 
hurricanes, and extreme weather events, beach-dune ecosystems 
deteriorated below the threshold (minimum value at the initial 
simulation time: x xDUNE DUNE, ,25 0< − ) in approximately 60% of the 
future alternatives for both BA and CC contexts, with a more 
pronounced effect in the latter.

Step II: States of the World.- Initial conditions (Figures 5B,D): 
Average climate change was higher in CC-context compared to 
BA-context. This difference was not reflected in the averages for 
vulnerability to hydrometeorological events and tourist areas.

Final conditions (Figures 5C,E): Average climate change and 
hurricanes and extreme weather events were significantly higher 
in CC-context than in BA-context. This amplified the vulnerability 
of tourist areas to a greater extent in CC-context. Beach-dune 
ecosystems significantly declined in both BA and CC contexts, 
with over 90% SOW in CC-context degrading below the 
BA-context’s minimum.

Step III: Robustness measures (Table 1).- Expected vulnerability 
of beach-dune ecosystems in CC-context nearly doubled that of 
BA-context because of a higher percentage of change ( x∆ ) and a 
higher probability.
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4.1.2 Coastal wetlands
Causal mechanism: 
CC PREC RECAR CANH O CALH O HUMC→ → → → →2 2
Climate change CC( )  modifies regional precipitation patterns 

( PREC ), leading to reduced groundwater recharge ( RECAR ). This, 
in turn, lowers aquifer volume CANH O2( )  and degrades 
groundwater quality CALH O2( )  due to increased salinity, ultimately 
affecting the functional integrity of coastal wetlands HUMC( ) .

Step I: Alternatives (Figure 6A).- With increasing climate change 
and worsening groundwater quality, coastal wetlands deteriorated 
beyond the threshold (minimum value at the initial simulation time: 
x xHUMC HUMC, ,25 0< − ) in over half of the future alternatives for both 
BA and CC contexts.

Step II: States of the World.- Initial conditions (Figures 6B,D): 
Averages for groundwater recharge, volume, and quality were higher 
in CC-context compared to BA-context. Average coastal wetlands 
were practically identical in both BA and CC contexts.

Final conditions (Figures  6C,E): Average climate change was 
significantly higher in CC-context than in BA-context. This exacerbated 
the vulnerability of groundwater recharge, volume, and quality in both 
contexts, with amplified variation in groundwater quality in the 
BA-context and groundwater recharge and volume in the CC-context. 
The end condition of coastal wetlands was comparable in both contexts.

Step III: Robustness measures (Table 1).- Expected vulnerability 
of coastal wetlands was approximately one-third higher in BA-context 
than in CC-context due to a similar percentage of change ( x∆ ) and 
higher probability of occurrence.

4.1.3 Urbanization
Causal mechanism: CC CALH O URB→ →2
Climate change CC( )  amplifies the process through which the 

concentration of salts and minerals in groundwater increases, 
impairing their quality parameters CALH O2( ) . This, in turn, 
escalates the cost of water supply to future urbanization URB( ) .

Step I: Alternatives (Figure 7A).- With increasing climate change 
and worsening groundwater quality, urbanization declined below the 
threshold (minimum value at the initial simulation time: 
x xURB URB, ,25 0< − ) in approximately one-twentieth and one-fifth of 
the future alternatives for BA and CC contexts, respectively.

Step II: States of the World.- Initial conditions (Figures 7B,D): 
Averages for climate change and aquifer quality were practically 
identical, whereas the average for urbanization was slightly higher in 
CC-context compared to BA-context.

Final conditions (Figures  7C,E): Average climate change was 
significantly higher in CC-context than in BA-context, leading to a 
more pronounced decline in aquifer quality in CC-context. During 

FIGURE 3

CART for RECAR → VACUI at final simulation time (t25), PREC25 (precipitation), RECAR2 (aquifer recharge), RESP25 (swine plant wastes), VACUI25 
(aquifer vulnerability), TMAYA25 (Tren Maya megaproject), CFOR25 (forest cover), CANH2O25 (aquifer volume), HUMC25 (coastal wetlands), and 
VHUR25 (vulnerability to hurricanes).
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the simulation, urbanization increased in BA-context 
( x xURB URB, ,25 0

− > ) and decreased in CC-context ( x xURB URB, ,25 0
+ < ).

Step III: Robustness measures (Table 1).- Expected vulnerability 
of urbanization in CC-context nearly doubled that of BA-context due 
to the negative percentage of change ( ∆x < 0 ) of the latter (resulting 
from urbanization being lower at the end of the simulation than at the 
beginning: x xURB URB25 0< )

4.1.4 Milpa Maya
Causal mechanism: CC PREC TEMP MMAYA→ →/
Climate change CC( )  reduces precipitation PREC( )  and raises 

temperature TEMP( ) , leading to a decrease in the functional integrity 
of the milpa systems characteristic of Maya communities MMAYA( ) .

Step I: Alternatives (Figure 8A).- With increasing climate change 
and temperature, milpa Maya declined beyond the threshold 
(minimum value at the initial simulation time: 
x xMMAYA MMAYA, ,25 0< − ) in about 55% of future alternatives for both 
BA and CC contexts.

Step II: States of the World.- Initial conditions (Figures 8B,D): 
Average climate change was approximately 10% higher in CC-context 
than in BA-context. This difference was reflected in an increase in 
variation of precipitation, while temperature variation 
remained unchanged.

Final conditions (Figures  8C,E): Average climate change was 
significantly higher in CC-context than in BA-context, resulting in 
more pronounced changes in precipitation and temperature. However, 
these changes had an insignificant effect on milpa Maya. These 
findings suggest that the relative impact of other forcing variables such 

as including agricultural expansion and urbanization had a greater 
effect on milpa Maya.

Step III: Robustness measures (Table 1).- Expected vulnerability 
of milpa Maya was 40% higher in CC-context than is BA-context, due 
to a higher probability of occurrence but an equal percentage of 
change ( x∆ ).

4.1.5 Aquifer vulnerability
Causal mechanism: CC PREC RECAR CANH O VACUI→ → → →2

Climate change CC( )  reduces precipitation PREC( ) , thereby 
decreasing subsurface recharge RECAR( )  and evapotranspiration, 
which in turn lowers the aquifer volume CANH O2( ) . This effect 
increases the vulnerability of the aquifer VACUI( ) .

Step I: Alternatives (Figure 9A). With increasing climate change 
and declining precipitation, aquifer vulnerability exceeded the 
threshold (maximum value at the initial simulation time: 
x xVACUI VACUI, ,25 0> + ) in about 40% of the future alternatives in both 
BA and CC contexts.

Step II: States of the World.- Initial conditions (Figures 9B,D): 
Average climate change, precipitation, groundwater recharge, and 
aquifer volume were similar in both BA and CC contexts, with slightly 
greater variability for climate change in the latter. The minimum 
aquifer vulnerability was similar in both contexts, but the maximum 
aquifer vulnerability in CC-context was below the average for 
BA-context.

Final conditions (Figures  9C,E): Average climate change was 
significantly higher in CC-context than in BA-context, resulting in 
greater variability in precipitation, groundwater recharge, and aquifer 

FIGURE 4

Parallel coordinates for the selected worst SOW involving CC (climate change), PREC (precipitation), RECAR (aquifer recharge), CANH2O (aquifer 
volume), and VACUI (aquifer vulnerability) under BA-context initial and final times (t).
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volume in CC-context. However, average aquifer vulnerability was 
similar in both contexts, although with greater variability in 
BA-context.

Step III: Robustness measures (Table 1).- Expected vulnerability 
of coastal wetlands was approximately one-third higher in CC-context 
than in BA-context due to a higher probability of occurrence but a 
practically equal percentage of change ( x∆ ).

4.2 General resilience: coastal zone

4.2.1 Step III: robustness measures
The results of the two metrics used in Step III regarding expected 

vulnerability (Figure  10; Table  1) and deviation from baseline 
(Table 2), showed the multi-vulnerabilities to climate change risks in 
the coastal zone, which are described below for each state variable 
by Region.

Beach-dune ecosystems.- Expected vulnerability ranking shifted 
from RIV RV RI RII    in BA-context to RV RIV RI RII    
in CC-context. The change during the simulation time was categorized 
as high with moderate probability for all Regions, except for RV  in 
CC-context, which exhibited a high probability. In this case, the 
probability of change in CC-context was twice that in BA-context 
(Figure 10A; Table 1). The most significant deviation from baseline 
was observed in RV, with a value of 28%, which is four to seven times 
higher than those in RI , RII , and RIV  (Table 2).

Coastal wetlands.- Expected vulnerability ranking shifted from 
RIV RV RI RII    in BA-context to RIV RV RII RI    in 
CC-context due to a slightly higher probability in CC-context for RII .  
The expected vulnerability of RIV  and RV was two to four times 
higher than RI and RII. The change during the simulation time was 
categorized as moderate with moderate probability for RI  and RII , 
and as high with moderate probability for RIV  and RV  (Figure 10B; 
Table 1). The most significant deviations from baseline were in RII  
and RIV , which were two to three times higher than those for RI  
and RV  (Table 2).

Urbanization.- Expected vulnerability ranking shifted from 
RI RIV RII RV    for BA-context to RI RIV RV RII    for 
CC-context due to escalating costs of water supply. The change in 
the mean state of urbanization during the simulation 
( ∆x x x= −25 0 ) was lower in CC-context than in BA-context, 
particularly in RI , RIV , and RV . During the simulation period, 
in general, as urbanization increased, lower expected vulnerability 
corresponded to higher rankings. Yet, urbanization declined 
during the simulation time in RI  and RIV  in CC-context, thus 
yielding negative values in their mean states (Table 1). The change 
during the simulation time was categorized as moderate with low 
probability for RIV  in BA-context, as low with moderate 
probability for RI , RII , and RV  in BA-context and RI  in 
CC-context, and as low with high probability for RII , RIV , and 
RV  in CC-context. For CC-context, the change during the 
simulation time was slightly lower in RII  but with double the 
probability compared to BA-context (Figure 10C; Table 1). The 
most significant deviations from baseline were in RII  and RIV , 
a threefold increase compared to the other two Regions (Table 2).

Milpa Maya.- Expected vulnerability ranking shifted from 
RV RII RIV RI    for BA-context to RV RII RI RIV    for 
CC-context due to a slightly higher probability in CC-context for RI .  T
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The change during the simulation time was categorized as moderate 
to high with low probability for the four Regions in BA-context and 
RIV  in CC-context, and as moderate with moderate probability for 

RI , RII , and RV  in CC-context (Figure 10D). Deviations from 
baseline were similar in all Regions, except for RI , where the deviation 
was three to four times smaller (Table 2).

FIGURE 5

Simulation results for the effect on DUNE (functional integrity of beach-dune ecosystems) in relation to CC (climate change), VHUR (vulnerability to 
hurricanes) and TUSP (tourism). (A) initial conditions of BA-context (green dots) and CC-context (blue dots), and final conditions of BA-context (yellow 
dots) and CC-context (red dots); (B,C) initial and final conditions of worst SOW in BA-context; (D,E) initial and final conditions of worst SOW in CC-
context.

FIGURE 6

Simulation results for the effect on HUMC (functional integrity of coastal wetlands) in relation to CC (climate change), CALH2O (aquifer quality), RECAR 
(aquifer recharge), and CANH2O (aquifer volume). (A) initial conditions of BA-context (green dots) and CC-context (blue dots), and final conditions of 
BA-context (yellow dots) and CC-context (red dots); (B,C) initial and final conditions of worst SOW in BA-context; (D,E) initial and final conditions of 
worst SOW in CC-context.

FIGURE 7

Simulation results for the effect on URB (urbanization) in relation to CC (climate change), and CALH2O (aquifer quality). (A) initial conditions of BA-
context (green dots) and CC-hinons of BA-context (yellow dots) and CC-context (red dots); (B,C) initial and final conditions of worst SOW in BA-
context; (D,E) initial and final conditions of worst SOW in CC-context.

https://doi.org/10.3389/fclim.2024.1331945
https://www.frontiersin.org/climate
https://www.frontiersin.org


Merino-Benítez et al. 10.3389/fclim.2024.1331945

Frontiers in Climate 14 frontiersin.org

FIGURE 8

Simulation results for the effect on MMAYA (milpa Maya) in relation to CC (climate change), PREC (precipitation), and TEMP (temperature). (A) initial 
conditions of BA-context (green dots) and CC-context (blue dots), and final conditions of BA-context (yellow dots) and CC-context (red dots); (B,C) 
initial and final conditions of worst SOW in BA-context; (D,E) initial and final conditions of worst SOW in CC-context.

Aquifer vulnerability.- Expected vulnerability ranking shifted 
from RII RV RIV RI    for BA-context to RV RIV RII RI    
for CC-context due to the effect of climate change on regional 
precipitation patterns, which ultimately reduced the volume of the 
aquifer. During the simulation period, in general, as aquifer 
vulnerability increased, higher expected vulnerability corresponded 
to higher rankings. The change during the simulation time was 
categorized as low with moderate probability for RI  in both contexts, 
as moderate with moderate probability for RII  and RIV  in both 
contexts and RV  in BA-context, and as moderate with high 
probability for RV  in CC-context (Figure 10E). The most significant 
deviation from baseline was in RV , followed by RIV , RII , and RI , 
the latter presenting one-third the deviation of RV  (Table 2).

4.2.2 Step IV: integration
The general objective of Step IV is to design an adaptive strategy 

to reduce multi-vulnerabilities in the coastal zone in Yucatán. It 
involved using trade-off analysis to determine the optimal allocation 
of resources to enhance the specified resilience of beach-dune 
ecosystems, coastal wetlands, urbanization, milpa Maya, and aquifers 
across the four Regions. Accordingly, the trade-off analysis through 
Gower’s residuals (Figure 11) quantified the specified vulnerabilities 

that required priority attention by Region in the pursuit of general 
resilience in the coastal zone. This quantification enabled the 
application of Savage’s criterion of minimizing maximum regret.

Positive residuals indicated that the robust strategy should 
prioritize reducing the vulnerability of beach-dune ecosystems in RI  
and RV , of coastal wetlands in RI  and RII , urbanization in RII  
and RIV , and aquifers in RV , milpa Maya in RII  and RV .

RV  obtained the extreme range of minimum and maximum 
residuals (Figure 11) due to the deviation from baseline being the 
largest for beach-dune ecosystems and the lowest for urbanization 
(Figure 10; Table 2). Therefore, the trade-off was the most significant.

In contrast, RI  obtained the smallest range of minimum and 
maximum residuals (Figure 11) due to its tendency to present low 
deviations from baseline values (Figure 10; Table 2). The trade-off 
between coastal wetlands and beach-dune ecosystems versus the 
other state variables was the least significant among the 
four Regions.

RII  and RIV  obtained relatively high positive residuals for 
urbanization and residuals that varied from low positive to moderate 
negative for the rest of the state variables (Figure 11). This is the result 
of deviations from baseline three times larger for urbanization in these 
RII  and RIV  compared to RI  and RV  (Figure 10; Table 2).

FIGURE 9

Simulation results for the effect on VACUI (aquifer vulnerability) in relation to CC (climate change), PREC (precipitation), RECAR (aquifer recharge), and 
CANH2O (aquifer volume). (A) initial conditions of BA-context (green dots) and CC-context (blue dots), and final conditions of BA-context (yellow dots) 
and CC-context (red dots); (B,C) initial and final conditions of worst SOW in BA-context; (D,E) initial and final conditions of worst SOW in CC-context.
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5 Discussion

We have introduced a qualitative DMDU approach designed to 
carry out CCIA with a focus on navigating uncertain future scenarios 
and enhancing the resilience of socio-ecological systems. This 
approach aims to formulate an optimal strategy focused on bolstering 
regional general resilience. This approach involves four Steps to 
identify them most critical climate change risks and minimize the 
potential undesirable outcomes. In this way, our approach involves a 
stepwise application of Savage’s criterion of minimizing maximum 
regret to formulate a robust strategy to enhance general resilience.

Regarding Step I  (Figure 2), focused on generating the socio-
ecological system and conducting massive computation experiments 
to produce alternative SOWs, our approach addresses the challenges 
delineated by York et al. (2021) in climate-related policy-making. In 
this regard, we argue that an optimal strategy must delve into the 
multi-sector and multi-scale complexities that are particularly acute 
in the Global South. Drawing from Eisenack et al. (2007), we contend 
that any systematic analysis aiming at formulating an optimal strategy 
toward regional resilience inevitably deals with the “bottleneck of 

knowledge representation and derivation.” This bottleneck refers to 
the challenge of accurately inferring and generalizing the behavior of 
the system from individual observations or inputs. Accordingly, it 
should be acknowledged that a major difficulty in climate-related 
policy-making is accurately depicting socio-ecological resilience from 
the available information. Our results show how qualitative modeling, 
despite its limitations, can be  used to address such knowledge 
bottleneck by enabling a better understanding of the most relevant 
mechanisms driving forces, and feedback loops of complex socio-
ecological systems. This circumstance underscores the significance of 
programs like WIGOS and POGO (World Meteorological 
Organization’s Integrated Global Observing System and Partnership 
for Observation of the Global Ocean, respectively) in addressing 
geographic data deficiencies. These data are crucial for establishing 
baselines related to climate, water, and other environmental elements 
(POGO, 2022; WMO, 2024).

We concur with Harborne et al. (2017) that qualitative modeling 
constitutes an important set toward understanding the composition, 
structure, causal mechanisms, and context of socio-ecological systems. 
One advantage of qualitative modeling is that it makes explicit the 

FIGURE 10

Expected vulnerability (circle size) of BA-context (light gray) and CC-context (dark gray); abscissa: change in mean state during the simulation,  
25 0x x x=∆ − ; ordinate: probability of occurrence, p; panels: (A) beach-dune ecosystems, (B) coastal wetlands, (C) urbanization, (D) milpa Maya, and 

(E) aquifer vulnerability; Step cuts: yellow  =  low ( )10%, 0.1x p∆ < < , orange  =  medium ( )10% 25%,0.1 0.3x p≤ ∆ < ≤ < , and red  =  high 
( )25% 50%,0.3 0.6 .x p≤ ∆ < ≤ <

TABLE 2 Deviation from baseline (%) of state variables by Region (look Table 1 for state variables’ description)

Region DUNE HUMC URB MMAYA VACUI

I 8 3 11 4 8

II 4 6 33 13 11

IV 7 7 37 13 19

V 28 2 11 16 25
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conditions under which models are appropriate. We thus concur with 
Forbus (2011) that qualitative DMDU enables the development of 
ontologies to organize modeling knowledge that reflects conceptual 
assumptions about how socio-ecological systems are organized while 
enabling the development of computational assumptions to delineate 
when parcels of knowledge are relevant for a particular situation. 
These ontologies are in effect the formalization of the broader array of 
issues and concerns inherent in knowledge co-production processes 
under data constraints typical of the Global South. One challenge in 
developing such ontologies is dealing with “ambiguity aversion” 
(Tversky and Fox, 1995), particularly in the context of Knightian 
uncertainty. This aversion reflects a cognitive bias where experts 
demonstrate a preference for emphasizing known climate change risks 
over unknown ones, thus, refraining from exploring beyond the 
obvious effects of climate change.

Our findings indicate that the simplicity and flexibility of the 
KSIM aid in creating an experiment design for Step I  that can 
overcome ambiguity aversion. KSIM proved to be  useful for 
developing the ontologies of system processes and components by 
integrating local knowledge, expertise, and preferences of stakeholders 

into lumped-parameter approximations obtained through consensus. 
In addition, field ontology focused on spatially distributed climate 
change risks to turn the activity of modeling from an art to a science. 
In this way, the KSIM enabled the implementation of co-produced 
massive computational experiments based on a comprehensive 
examination of the root issues and concerns expressed by the 
stakeholders. As highlighted by White (1981), the dynamics of the 
KSIM tends toward extremal equilibrium states, where variables reach 
either their minimum (0) or maximum (1) individually. Typically, it 
is necessary to be aware that KSIM tends to extreme conditions rather 
than system stability and self-regulation. In our case, however, this 
tendency was inconsequential because the focus of our CCIA was on 
identifying the worst SOW, rather than portraying the homeostasis of 
the system. The output of these computational experiments provided 
valuable insights into the magnitude of change, including the 
identification of the expected worsts SOW under both BA and CC 
contexts (Figures 5–9). These findings played a critical role in building 
consensus regarding the characterization of climate change risks in the 
coastal zone of Yucatán. We acknowledge that the key factor in the 
experiment design was the inclusion of a diversity of viewpoints from 

FIGURE 11

Gower’s residuals.
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stakeholders with different backgrounds, such as governmental 
entities, businesses and industries, cooperatives and civil society 
organizations, academic and research institutions, and concerned 
citizens. The organizational aspects of the co-production process (see 
Supplementary material S1) were aligned with the established 
formalized procedures of the Ecological Ordinance, a multisectoral 
environmental planning tool that seeks to identify the optimal zoning 
scheme of a territory, maximizing consensus on land suitability while 
minimizing intersectoral conflicts (Bojórquez-Tapia and Eakin, 2018; 
Páez et al., 2020).

Regarding Step II (Figure  2), focused on examining the 
specified resilience and identifying the worst SOW, it should 
be noted that the implementation of our approach involves the 
systematic integration of CCIA at both local (in our case, RI, RII, 
RIV, and RV) and regional scales (in our case, coastal zone). This 
integration is underpinned by a nuanced multi-sector and multi-
scale experiment design that included the set of assumed key 
factors to foster general resilience, transformability, and 
adaptability within socio-ecological systems in the face of climate 
change. We  therefore contend that the critical component in 
experiment design is generating the data necessary for the 
development of an ontology of vulnerability. It should 
be highlighted that the key feature of this ontology is its capacity 
to convey meaningful information regarding environmental 
degradation and climate change risks to both stakeholders 
and policymakers.

Because a vulnerability ontology should convey meaningful 
information regarding environmental degradation and climate change 
risks to both stakeholders and policymakers, the vulnerability of the 
state variables, vm , need to be measured using a commensurate scale. 
This is a necessary condition in CCIA for comparing multiple 
vulnerabilities across time and space. In our approach, we draw from 
Luers et al. (2003) to normalize these multiple vulnerabilities using a 
ratio scale relative to a threshold, ρm. We acknowledge that the specific 
value of this threshold is deeply uncertain and that its determination 
involves objective and subjective reasoning. In terms of objective 
reasoning, this method presupposes that thresholds are influenced by 
physiology, functional integrity, and genetic plasticity. Consequently, 
as Bojórquez-Tapia et  al. (2021) highlight, there exists a limit in 
parameter xm , beyond which the system’s state surpasses the 
unacceptable risk of low resilience. Breaching this threshold could 
result in adverse consequences for the system’s capacity to recover or 
adapt to changes. Regarding subjective reasoning, the threshold values 
for the CCIA of Yucatán’s coastal zone were established considering 
that the conditions of the state variables should not worsen from their 
current vulnerability status. This approach streamlined the 
measurement of the multiple vulnerabilities by establishing a ratio, 
which in effect normalized the vulnerability of the state variables in a 
commensurate scale that allowed us to compare the severity of the 
multiple vulnerabilities across Regions. Hence, this ratio compared the 
alteration in state variables induced by forcing variables to the 
significance of the state variable’s final condition. Essentially, this ratio 
gaged the importance of the state variable’s final state to a 
univariate threshold.

Our approach presupposes that the stochastic simulation 
reflects the range of possible social, technological, and ecological 
conditions in a 25-year simulation span. We  acknowledge, 
nevertheless, that one limitation of our approach is its incapability 

of addressing the fluid nature of vulnerability in the face of the 
accelerated dynamics inherent in the real world. The ever-
changing and dynamic nature of real-world conditions poses a 
challenge for our methodology, as it may not fully capture the 
swift and evolving conditions of the environment, society, and 
technology. This limitation underscores the need for addressing 
the non-stationarity of data over time, referred to as “concept 
drift” by Khamassi et  al. (2018). Therefore, the next step in 
qualitative DMDU research involves incorporating machine 
learning, data mining, and artificial intelligence. This integration 
would provide continuously update mechanisms, discarding 
outdated issues and concerns as part of an ongoing refinement 
modeling process. Another further step that should be consider 
is the application of sensitivity analysis to identify the key 
variables where minor changes in the input data might 
significantly influence the outcomes and findings.

We contend that qualitative DMDU is effective for systematically 
assess vulnerability and resilience to find the best strategies for climate 
change impact adaptation (CCIA). Our method uses three types of 
robustness metrics from McPhail et al. (2018). In Step III (Figure 2), 
which focused on identifying the expected vulnerability, the first 
metric evaluates alternatives by separating out those that are 
vulnerable using the “Starr’s domain criterion.” In our case, this is 
based on a defined vulnerability threshold for state variables. The 
second metric selects the worst SOW to calculate the average expected 
state variables. Identifying the worst SOW addresses the lack of 
prioritization in the adaptation and mitigation strategies that is typical 
of planning instruments such as PEACC. In this way, identifying the 
worst SOW pinpoints where and why these strategies should 
be  implemented to enhance specified resilience in each Region. 
Focusing on the worst SOW, thus, helps prioritize ecological issues 
critical for enhancing the overall resilience of Yucatán’s coastal area. It 
is worth noticing that the choice of the worst SOW could be influenced 
by the criteria applied to define Bk using CART, specifically the Gini 
coefficient and the probability of occurrence. Therefore, conducting a 
sensitivity analysis by varying these two parameters could help in 
identifying alternative robust strategies, as demonstrated through 
Gower residuals.

In Step IV (Figure 2), which focused on identifying the robust 
strategy, the third metric applies the Savage minimax criterion, 
which measures how much the state variables in each Region 
deviate from a baseline (BA-context). We assert that addressing 
the significant variability in environmental responses across 
different areas is a key factor in CCIA. In our methodology, 
we  tackle this issue by calculating the expected vulnerability 
(Table  1). The expected vulnerability represents the relative 
severity of change in a state variable foreseen in a specific 
location. The comparison of expected vulnerability between BA 
and CC contexts offers a quantitative gage of the projected 
impacts of climate change, surpassing what could be projected 
based solely on historical patterns (Figure  10). These results 
underscore the usefulness of Savage’s criterion in providing clear 
and easy-to-understand measurements of potential consequences 
of climate change. Our approach leverages the deviation from 
baseline as an indicator of the extent to which additional climate 
change mitigation and adaptation measures are necessary, beyond 
the actions needed to address the deteriorating trends of the state 
variables in each Region. We  thus argue that our qualitative 
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DMDU approach provides an analytical platform to address the 
trade-offs inherent in the ranking of multiple vulnerabilities 
related to achieving general resilience. In essence, Gower’s 
residuals (Figure  11) highlight the trade-offs necessary for 
applying the Savage criterion of minimizing overall regret 
concerning general resilience. Positive residuals indicate specific 
vulnerabilities that should be addressed through a robust climate 
change adaptation strategy.

The strategy, guided by Gower’s residuals, identifies the optimal 
allocation of climate change mitigation and adaptation policies. The 
specified resilience actions (Table  3) are required to achieve the 
general resilience of the coastal zone in Yucatán through the following 
public-policy recommendations:

 • In RI, there’s an extensive area with diverse wetland ecosystems, 
serving as a habitat for various migratory birds, mammals, and 
reptiles, thus, restoration and conservation actions for these 
wetlands should be prioritized.

 • In RII and  RIV , most exposed to risks due to urbanization, 
measures should be taken to limit urban growth and identify 
critical points of damage from extreme weather events and rising 
sea levels.

 • In  RV , coastal dunes show fragility due to industrial salt mining, 
impacting stability during extreme weather events, additionally, 
harbors meant to protect boats are causing erosion, exposing 
urban areas to coastal processes like waves and tides, therefore, 
strengthening conservation strategies for beach-dune ecosystems 
is crucial.

These recommendations can be discussed within the state council 
for coastal zone Ecological Ordinance, which includes decision-
makers from the federal, state, and municipal levels of governance, as 
well as local citizens. The residuals and information provided in 
Table 3 can facilitate regional discussions with these actors, thereby 
promoting decision-making to implement differentiated public 
policies that encourage adaptation and mitigation actions against 
climate change in the coastal zone.

We argue that the robust strategy for Yucatán’s coastal zone was 
supported by an appropriate field ontology or structure representation of 
vulnerability designed to communicate the priorities and trade-offs about 
environmental degradation and climate change risks. Gower’s residuals 
made this information accessible and meaningful to both stakeholders 
and policymakers, enabling them to make informed decisions and 
formulate policies related to environmental and climate challenges.

6 Conclusion

Our study has shown the transformative potential of qualitative 
DMDU in the context of CCIA. Through the development of 
qualitative systems dynamic modeling, robustness metrics, and active 
engagement with diverse stakeholders, we  shifted CCIA from a 
subjective endeavor to an objective, science-based methodology. The 
participation of stakeholders, in conjunction with adherence to both 
quantitative and qualitative procedures, enhanced the 
comprehensiveness and practical applicability of CCIA outcomes in 
shaping policies aimed at building coastal resilience in Yucatán. A 
significant achievement of this approach lies in its ability to tackle a 
fundamental challenge in integrating multi-risk, multi-sector, and 
multi-scalar analysis. By employing a common scale, our approach not 
only made multiple vulnerabilities measurable but also rendered them 
comparable. Normalizing vulnerability allows for meaningful 
comparisons across different situations, locations, and periods, 
enabling a comprehensive analysis of vulnerabilities in various 
contexts. This normalization provides a robust framework capable of 
capturing the complexities of decision-making and spatial planning 
across different levels of climate governance, thereby paving the way 
for more informed and effective mitigation and adaptation policies. 
However, a critical challenge persists in coordinating governmental 
entities, spanning from local municipalities to nation-states and 
supra-national organizations. Furthermore, our study responds to the 
increasing global momentum for adaptation and resilience initiatives, 
such as the Call for Action on Adaptation and Resilience and the 
Adaptation Action Coalition (WRI, 2023), that signify a crucial stride 
toward climate change preparedness, essential for achieving 
sustainability transformations. Because our approach can be used to 
analyze socio-ecological systems in any territory and at various scales, 
potential further applications may include the analysis of droughts, 
floods, zoonotic outbreaks, related to climate change in other regions 
where feedback exists between environmental variables and 
socioeconomic decision-making. Future next steps in qualitative 
DMDU research include the incorporation of machine learning, data 
mining, and artificial intelligence to enhance continuous refinement 
of the modeling process.
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TABLE 3 Actions to achieve the general resilience of Yucatán’s coastal zone

State variable PEACC Priority Region

Beach-dune ecosystems Conservation easements RI and RV

Coastal wetlands Enhancement of natural barriers to prevent sea level 

rising

RI and RII

Urban areas Densification RII and RIV

Milpa Maya Enhancement of environmental and biocultural 

services

RII and RV

Aquifer vulnerability Reduce groundwater extraction to prevent aquifer 

depletion and seawater intrusion

RV
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