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This paper presentsan enhanced probabilistic flood displacementrisk assessment
methodology. Several techniques have been proposed to estimate the number
of people at risk of being displaced triggered due to climatic extremes. Among
these methods, the probabilistic approach is promising for its quantitative
nature and versatility at different scales. However, it has so far been limited
to assessing loss of housing as the sole cause of displacement. The proposed
methodology addresses this limitation by considering two additional elements
beyond the traditional evaluation of housing loss: the likelihood of losing means
of livelihood, directly included in the computation, and the likelihood of losing
access to essential services, such as schools and health centers, provided as a
factor to increase the propensity to displace. This new methodology is applied
to assess flood disaster displacement risk in Fiji and Vanuatu, where climate
change, coupled with the vulnerability of exposed assets, poses an existential
threat to these Pacific islands, potentially leading to internal and cross-border
population movements. Different climate scenarios were considered: current
climate conditions (1979-2016 period), medium-term projected climate
conditions (2016-2060), and long-term projected climate conditions (2061-
2100). The average annual displacement increases in Fiji and Vanuatu by a factor
of 3 and 4, respectively, in the projected long-term pessimistic climate scenario
compared to current conditions. Depending on the country and climate change
scenario, 20 to 40% of these displacements stem from loss of livelihoods as a
dominant factor, highlighting the importance of considering this aspect in the
vulnerability approach. The outcomes of these scenarios serve as the foundation
for implementing displacement risk adaptation and management measures.
This novel quantitative methodology holds significant potential for applications
in larger domains and even globally.

KEYWORDS

probabilistic risk assessment, flood displacement, displacement risk, displacement
vulnerability, Fiji and Vanuatu

01 frontiersin.org


https://www.frontiersin.org/climate
https://www.frontiersin.org/climate
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fclim.2024.1345258﻿&domain=pdf&date_stamp=2024-04-17
https://www.frontiersin.org/articles/10.3389/fclim.2024.1345258/full
https://www.frontiersin.org/articles/10.3389/fclim.2024.1345258/full
https://www.frontiersin.org/articles/10.3389/fclim.2024.1345258/full
https://www.frontiersin.org/articles/10.3389/fclim.2024.1345258/full
mailto:lauro.rossi@cimafoundation.org
https://doi.org/10.3389/fclim.2024.1345258
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/climate#editorial-board
https://www.frontiersin.org/climate#editorial-board
https://doi.org/10.3389/fclim.2024.1345258

Rossi et al.

1 Introduction

Disaster displacement is defined as the movement of people
forced or obliged to leave their houses or places of habitual residence,
either due to the consequences of an occurred disaster or as a
preventive measure to avoid the impact of a forecasted event (The
NANSEN Initiative, 2015). Displaced people might either cross
international borders or, more commonly, stay within their own
country. According to the United Nations High Commissioner for
Refugees (UNHCR), internally displaced people accounted for 58% of
all displaced people globally at the end of 2022 (UNHCR, 2022).
Displacement durations vary, with short-term displacement over short
distances being more common (Danish Refugee Council, 2023).

According to the latest data from the Global Internal Displacement
Database (GIDD) by the Internal Displacement Monitoring Centre
(IDMC), weather extremes such as floods and storms trigger the
highest number of new displacements, approximately 22 million
globally in 2021 alone (Internal Displacement Monitoring Centre,
2022). Floods have been a major driver of internal displacement over
the years. From 2008 to 2022, more than 185.5 million new
displacements were recorded worldwide because of floods, averaging
around 13 million people being displaced each year due to floods
2022).  'The
Intergovernmental Panel on Climate Change (IPCC)

(Internal  Displacement Monitoring  Centre,
also
acknowledged in its latest report that climate change is exacerbating
weather extremes, leading to more displacements and involuntary
migrations in Africa, Asia, North America (high confidence), and
Central and South America (medium confidence, Intergovernmental
Panel on Climate Change, 2023). It is also reported that small island
states in the Caribbean and South Pacific have been disproportionately
affected relative to their small population size (high confidence,
Intergovernmental Panel on Climate Change, 2023). The areas that
face greater challenges are usually more exposed to environmental and
climate hazards and are characterized by higher vulnerabilities and a
lack of resilience.

Disaster displacement risk assessment models play a crucial role
in identifying the nature and the extent of the risks associated with
displacement. Quantitatively assessing displacement patterns and
trends supports decision makers in designing effective intervention
measures accordingly.

Various methods have been used to study the risk of displacement
caused by disasters. One common approach is historical analysis,
which involves examining past data on disasters and displacement in
a systematic manner. By studying historical records, reports, and other
data sources, researchers can identify patterns and trends in
displacement over time. Important sources of data include the Global
Internal Displacement Database (GIDD), the Displacement Tracking
Matrix by the International Organization for Migration (IOM) (2022),
and The Humanitarian Data Exchange by the Office for the
Coordination of Humanitarian Affairs (OCHA, 2022). These sources
provide information on the impact of disasters on people’s assets, the
scale of displacement events, their duration, and their direction. For
instance, data collected by the Internal Displacement Monitoring
Centre (IDMC) revealed that the number of annual global
displacements quadrupled between 1970 and 2013 due to more
frequent extreme events (Ginnetti, 2015).

Recent research by Mester et al. (2023) has correlated estimates of
human displacement from IDMC records, fatalities, and economic
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damages (recorded in the Emergency Events Database, EM-DAT)
with flooded areas identified in the Global Flood Database (GFD).
Similarly, Thalheimer and Oh (2023) have proposed an approach to
assess recorded displacement events alongside weather and climate-
related events in order to better utilize displacement data in real-time,
especially at the local level, where extreme weather impacts occur.

While historical analysis offers valuable insights into patterns and
trends, it has limitations. Firstly, it relies on available observed data,
which are often limited in scope and time. Secondly, it overlooks
contextual changes such as population dynamics and climate change.
Therefore, while historical analysis is essential for assessing and
predicting future disaster displacement risk, it benefits greatly from
being complemented by forward-looking methods.

One straightforward approach involves analyzing a set of reference
scenarios. These scenarios can be quantitative, using historical records,
geospatial data, and mathematical models to estimate the number of
people at risk of displacement or affected by the event. Alternatively,
they can be qualitative, focusing on narrative descriptions and expert
opinions. Semi-quantitative approaches combine quantitative data
with qualitative information to assess the potential impact of
a scenario.

Machine learning approaches, utilizing big data, have emerged for
analyzing datasets from various sources. These methods sift through
large volumes of data to generate estimates of displacement figures.
For instance, Martin et al. (2021) developed the Dynamic Model of
Displacement (DMD) using machine learning techniques to
understand the factors influencing decision-making and the
consequences of disaster displacement.

System dynamics modeling is also employed, particularly for
slow-onset events. For instance, the Internal Displacement Monitoring
Centre (IDMC) developed a system dynamics model to assess the
impact of drought on pastoralist groups in Kenya. This model uses
causal feedback structures to explain the relationship between the
hazard and involuntary mobility within a system of feedback loops.

Other studies utilize agent-based modeling (ABM) to investigate
the link between disasters and displacement. ABM replicates the
behaviors and decisions of individual entities within the model to
understand macro-level outcomes. For example, Kniveton et al. (2011)
studied migration drivers in Burkina Faso, incorporating
socioeconomic, demographic, political and environmental factors.
Smith (2014) explored the effects of precipitation changes on
economic resources, food production, and migration decisions in
Tanzania. Abebe et al. (2019a,b) combined ABM with flood modeling
to test flood risk reduction measures in Sint Marteen and observe
residents’ responses to interventions and flood events. System
dynamics and ABM are certainly fundamental tools to better
comprehend the complex connection between the physical stressors
and the social network stressed, but their complexity and
overparameterization confine them to very specific case studies with
limited possibility of being scaled up.

For sudden-onset hazards, such as floods, probabilistic risk
assessment is one of the approaches currently used to understand
displacement risk (Kam et al., 2021, 2023). This methodology aims to
estimate the probability of occurrence of specific events in future
scenarios, in this case the probability of being displaced due to
sudden-onset disaster events. IDMC applied a probabilistic risk
assessment methodology to estimate the number of people at risk of
displacement in response to sudden-onset hazards. The model used a
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simplified approach based on a hazard threshold (i.e., a reference
water depth value) on residential built-up areas, assuming that above
that threshold the houses would be rendered uninhabitable. In this
case, the average number of household members multiplied by the
number of houses affected by the modeled events gave the estimated
number of displaced individuals (Anzellini et al., 2017; Internal
Displacement Monitoring Centre, 2019; Barrett et al., 2021).

Probabilistic analysis emerges as a promising method in the realm
of disaster displacement risk assessment. Solidly based on the
probability theory and on the IPCC risk definition as a function of
hazard, exposure and vulnerability (Intergovernmental Panel on
Climate Change, 2012), this approach offers the opportunity to
transcend the mere analysis of past events and provides a more
exhaustive analysis compared to the historical and scenario ones.
However, its potential to assess displacement risk has not yet been
fully exploited, since it is currently limited to the assessment of direct
damage to residential buildings and does not include other relevant
components (Internal Displacement Monitoring Centre, 2017).

Other elements need to be considered to better understand and
assess the displacement risk associated with flood events.

People may need to leave their homes not only because their
houses are damaged, but also because their livelihoods are affected,
leading to food insecurity, or because they have limited access to
essential services (Armah et al, 2010; Ahmad and Afzal, 2021;
Mithlhofer et al., 2023; Vestby et al., 2024). Displacement can be seen
as movement triggered by events that threaten safety, security or
livelihoods. Floods often cause significant harm to crops, livestock,
and other assets, resulting in loss of income, which eventually becomes
an economic driver of displacement (Armah et al., 2010; Black et al,,
2011; Ahmad and Afzal, 2021; Hossain et al., 2022). When floods
repeatedly damage a community’s livelihoods, the likelihood of people
being forced to move increases (Armah et al., 2010). Therefore, it is
crucial to account for the vulnerability of crops, livestock and services
when assessing disaster displacement risk, and this can help in
designing and implementing effective policies.

In order to fill this research gap, the present paper proposes a new
enhanced probabilistic approach that includes the likelihood of losing
means of livelihood in different sectors and provides information on
the likelihood of losing access to essential services, such as schools and
health centers. This more comprehensive probabilistic model helps to
better estimate the actual risk under different probable scenarios,
including future climate scenarios, and thus supports a better design
of intervention strategies and disaster risk reduction measures.

The model was implemented and tested in Fiji and Vanuatu, two
Small Island Developing States (SIDSs) located in the Pacific Ocean.
Since 2008, most of the displacements triggered by floods have been
localized in Asia and the Pacific, with an estimated 129 million
displacements. SIDSs bear the greatest displacement risk relative to
their population size. Communities in the Pacific Islands face an
existential threat due to the impact of climate change combined with
the vulnerability of exposed infrastructure, housing and socioeconomic
assets. In this delicate geographical context, we conducted a first
attempt to estimate riverine flood displacement risk at the national and
sub-national levels, under present and future climates, with the final
goal of better supporting decision-making related to this hazard. The
methodology may be further extended to coastal and pluvial flooding
in future for a comprehensive flood risk assessment.
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2 Methods

In this section, we outline all the components of the methodology.
Sub-section 2.1 provides a general overview of the methodology,
independent of the specific models and datasets used in the case study.
Sub-section 2.2 details how the methodology was implemented in the
context of Fiji and Vanuatu, showing the history of observed
displacements, all models used in the hazard modeling chain, the
creation of an exposure model from available local and global datasets,
and the method chosen for risk computation tailored to this
particular case.

2.1 A new paradigm for disaster
displacement risk assessment

Risk analysis was performed through a modeling chain that
encompasses hazard, exposure and vulnerability (Figure 1).

Hazard computation follows a consolidated path, based on a
climate-hydrologic-inundation modeling chain (Ward et al., 2015;
Arrighietal,, 2018; Dottori et al,, 2021). Climate drivers are extracted
from global or regional climate models (either re-analysis or future
projections) and bias is corrected before these drivers feed the
hydrological model that converts the climate signal into discharge,
which is the dominant variable determining flood conditions. Extreme
value statistics allows the characterization of these discharges in terms
of frequency, often expressed through the concept of the return
period. These discharge quantiles are used as a boundary condition
for inundation models that compute the flood hazard maps in terms
of extent and related maximum water depth at each location in the
flood plain. Such results stand as the basis of hazard characterization
for risk computations.

The exposed elements (the second element of the risk equation)
are generally characterized by people, infrastructure, housing,
production capacities and other tangible human assets located in
hazard-prone areas (UNGA, 2016). The methodology requires that
assets (e.g., buildings, crop fields) should be characterized in terms of
physical vulnerability to flood.

The third element of the risk equation is vulnerability. According
to the UN terminology (UNGA, 2016), vulnerability corresponds to
the conditions determined by physical, social, economic and
environmental factors or processes which increase the susceptibility
of an individual, a community, assets or systems to the impacts of
hazards. In flood risk analysis, the physical factor is usually described
by stage-damage functions (Romali et al., 2015), which are functional
relationships relating percent damage to flood water depth, while the
socioeconomic dimension is often described by indices capturing
characteristics such as income level, education, gender and other
factors that can affect the vulnerability of people and assets to a
possible hazard.

In the context of disaster displacement risk, the concept of
vulnerability is complex and depends on several physical and social
factors. Although academic research exists in this direction (Privara
and Privarova, 2019), significant simplifications have been applied in
quantitative models that consider loss of housing as the sole factor
determining displacement as a consequence of a fast-onset disaster. In
addition, the criterion for deeming a house uninhabitable currently
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Representation of the modeling chain developed for flood displacement risk assessment.

relies solely on a flood-depth threshold, without considering the
physical vulnerability of the building.

The proposed methodology refines and expands this concept by
simultaneously taking into account two different elements that may
trigger displacements: direct impact on houses; direct impact on
livelihoods, namely damage to croplands, grazing lands, shops,
industries and services. It also involves a third element that may
increase the susceptibility to forced movement: direct impact on
critical facilities and services, such as health centers and education
facilities. Although still based on direct physical damage estimation of
these three components, social vulnerability factors are indirectly
considered. Loss of livelihoods can be associated with a state of
unemployment, even temporary, since this is recognized as a key
theme in the literature on social vulnerability (Li et al., 2023). Access
to education and health services, which are other social vulnerability
factors, is also quantified, as additional information. In line with this,
the World Health Organization (2009) highlighted the strong
connection between physical vulnerability and other vulnerability
dimensions (social, economic, physical, environmental, institutional
and cultural dimensions, as further described by Malgwi et al. (2020),
Birkmann etal. (2013), and Mazzorana et al. (2014), pointing out that
the disruption of physical elements directly affects social and
economic activities within a society.

The proposed methodology includes advancements on several
levels. The first improvement concerns the method employed to
determine whether a house is deemed uninhabitable. Frequently,
displacement triggers are calibrated based on hazard (i.e., water depth)
thresholds, resulting in limited spatial differentiation (e.g., Kam et al,
2021, 2023). However, in reality, different types of buildings may
respond very differently to flood events. While empirical calibration
on specific events might ensure that overall figures align with
observations distribution, this method cannot reproduce the spatial
distribution of damage at the sub-domain level, because it does not
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account for spatial differences in house vulnerability. Moreover, this
approach may yield a limited predictive capacity when applied to
events with vastly different spatial patterns within the domain.

It is more appropriate to reason in terms of damage thresholds
that might render houses uninhabitable. This concept is not only
closer to reality but also allows the differentiation of impacts as a
function of diverse house typologies. The proposed methodology
employs a complete physical vulnerability model to compute the
impact on housing. The vulnerability of an asset to flooding is
commonly characterized by stage-damage curves (also known as
vulnerability curves or damage curves) that show the relationship
between hazard intensity (e.g., flood depth or velocity) and the degree
of impact (e.g., damage ratio, and relative or absolute monetary loss).
These curves are specific for each type of exposed element. The
matching between the curve and the element is made according to
different features, such as building use or main construction typology,
depending on the vulnerability library used. By way of example, some
flood vulnerability libraries for buildings differentiate the curves by
occupancy type and number of floors, as proposed in HAZUS (Federal
Emergency Management Agency, 2010), by occupancy and country
(Huizinga, 2007; Huizinga et al., 2017), or by construction typologies
(Cardona et al, 2012). A threshold on the damage ratio of the curve
is assigned for the displacement evaluation. It is assumed that beyond
this threshold the damaged structure is unable to provide its function
(e.g., hosting people for residential buildings, providing jobs for
commercial buildings, guaranteeing health or education services),
thus causing the forced mobility of people. In this study, we adopted
the European macroseismic scale (EMS-98, Griinthal, 1998) as a
reference to describe what this threshold represents. The scale was
developed in the field of seismic risk, and is referred to here for its
description of damage classes, regardless of the hazard under
consideration. The threshold value was mapped to the D3 EMS-98
damage class, which corresponds to substantial to heavy damage; such
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a qualitative description of the damage suggests a lack of possibility to
inhabit or use the building for its own purposes. In the seismic field,
some studies connect damage classes to building loss ratio (e.g.,
Lagomarsino and Giovinazzi, 2006; Tyagunov et al., 2006), class D3
being representative of a damage ratio between 0.4 and 0.6.

The second improvement, with respect to traditional models, is
about assessing the direct impact of a disaster on people’s livelihoods.
There are several studies that recognize loss of livelihoods as one of
the major economic factors for displacement, especially in societies
strongly dependent on certain sectors such as agriculture (e.g., Armah
et al, 2010; Black et al, 2011), and this is more relevant when
particular socioeconomic conditions are considered (e.g., individuals
with low incomes who do not own homes). Loss of livelihoods is cited
frequently as cause of displacement in the DTM as well as in the
IDMC database. In implementing this piece of the methodology, two
contrasting factors need to be explicitly accounted for: on the one
hand only a proportion of the people would decide to displace if their
means of livelihood became untenable, thus reducing the number of
displacements to be considered; on the other hand, if the person losing
his/her means of livelihood is the sole breadwinner within a
household, all the people dependent on this person might be affected
by the decision to displace, and therefore household composition
should be carefully analyzed to gain reasonable estimates. Accounting
for this additional factor provides a more comprehensive
understanding of disaster-related impacts that may shape people’s
decisions to move. Since people react differently to loss of livelihood,
and are influenced by factors such as the availability of alternative
employment opportunities, it is unrealistic to expect that 100% of
those experiencing job loss would relocate. Accordingly, the
methodology explicitly includes a parameter that represents the
proportion of individuals who would relocate after losing their jobs
due to a flood event. In the absence of literature, this parameter is
assumed to be 35%.

Another consideration must be made regarding loss of livelihood.
When the primary breadwinner of a household loses his/her means
of livelihood and decides to move, the whole family follows. To
address this, we consider the “dependency ratio” data, which are
usually available from the national census, to estimate the average
household composition. The dependency ratio is a measure of the
number of dependents aged 0 to 14 plus those over the age of 65,
compared with the total population aged between 15 to 64. This
approach allows us to account for individuals such as children and
elderly people who rely on employed people and are likely to follow
them in their move.

The third improvement is about addressing indirect impacts, such
as the prolonged absence of essential services. People’s decisions to
stay or move are often influenced by access to critical facilities, public
infrastructures and services, including education and health facilities.
This introduces an additional factor that increases peoples
vulnerability and, consequently, the likelihood of displacement.

Collectively, these three elements contribute to a more accurate
estimate of the potential displacement of individuals due to impacts
of floods.

The implementation of the methodology imposes strong
requirements in the preparation of the exposure model in a manner
suitable for risk analysis. It is crucial to characterize the spatial
distribution of the population in relation to different services and
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functions. Specifically: (1) to determine the number of people
displaced due to house damage, it is essential to know the spatial
distribution of the residential population across the housing sector;
(2) to determine the number of individuals displaced as a result of
livelihood loss, it is necessary to have information on the spatial
distribution of employees within each specific sector (e.g., agriculture,
industry, etc.); this aspect includes knowing the spatial locations of
various workplaces and the corresponding number of employees
associated with each; (3) to determine the group of people who lose
access to basic services, potentially heightening their inclination to
migrate, it is necessary to identify the locations of these services and
the number and location of people relying on each of them. While
points (1) and (2) are factored into the risk computation, estimates on
a lack of access to basic services (point 3) are provided as
additional information.

Since the methodology envisages that an individual’s mobility
may be triggered by the loss of housing, livelihood, or both, that same
person might be counted twice, i.e., being displaced due to the loss of
both a house and a livelihood. Hence, a procedure to prevent
potential double counting was implemented by unequivocally
associating each person with his/her home and workplace, enabling
the identification of individuals who simultaneously lose both
housing and livelihood. The population density is computed for each
administrative level and is used to determine the residence capacity
of each building. The process of associating each person with his/her
home and workplace relies on the minimum geometric distance
between the two, and is executed iteratively in consecutive steps.
Based on the percentages proposed at a national level, the workers in
the different sectors and the students are quantified for each home at
the beginning of the procedure. After this, starting randomly with a
workplace (e.g., a factory), employees are allocated to the residences
closest to their workplace, initially within a specified radius (e.g.,
1 km). If the residence capacity is reached within the specified radius
and not all the workers are accommodated, the radius is progressively
expanded (e.g., first to 2km and then to 3km). This iterative
procedure continues until all the workers are successfully assigned to
their respective residence. This association ensures that workers who
experience flooding at both their place of residence and workplace
during a single event are identified and counted only once.
We provide an explanation of the application of this procedure in the
Supplementary material.

Analogous to the average annual loss, the loss exceedance probability
curve (also referred to as “risk curve;” Arrighi et al., 2018), and probable
maximum loss curve commonly used in catastrophe risk modeling
(United Nations Office for Disaster Risk Reduction, 2015; Rossi et al.,
2023), we introduced similar risk metrics for displacement: average
annual displacement (AAD), displacement exceedance probability curve
and probable maximum displacement (PMD) curve.

Displacements are computed for each hazard map scenario and a
displacement exceedance probability curve — a curve describing the
probability to exceed a certain number of displaced people in 1year
— is built for each administrative level. The exceedance probability
curve is constructed by plotting the frequency of each hazard map
versus the number of displacements originated by those hazard maps.
The integral under the displacement exceedance probability curve
represents the average annual displacement, AAD, as described by
Equation 1.
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AAD = [EP(x)dx 1
0

Where EP =P (X>x) is the probability to exceed the number of
displacements x.

This is the expected number of displacements per year, averaged
over many years. A curve similar to the displacement exceedance
probability curve, where frequency is expressed in terms of return
period (RP) instead of probability, is the probable maximum
displacement (PMD) curve. The PMD for different return periods can
be defined as the expected number of displacements as a function of
the return period, where the return period is the average interval time
between two events equaling or exceeding that number of
displacements. The PMD curve is constructed by plotting the number
of displacements originated by each hazard map versus the return
period for each hazard map. By depicting displacements as a function
of return periods, the PMD curve has the capacity to better visualize
the tail of the curve (very low frequencies and high return periods)
when compared to the displacement exceedance probability curve,
and therefore the PMD curve has been used in this paper to show the
number of displacements during extreme conditions.

2.2 Applying the methodology to the case
study of Fiji and Vanuatu

Fiji and Vanuatu are located to the east of Australia and north of
New Zealand, and the two archipelagos are separated by approximately
1,000 kilometers. The climate of the two countries is generally
categorized as oceanic tropical, with a dry season from May to
October and a rainy season from November to April. The El Nifo
Southern Oscillation (ENSO) plays an important role across the
region in different ways and has impacts on the livelihoods of Pacific
Islands communities (Weir et al., 2021). In Fiji and Vanuatu, the
ENSO can lead to prolonged rainfall and to an increase in the
frequency and intensity of cyclones and other tropical storms
(Kuleshov et al., 2020).

Fiji is one of the largest nations in the Pacific Islands region. The
capital, Suva, on the island of Viti Levu, is home to about three-
quarters of the population. More than 90% of the population, both
rural and urban, lives in coastal areas, where most of the services,
infrastructure and agricultural production are located. The economy
is large and developed as a result of a significant natural resource base.
Tourism also makes up a substantial part of the economy, as does
agriculture (Internal Displacement Monitoring Centre, 2020).

Vanuatu consists of a chain of 82 volcanic islands, including 13
principal islands, extending 850km from north to south. Vanuatu
concentrates a large share of its population (about 36%) in the capital,
Port Vila, in Shefa Province. About 80% of the population works in
subsistence or small-scale agriculture. The economy is based primarily
on the exploitation of natural resources such as copra, beef, timber,
kava and coconut oil (Chen et al., 2015).

2.2.1 Disaster displacement in Fiji and Vanuatu:
historical trends (2008-2022)

Empirical data are important elements to understand the
magnitude, causes and triggers of displacement. Records of
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disaster-induced displacements worldwide have been compiled by the
Internal Displacement Monitoring Centre since 2008 (Internal
Displacement Monitoring Centre, 2022) through a rigorous process
of research, data management, analysis and validation.

Disasters have triggered about 382,000 displacements in Fiji since
IDMC began collecting data on the phenomenon in 2008. IDMC has
detected 53 disaster displacement events (Internal Displacement
Monitoring Centre, 2023). A large number of displacements in Fiji
and Vanuatu have been triggered by weather-related events, which are
classified according to the subtype of hazard: flood, storm, cyclone,
avalanche, rogue wave. Storms and cyclones are the main triggers of
displacement. However, when a cyclone has struck, it is impossible to
discern from the records whether structures were damaged by inland
flooding, storm surges, strong winds, or a combination of these
factors. Table 1 reports data on internally displaced people,
respectively, for Fiji and Vanuatu due to riverine flood from 2008 to
2022, as recorded by IDMC. Several events between 2008 and 2022,
mainly associated with tropical depressions, generated widespread
flooding in Fiji. The most relevant of these events happened in the
Western Division of Fiji, where torrential rains caused by multiple
tropical depressions in 2012 resulted in severe damage to schools,
homes, businesses, agriculture, and infrastructure. In Vanuatu, only
the 2014 flood that hit Efate Island has been recorded.'

This dataset, although limited, serves as a basis for the comparison
with our model results presented in Section 3. Moreover, additional
IDMC datasets from the South-East Asia and Pacific region have been
retrieved to broaden the scope of our comparison. These datasets are
accessible in the Supplementary material.

2.2.2 Hazard modeling chain

As mentioned in Sub-section 2.1, hazard modeling was performed
for both the current and projected climate conditions by using a full
flood modeling chain, composed of three main steps: (1) climate
models selection and bias correction; (2) the hydrological simulation
for the estimation for the streamflow design values under different
climate conditions; and (3) the flood mapping through the hydro-
geomorphological model.

In more detail, the physically-based distributed hydrological
model Continuum (Silvestro et al.,, 2013, 2021) was implemented
separately for the two regions of interest. Continuum can reproduce
the main hydrological processes, resolving both mass and energy
balances at pixel scales. As main output, it provides time series of river
discharge for each stream of the river network. The hydrological
model was driven with the W5E5 (Lange, 2019) climate data of
precipitation, air temperature, air humidity, wind velocity, and solar
radiation, with 0.5° spatial resolution and daily temporal resolution to
derive the streamflow time series in the present climate (historical
period: 1979-2016). W5E5 is a merged dataset. It combines WFDE5
data (Weedon et al., 2014; Cucchi et al., 2020) over land with ERA5
data (Hersbach et al., 2020) over the ocean. The WFDE5 dataset (C3S,
2020) was generated using the WATCH Forcing Data (WFD)
methodology applied to surface meteorological variables from the
ERA5 reanalysis. Bias-adjusted monthly precipitation totals of

1 https://floodlist.com/

australia/1-dead-hundreds-evacuated-vanuatu-record-rainfall
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TABLE 1 Internally displaced people in Fiji and Vanuatu due to riverine flood from 2008 to 2022, according to the Internal Displacement Monitoring

Centre (IDMC).

Date of event

Country Year Event name el Internal displacements Hazard type
Fiji 2012 Fiji: Flood - 01/01/2012 2012-01-01 3,600 Flood
Fiji 2012 Fiji: Flood - 01/01/2012 2012-01-01 15,000 Flood
2017 Fiji: Viti Levu Flood - 2017-02-08 190 Flood
08/02/2017 - Nawaka
Fiji District
2021 Fiji: Floods - Central 2021-05-02 5 Flood
Division - 02/05/21 -
Nasinu Municipality,
Fiji Naitasiri Province
2021 Fiji: Floods — Countrywide 2021-03-02 2 Flood
Fiji —02/03/2021 - Ba District
2022 Fiji: Flood - Nadi - 2022-02-05 130 Flood
Fiji 05/02/2022
Fiji 2009 Fiji: Flood - 01/01/2009 2009-01-01 9,400 Flood
Vanuatu 2014 Efate Flash Floods 2014-10-06 200 Flood

WEDES result in more plausible global hydrological water balance
components when analyzed in an uncalibrated hydrological model
(WaterGAP) than with the use of raw ERA5 data for model forcing.
In addition, the W5E5 dataset was used for the bias adjustment of
climate input data for the impact assessments carried out in phase 3b
of the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP3b dataset,” 0.5° spatial resolution and daily temporal
resolution), therefore guaranteeing consistency between the present
climate forcing and the projected climate forcing used in this study.
The results of the ISIMIP3b project were used to drive the Continuum
model in projected conditions. Five different General Circulation
Models (GCM) for three Shared Socioeconomic Pathway (SSP)-
Representative Concentration Pathway (RCP) scenarios (SSP1-
RCP2.6, SSP3-RCP7.0 and SSP5-RCP8.5) provided an ensemble of 15
combinations of models and scenarios. The variability of trends in key
climatic variables (e.g., temperature and precipitation) among the
different models/scenarios is very large, and thus, to reach a
compromise between a proper representation of this variability and
the available computational resources for this study, a selection was
made. The choice was guided by the intent of the study, which is to
provide sensible bounds to the displacement figures under possible
climate change scenarios. The uncertainty in climate projections varies
in nature, and can be traced on one hand to the uncertainties brought
by the specific numerical model used for the prediction, and on the
other to our inability to guess what scenario of greenhouse gas
emissions connected to a specific socioeconomic development
pathway will materialize in future. From the risk assessment
perspective, both sources of uncertainty should be explicitly
considered, and therefore selection of the binding climate scenarios
should be independent from the modeling suite and SSP considered.
Since it was impossible to use all the ISIMIP combinations of GCM
and SSP, due to computation limitations, we opted to select two

2 https://www.isimip.org/about/#simulation-rounds
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climate scenarios that were representative of low (“optimistic”) and
high (“pessimistic”) future emission conditions. We selected the two
scenarios based on statistical criteria, employing percentile thresholds
derived from the ensemble of temperature trajectories (precipitation
trends were correlated with the trends in temperature for all the
different models and SSPs). For each year of the future projection
period (2017-2100), the 20th percentile and 80" percentile of the
ensemble of average world temperature were computed, yielding two
additional temperature trajectories produced as the 20th percentile
and 80th percentile of the ensemble (for a further explanation, see
Alfieri et al., 2023). Then, the most similar simulation among the
model runs available was selected for each of the two percentiles. The
selected simulations were SSP126/IPSL-CM6A-LR for 20th percentile
- “optimistic” scenario - and SSP585/IPSL-CM6A-LR for 80th
percentile - “pessimistic” scenario (Figure 2). It should be noted that
even though they represent the state of the art in climate simulations,
the global models of the ISIMIP3b suite can have poor representations
of the terrain feature, especially when SIDSs are concerned.
Specifically, the IPSL-CM6A-LR GCM represents only the main island
in Fiji (Viti Levu) as land. Despite these approximations, no other
option, such as regional downscaling of such models, was available at
the time of the study. The Continuum model forced with these two
selected GCM simulations generated two discharge time series from
2016 to 2100, and this timespan was split into two parts so as to
consider two different reference periods: medium-term projected
climate conditions (2016-2060), and long-term projected climate
conditions (2061-2100). The Continuum model results, analyzed with
a statistical approach, were then used to identify the design discharge
for the return periods of 2, 5, 10, 20, 25, 50, 100, 200 and 250 years for
all the streams in all scenarios considered (i.e., current climate
conditions, plus four projected climate scenarios: medium-term
“optimistic” and long-term “optimistic,” medium-term “pessimistic”
and long-term “pessimistic”). Flood protection measures especially
close to urban areas play a dominant role in determining impact and
risk figures. As information on the level of protection is rarely
available, assumptions are made on the shortest return period to
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SSP126/IPSL-CM6A-LR and SSP585/IPSL-CM6A-LR) used in this work.
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be considered. Since flood defenses are related to the values to
be defended and to the spending capacity of a country, GDP has often
been considered as a good proxy for flood defenses at national level
(see e.g., Rudari et al., 2015). In this study, we assumed that rivers in
Fiji are defended up to a 5-year event, i.e., events that have less than a
5-year return period cause no damage to assets, while in Vanuatu even
a 2-year event would cause some losses. This difference can be justified
by a higher GDP per capita in Fiji (World Bank, 2022) and a
consequent propensity to flood protection investment (Corugedo
etal., 2023).

Long-term simulations were analyzed statistically to extract annual
discharge maxima and to estimate extreme value distributions in all
representative river sections along the simulated river network for both
the historical and future climates. We tested various analytical
probability distribution functions on each set of discharge peaks,
including the Generalized Extreme Value (GEV), Log-normal,
Gamma, Weibull, Gumbel, Normal, Exponential, Generalized Pareto,
and Log-Pearson. For each fitted probability distribution we calculated
several quantiles, which presented finer refinement around both tails
of the distribution, and we compared these with the empirical ones.
The probability distribution with the minimum root mean square error
between the empirical and the fitted quantiles was then selected.

It should be noted that the reliability of the results substantially
diminishes as the return period increases, since the analysis is based
on only around 40 years of data. Lastly, discharge values were used to
feed the inundation model REFLEX (Arcorace et al, 2019) that
performs a hydro-geomorphological computation to provide hazard
maps for each return period, i.e., maps of flood depth and extent over
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large areas for each return period. REFLEX was developed for a rapid
identification of flooded areas of major rivers, and is an expansion of
the Height Above the Nearest Drainage (HAND) approach (Nobre
etal, 2011), designed as a reliable and slim tool able to provide rapid
inundation mapping, constraining the possible geomorphological
flood extent with the available flood volume. The REFLEX model
starts from an initial streams and basins delineation derived from a
Digital Elevation Model (DEM). The Strahler method is then used to
order each stream and corresponding sub-basin. Concerning
floodplain delineation, the HAND methodology is adopted to derive
the relative soil gravitational potentials from topography. A HAND
map is created for each river order, starting from the lowest one.
Lastly, flood extent and depth information are derived for each
sub-basin sequentially merging the HAND maps, using an optimized
flood water stage resulting from a water balance between the volume
underlying the HAND maps and the flood water volume. The
limitations on flood plains, where the grid-based watershed
delineation is more delicate, were solved by implementing the
D-infinity approach, in order to increase the level of dispersion of flow
direction over flat areas, and developing a coastal expansion
methodology able to attribute the pixels falling outside of the main
watershed to the nearest, and most appropriate, basin.

Both the hydrological model Continuum and the inundation
model REFLEX require a DEM as the base raster data for identifying
the model grid and deriving the main hydrological features. The
FABDEM (Hawker et al., 2022) with a spatial resolution of 1
arc-second (~30m) is considered one of the best suited global DEMs
available for hydrological and hydraulic modeling, and was thus used
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for implementing the hazard modeling chain, for Fiji and
Vanuatu separately.

As usual in hydrological modeling practice, the DEM was
aggregated to a coarser spatial resolution (1km) to drastically reduce
the computational load of the simulations, while preserving a good
level of detail in representing the main hydrological processes (see e.g.,
Aerts et al., 2022; Li et al., 2022 for discussion on result dependency
on resolution in hydrologic models). For the inundation model, where
a more detailed representation of the local morphology is required,
the original DEM resolution (~30m) was maintained.

The estimate of the soil characteristics required by Continuum
was derived from maps of soil fraction in sand and clay at 250-m
spatial resolution obtained by the ISRIC SoilGrids (Hengl et al., 2017)
maps combined with land cover information at 300-m resolution
derived from the ESA-CCI Land Cover map v2 (European Space
Agency, 2017). The same map was used to characterize vegetation
cover, which plays a key role in modeling evapotranspiration.

2.2.3 Exposure and vulnerability evaluation

The exposure model for Fiji and Vanuatu considers people
(residents, employees, and students), buildings (houses and
workplaces), and agricultural areas, with the aim of describing the
different population distributions introduced in Sub-section 2.1. To
this end, various data sources were integrated: (i) statistical databases;
(ii) available exposure models; (iii) global datasets on population
distribution, settlement identification, and land use/land cover; and
(iv) building footprints.

The primary statistical data source (i) considered for population
distribution was the national census, which provides an official count
of population, dwellings, and households. In Fiji, the most recent
census of population and housing was conducted in 2017 (Fiji Bureau
of Statistics, 2017). The country consists of 86 Tikinas (administrative
level 3), which are aggregated into 15 Provinces (administrative level
2). These Provinces, in turn, are grouped into 4 Divisions
(administrative level 1). In Vanuatu, the most recent census of
population and housing was published in 2020 (Vanuatu National
Statistics Office, 2020). Vanuatu is divided into 6 Provinces

10.3389/fclim.2024.1345258

(administrative level 1) and 66 Area Councils (administrative level 2).
Figure 3 illustrates the population distribution for Fiji and Vanuatu,
respectively, at administrative levels 3 and 2.

Furthermore, another statistical data source that was consulted
and utilized for specific figures is the International Labour
Organization (ILO) database (International Labour Organization,
2022). This database encompasses a comprehensive range of
information related to the labor market, including data on
employment by economic sector adopted in the study. The ILOSTAT
entry page provides access to country-specific or subject-specific
statistics, along with information on concepts and definitions.
Considering these two primary sources, the relevant statistical
information pertinent to this study was extracted (Table 2).

The existing exposure model (ii) from PCRAFI (Pacific
Catastrophe Risk Assessment and Financing Initiative, 2015) Project
was used to derive asset attributes. The PCRAFI model is a point
vector layer comprising about 140,000 elements, with attributes to
describe the occupancy type, the number and type of buildings, the
number of stories, the floor area and the economic value of each asset.
The occupancy types considered in this model are industrial,
residential, commercial, infrastructure, public and other. In this case
study, commercial, infrastructure and public have been merged to
describe the services category (Figure 4).

Several global datasets on population distribution, settlement
identification, and land use/land cover (iii) are available. In the study,
the analysis was performed with the data from the census available at
administrative level 2. To evaluate the representativeness of the data
and the coherence among the datasets available, these values were
compared with two global products: High-Resolution Settlement
Layer at 30-meter resolution (CIESIN, 2016) and WorldPop at
100-meter resolution (Bondarenko et al., 2020). The two datasets
provide a spatial distribution consistent with the census. Some
differences can however be noticed. For Fiji, the greatest differences
are found in the inland area, which is more rural and difficult to
survey. For Vanuatu, the greatest differences are concentrated in the
northernmost island, where the global products underestimate
compared to the census.

A B
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AGRICULTURE

FIGURE 3

Vanuatu (admin 2).

Residential population (A) and workers in agricultural, service and industrial sectors (B—D) at the administrative levels of reference for Fiji (admin 3) and
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While not strictly necessary for the construction of the exposure
model, these layers may help the application of the methodology to
other cases where local data are not available. To identify the cropland
and grazeland areas in both countries, the ESA global land cover map
at 10-meter resolution based on both Sentinel-1 and Sentinel-2 data
(Zanaga et al., 2020) was used. The GHS-SMOD R2022A settlement
layer (Schiavina et al., 2022) were used to identify the rural and urban
areas for both countries.

The OpenStreetMap (OSM) (2020) layer of building footprints
updated in 2020 was adopted (iv).

From these datasets, a high-resolution exposure model was
created. This model meticulously characterizes built-up areas at
building scale as a vector layer, where each polygon represents a
building footprint taken from the OSM building footprint layer, with
attributes drawn from the PCRAFI model. Additionally, it incorporates
statistical data and land cover/use information. Following this,
building occupancy was assigned from PCRAFI data. Residential

TABLE 2 Statistical information derived from census surveys and from
the ILO database.

10.3389/fclim.2024.1345258

population and worker totals at reference administrative level
(Figures 3B-D) were downscaled considering the “effective” area of
the building, i.e., building footprint area multiplied by the number of
stories. The results are shown in Figure 4. To avoid double counting,
a procedure that linked each worker to his/her home and workplace
(based on the minimum geometric distance between the two) was
applied. The association was guided by the criterion of minimizing the
distance between each industrial or service building, cropland or
grassland area, and each residential dwelling. Initially, each person
employed in a specific sector was assigned to the nearest house within
a designated distance, such as a radius of one kilometer. Subsequently,
this procedure was iterated, gradually increasing the radius to
accommodate workers who were not assigned in previous iterations,
until all workers were matched with houses. The same iterative process
was applied to users of basic services. Upon completion of the process,
each house was linked with its occupants’ workplaces, the schools
attended, and the hospitals providing services. In this way, workers
who lose both home and job through a single event are counted only
once. The procedure for building the exposure model is detailed in the
Supplementary material.

For the built-up area, the set of physical vulnerability functions

Census and ILO data Vanuatu Fiji from HAZUS (Federal Emergency Management Agency, 2010) was
Population 300,019 (2020) 882,407 (2017) adopted. The FEMA vulnerability library comprises water depth-
Employed population 78,004 353,955 damage functions for buildings and is developed on the basis of
Dependency ratio a0 5% 20 years of empirical damage data, integrated with functions developed
by the US Army Corps of Engineers (USACE). The curves depend on
Percentage of employed populati 26% 40% a1
ercentage of emp’oyed population 0 ’ building type, number of floors, and presence of a basement, and
Percentage of employment in agriculture 57% 18% provide damage estimates both for building content and structure.
(% of total employment, 2019) The sensitivity of the results on the choice of the vulnerability curves
Percentage of employment in service 29% 68% was explored through some comparisons with the CAPRA vulnerability
sector (% of total employment, 2019) library (Cardona et al., 2012), and with the JRC (Joint Research Centre)
Percentage of employment in industry 14% 14% curves (Huizinga et al., 2017). Figure 5 shows a comparison between
(% of total employment, 2019) different vulnerability curves for residential buildings: HAZUS (single-
story, no basement), JRC (single-story, no basement) and CAPRA
Full time students (as percentage of total 29% 9% . R
Jation) (single-story, concrete and masonry). The final choice also depended on
opulation
pop the type of attributes characterizing the exposure layer. In this context,
A
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Assignment of residential population to their homes (A) and workers in service sector to their workplaces (B). Residence population and worker totals
from census were downscaled to building level, considering the “effective” area of each building.
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FIGURE 5

Vulnerability curves for residential buildings from different sources. For those ratios of damage in the gray area, the building is considered unable to
provide its function (home, job), thus triggering displacement. Curves from CAPRA (blue) differentiate based on constructive typologies (different
hatching typologies represent different constructive typologies), while those from HAZUS are based on occupancy and are available for both structure
and content (solid and dash-dotted black line, respectively). Residential curve for Oceania by JRC is represented in red.

the HAZUS vulnerability library was the preferred choice compared to
others, as it aligns most closely with the building characterization in the
available exposure model. Specifically, it can be effectively linked to
buildings using key elements such as usage and the number of floors. In
contrast, using CAPRA curves (which are based on construction
material) would necessitate additional assumptions about the
correspondence between building usage and construction materials.
Along the same lines, opting for the JRC library would not permit the
differentiation of buildings based on their number of floors.

The gray area in Figure 5 represents percentage values of building
damage that no longer allows the edifice to be used. As mentioned in
Sub-section 2.1, we assumed the threshold to be when the building
experiences “substantial to heavy damage, and literature (e.g.,
Lagomarsino and Giovinazzi, 2006; Tyagunov et al., 2006) suggests the
range to be between 40 and 60%. In the absence of literature suggesting
a value within the 40-60% range to define when a building becomes
unusable, we made the following considerations. We opted to exclude
the extremes of the range and initially considered the middle value,
50%. However, this corresponds to a water depth of about 4.6 m for
HAZUS curves (structure), which seems highly unrealistic. Instead,
we chose 45%, corresponding to a water depth of 2.8 m, which we find
more reasonable. Additionally, upon comparing other vulnerability
curves, we observed that the range of water depth values is narrower at
45% damage (standard deviation 0.52m) than at 50% (standard
deviation 1.02m). In essence, at 45% damage there is reduced epistemic
uncertainty in the physical vulnerability compared to 50% damage.

In the context of agriculture, there is limited or no publicly
available data on the spatial distribution of croplands in Fiji and
Vanuatu, and global layers such as MAPSPAM? (You et al., 2014)

3 https://mapspam.info/
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provide little useful information for these two countries. This
limitation implies that it was not possible to reference the
seasonality of single crops, as they cannot be spatially distinguished.
Given these constraints, we opted for a single value to represent the
phenomenon of plant asphyxia, encompassing floods with different
possible durations. Some reference sources suggest 0.4-0.5 m as the
minimum water depth causing damage to crops for different
durations. These sources include Agenais et al. (2013) and Forster
et al. (2008) for maize, and Shrestha et al. (2021) for rice. The latter
study provides a review of other models, among which the value of
0.5m appears to achieve a certain consensus. Therefore, the
vulnerability function adopted for agriculture is a binary parameter,
“flooded” or “not flooded” It categorizes a field as flooded if it
cannot support agriculture and pastoralism for farmers, leading to
displacement. This classification is based on a threshold water depth
of 50 cm.

Changes in exposure and vulnerability between current and future
climate conditions were not considered in future projections.
However, it is worth emphasizing that factors such as population
growth, distribution, and the rapid urban sprawl that decreases natural
areas available to absorb floodwater have the potential to significantly
alter the future “riskscape.”

2.2.4 Risk computation

In probabilistic risk assessment for natural hazards, such as
earthquakes, floods or hurricanes, it is essential to account for various
scenarios of these events to understand their potential impact.
Typically, these assessments involve a large set of scenarios to simulate
the potential intensity and occurrence of the hazard over a specific
area. However, the approach to be chosen depends on the geographical
scope of the assessment to be conducted. When examining a wide
geographical area, it is not advisable to rely solely on hazard maps for
the computations. This is because hazard maps represent the
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likelihood of an event occurring at specific locations but do not
inherently account for how these events may be spatially correlated.
In other words, hazard maps may not adequately capture the
interdependencies or simultaneous occurrences of events across the
entire region. Therefore, for large-scale assessments, use of a
comprehensive scenario set that considers these spatial correlations is
recommended in order to make more accurate risk assessments.

On the other hand, when the assessment focuses on a very specific
and small geographical area, it may be acceptable to conduct
computations directly using the hazard maps. In this case, the spatial
correlations may have less impact because what is looked at is a
confined area where events normally strike with similar intensity in
the whole area considered. In this case, hazard maps can provide a
reasonable approximation of the risk within this limited scope without
the need for an extensive scenario set (see e.g., Arrighi et al., 2018).
This was the case of the flood displacement risk for Fiji and Vanuatu
presented in this paper.

Each hazard map described in Sub-section 2.2.2 served as input
for evaluating the impact on potentially displaced individuals. To
accomplish this, we took the following action. For each feature
(polygon) in the exposure model, we computed the average value
of water depths over the feature footprint, and we assigned this
value to the considered feature (residential buildings for residential
population, industrial or service buildings for population working
in these sectors, croplands or grazing areas for employees in
agriculture/pastoralism, and schools for students). Damage
assessment was conducted at the individual building level using the
vector exposure model and the HAZUS (Federal Emergency
Management Agency, 2010) vulnerability curves. Elements that
exhibited damage beyond the damage threshold of 45% were
considered unable to fulfill their functions (e.g., provide shelter,
workplace), resulting in displacement. The population associated
with these assets was deemed susceptible to displacement.
Individuals who experienced both housing and livelihood loss in
the same scenario were counted only once to avoid duplication. To
take into account that only a proportion of the people who would
lose their means of livelihood would displace, a reduction factor
was applied. While there is no specific dataset to be used to quantify
this parameter, we applied a reduction factor of 0.35 in accordance
with firsthand questionnaires applied in other parts of the world. It
is recognized that in the present case study, this is a mere expert
speculation and additional data should be retrieved for a proper
calibration of this parameter. On the other hand, the dependency
ratio from the censuses of Fiji and Vanuatu, respectively 54 and
75%, were used as proxy for the household composition. This
accounts for individuals who would move along with the
breadwinner. The number of potentially displaced people across
various sectors was aggregated at the relevant administrative level.
These impacts were then used to determine the average annual
displacement (AAD) and probable maximum displacement (PMD)
values. While AAD expresses an average number of expected
displacements due to flood events, it does not capture signals from
rarer and more intense events. For this reason, it is useful to
compare the PMD curves for current and projected conditions,
which show the number of potentially displaced people in
connection to frequent (low return periods) or rare (high return
periods) events. For each administrative level, the PMD curve is
constructed by plotting the number of displacements originated by
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each hazard map versus the return period for each hazard map, and
then the integral under that curve is calculated, and this represents
the AAD. The same process is repeated at national level.

3 Results
3.1 Flood hazard maps

Flood hazard mapping was conducted for various return periods
following the methodology outlined in Sub-section 2.2.2. These maps
serve as the foundation for the displacement estimation discussed in
this section.

Considerable effort was dedicated to gathering alternative data
sources on flood hazards from authorities in Fiji and Vanuatu,
leveraging direct contacts at the local level through IDMC. Regrettably,
official hazard maps for these two countries are unavailable,
precluding the use of specific official data for benchmarking our
results. However, some studies from UNOSAT, part of the project
“Commonsensing: Building Climate Resilience with Small Island
Nations,* have identified flood-prone areas using the basic HAND
geomorphological method. Given that the REFLEX methodology
builds upon the HAND methodology, direct comparisons between
the results are challenging due to inherent similarities in both
mapping approaches.

The accompanying figures (panels a and b of Figure 6) depict
details of the hazard maps for 10- and 100-year return periods in Fiji.
Various shades of blue indicate increasing water depth. Noticeable
disparities in spatial extent and heightened water depths are evident
between the two maps, particularly for the 100-year return period.
While areas impacted by the shorter return period affect limited
portions of inhabited areas, the longer return period reveals more
exposed assets that are vulnerable to flooding.

Soft validation can also involve cross-referencing satellite
observations of past flood events to verify the agreement between
delineated flood areas and hazard map extensions, particularly in
areas observed post-event. A commonly used resource for this
purpose is the Global Surface Waters Dataset from JRC (Pekel et al,
2016), which generates maximum water extension maps using three
million Landsat satellite images spanning the past 32years at a
30-meter resolution. Unfortunately, optical data are often affected by
cloud, and the extension available for Fiji and Vanuatu, despite those
islands experiencing relevant events within the observation time
window, do not show particularly interesting results, and the water
extension is mainly limited to the permanent or seasonal water bodies.

While comprehensive datasets may be lacking, isolated events
have been documented by UNOSAT, such as during Cyclone Yasa in
2020.° Flooded areas were identified in two specific locations. Figure 6
(panels c and d) juxtaposes these flooded areas with the 10-year flood
hazard maps, revealing a notable alignment between the observed
flooded locations and the hazard map delineations.

4 https://www.unitar.org/sustainable-development-goals/united-nations-
satellite-centre-unosat/our-portfolio/
commonsensing-building-climate-resilience-small-island-nations

5 https://unitar.org/maps/all-maps?page=18
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FIGURE 6

GLIDE, Number TC20201215FJI).

Hazard maps detail for Fiji. The upper panels present a comparison between the 10-year return period (A) and the 100-year return period (B), blue
shades represent different water depths, the lower panels (C,D) present in red satellite-observed flooded areas for an event in 2020 due to Cyclone
Yasa which is compared with the modeled Hazard maps (Satellite elaborations from UNOSAT, acquisitions from Sentinel-1 on 18-19/01/2020, event

3.2 Comparison with historical
displacement records

A direct validation of the methodology with data from Fiji and
Vanuatu alone was not possible because of the small number of events
reported in the IDMC database (§2.2.1). In the case of Vanuatu only
one event is reported, while six events are recorded for Fiji in the
period 2008-2022. An empirical AAD of 1,890 per year can be derived
for Fiji, but the reliability of the data remains low. This number has the
same order of magnitude as the model-derived AAD of 936
displacements, corresponding to about 0.1% of the overall population
(Table 3). However, this cannot be considered as a sound scientific
validation, due to the very limited observed time series.

For a more comprehensive evaluation of the model performance,
we expanded the impact dataset by incorporating data from additional
countries in the East Asia and Pacific region, encompassing all flood
events (Internal Displacement Monitoring Centre, 2023). To facilitate
cross-country comparisons, the numbers were normalized by the total
population, ensuring a meaningful assessment of the figures across
different nations. Subsequently, we analyzed the estimated figures for
Vanuatu and Fiji in relation to those recorded for the broader
geographical region.

Figure 7 reveals that the AAD value of 71 in Vanuatu,
corresponding to 0.03% of the total population, aligns closely with the
median values for current conditions. In contrast, AAD in Fiji settles
close to the third quartile, indicating a heightened susceptibility to
flood impacts. Nevertheless, it is noteworthy that both estimates fall
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within the overall range recorded for countries in the same geographical
region, emphasizing the contextual validity of the findings.

In projected climate conditions, while AAD for Vanuatu stays
within the current interquartile boundaries of the recorded regional
events, AAD for Fiji significantly exceeds those limits (Figures 7).

3.3 Comparison between current and
projected average annual displacement

Fiji results are produced for different administrative levels from 0
(country level, Table 3) to level 3, corresponding to Tikina (level 2 is
not shown here for the sake of brevity). The analysis at country level
shows an AAD value of around 936 people, corresponding to about
0.1% of the overall population. The results indicate that AAD values
are double those in current conditions in the optimistic and the
pessimistic medium-term scenarios (Table 3). Instead, both AAD
estimates at country and province levels (Table 3), and in Tikina units
(admin level 3), show that the two scenarios diverge toward the end
of the century (long-term projections), with the AAD value triplicating
in the pessimistic long-term scenario. While in a relevant number of
Tikinas (admin 3) the expected level of displacement increases, their
AAD spatial pattern in Tikina units is comparable when considering
results in current climate conditions in comparison to the projected
ones (Figure 8).

Vanuatu results are obtained at administrative level 0 (country
level, Table 3) through to level 2 (districts). The analysis at country
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TABLE 3 AAD estimates for Fiji and Vanuatu at administrative levels 0
(country) and 1 (provinces).

level shows an AAD value of around 71 people, corresponding to
about 0.03% of the overall population. The level-1 AAD results under
Opt. Opt. Pess. current climate conditions show that a province in the north (Sanma)

Current id-  lona- d-
cond. ol eI, JoL is by far the province most at risk (Table 3). The same also applies
term term term . s
under future conditions, regardless of whether the optimistic or
Total Fiji 936 1,637 1823 1743 2709 pessimistic projections are considered, and the time horizons involved.
By Province For some provinces, such as Penama and Torba, the overall AAD
Ba 223 360 414 398 613 figure is small, and it does not substantially change in projected
Bua 3 6 6 6 13 climate conditions. Other provinces show a significant increase,
Cakaudrove 10 30 31 30 69 among them Tafea, where AAD is projected to strongly rise under the
Kadavu 0 0 0 0 0 pessimistic long-term scenario, mainly due to the increase of
Lau 0 0 0 0 0 displacement in the northern Erromango island. For all provinces in
Lomaiviti 0 0 0 0 0 both countries, the mid-term pessimistic projection and the long-term
Macuata ol 186 . 188 102 optlmls.tlc projection show very similar results, identifying a clearly
worsening path.
Nadroga_Navosa 81 146 165 159 228 X . . . .
Regarding the disaggregation of AAD in terms of origin of the
Naitasiri 11 36 42 26 92 . . o s
displacement (rural/urban), in Fiji almost 60% of displacements are
Namosi 0 0 0 0 0 currently originated in rural areas (Table 4). Such a proportion
Ra ! ! 2 2 3 decreases significantly to 50% in long-term projected climate
Rewa 294 461 496 468 595 conditions. In Vanuatu, three-quarters of displacement is likely to
Rotuma 0 0 0 0 0 originate from rural areas in current climate conditions. This
Serua 168 284 305 344 507 proportion decreases to 54% under projected conditions.
Taileva 84 127 131 122 187 It must be noted that factors such as future population growth and
Total Vanuatu 71 118 163 163 325 changes in distribution (e.g., urbanization), which might significantly
e change these estimates, are not considered in the modeled future
Malampa s 9 4 13 28 scenarios. This increase in the urban share is likely to be even more
Penama | . . ) . pronounced in reality, given that the projected scenario does not
account for population growth and the concurrent increase
Sanma 56 99 130 131 247 . .
et in urbanization.
Shefa 2 2 3 3 7 .. . . .
Figure 9 depicts the causes of displacement as a proportion of
Tafea 3 6 14 14 8 AAD. In Fiji, under current climate conditions, nearly 70% of
Torba ! ! ! ! 4 displacements are attributed to the loss of housing. Among the
Current Mid-Term projection Long-Term projection
O Vanuatu <> Vanuatu Opt. <> Vanuatu Opt.
04 ' 1 0471 O Fijopt. ] 041 O Fijiopt. ]
€ Vanuatu Pess. € Vanuatu Pess.
@  FijiPess. @ FijiPess.
0.35 + b 035 F 1 035 T -
— 03f 1 — 03 : — 03} ® .
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5 0.25 | b k] 025 | - B 0.25 - | 5
3 3 3
Q Q Q
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East Asia and Pacific IDMC database East Asia and Pacific IDMC database East Asia and Pacific IDMC database
FIGURE 7
Comparison between the simulated AAD for Fiji (blue) and Vanuatu (red) with the empirical average from the IDMC database. In the box-plot graphs
the central mark denotes the median, and the lower and upper edges of the box represent the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points that are not classified as outliers, while outliers are individually plotted using the "+" marker symbol. Solid fill
symbols represent the “pessimistic” scenario, while no fill symbols denote the “optimistic” scenario.

Frontiers in Climate 14 frontiersin.org


https://doi.org/10.3389/fclim.2024.1345258
https://www.frontiersin.org/climate
https://www.frontiersin.org

Rossi et al. 10.3389/fclim.2024.1345258
A
"r 4‘ e~
T & g ¥ Foa, W
‘} t o™ Sva swa ‘* o™ W swa
Current AAD Optimistic AAD Pessimistic AAD B
0-5 0-5 0-5
5-20 5-20 I 5-20
B 20- 100 B 20- 100 B 20- 100
I 100 - 550 I 100 - 550 I 100- 550
N
pay -} P
| N
Portvia Portvia Porvia
& &
Current AAD Optimistic AAD Pessimistic AAD
0-3
3-10 . 3-10 " o3-10
. 10-50 . 10-50 B 10-50
N 50 - 250 W 50 - 250 W 50- 250
FIGURE 8
AAD for Fiji (A) and Vanuatu (B) in current climate conditions and in long-term projections under optimistic and pessimistic scenarios. Results are
aggregated at administrative level 3 for Fiji and level 2 for Vanuatu.

TABLE 4 Origin of displacements (proportion of AAD) at country level for
Fiji and Vanuatu.

Opt. Pess.
o Current P

Origin long- long-

cond.
term term

Rural 61% 55% 50%
Fiji

Urban 39% 45% 50%

Rural 72% 58% 54%
Vanuatu

Urban 28% 42% 46%

remaining 30% connected to the loss of livelihoods, people working
in the service sector are the most affected. Similar distribution is
observed in long-term climate projections.

In Vanuatu similarly, under current climate conditions, nearly
60% of displacements are attributed to the loss of housing. Concerning
the loss of livelihoods, individuals working in the agricultural sector
are by far the most affected group (around 30%), while people working
in the service sector are around 7%. The distribution undergoes a
significant change in long-term climate projections, where the ratio of
displacement linked to the loss of houses rises to more than 75 and
80%, respectively, in the optimistic and pessimistic scenarios.
Accordingly, the share of the agriculture sector reduces to 15 and 10%,
respectively, in the optimistic and pessimistic scenarios. Displacements
resulting from job loss in the service and industrial sectors show a
progressive increase as conditions worsen, transitioning from the
current to the optimistic long-term scenario and further to the
pessimistic long-term scenario.

While lack of services affects people’s wellbeing, it cannot
be directly associated with a life-saving decision (or extremely
precarious physical living conditions), at least in the short term, and
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therefore we assume that it is not sufficient to immediately trigger
displacements. Nevertheless, the combined criticality of loss of
housing and/or work and a general lack of services in the area can
be a worsening factor that could also drive to displacement on a
longer time window. In the present study, this was not considered
as a factor inducing displacement directly. However, this can be a
worsening element which increases vulnerability, leading to a
higher displacement propensity, and should be taken into
consideration when formulating future policies. In Fiji, people who
lose access to health and education services will double in the
pessimistic long-term scenario compared to the current conditions.
It is worth noticing that in Vanuatu floods do not affect health
services in current conditions, while the number of students who
lose access to schools increases considerably under long-term
climate scenarios (Table 5).

3.4 Comparison between current and
projected probable maximum
displacement

In Fiji, displacements would increase significantly under projected
climate conditions with respect to current conditions (Figure 10A).
For instance, for a 50-year return period (RP), displacements more
than double in the projected optimistic scenario and almost triple in
the projected pessimistic scenario. Similar proportions are estimated
for RP =5years and RP =250 years. It is worth noting that in the long-
term pessimistic scenario, a 250-year event is associated to around
23,000 potentially displaced people, corresponding to 3% of the
current overall population.

In Vanuatu, the PMD curves show that an event with a 50-year
return period could trigger up to 330 displacements under current
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TABLE 5 Average annual number of people who lose access to education
and health services in Fiji and Vanuatu.

Opt.
. Current p
Admin mid-
cond.

term
Fiji
Education 72 100 117 106 159
Health 974 1,456 1,467 1,477 1786
Vanuatu
Education 65 198 352 336 764
Health 0 0 0 1 36

conditions, but this figure could almost double in the long-term
optimistic scenario and quadruplicate in the long-term pessimistic
scenario (Figure 10B).

4 Discussion and concluding remarks

The main novelty introduced by this study concerns impacts of
riverine floods on places of employment, implying a potential loss of
livelihood that may cause displacement. The methodology is rooted
in a comprehensive probabilistic risk assessment, incorporating
climatic, hydrological and hydraulic modeling, as well as estimating
the impacts on physical assets leading to displacement.
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The assessment quantifies the risk in terms of Annual Average
Displacement (AAD) and Probable Maximum Displacement (PMD),
considering both current climate conditions and medium to long-
term projections based on optimistic and pessimistic scenarios. The
benefits of AAD and PMD quantification lie in their ability to
encompass rare scenarios, providing a more exhaustive understanding
of potential displacement risks. Applied for the first time in the Pacific
islands of Fiji and Vanuatu, the methodology yields valuable insights
into the proportion of housing and livelihoods at risk, along with the
quantification of potential disruptions to critical services such as
education. Losing access to such services may not trigger displacement
per se, but it acts as an aggravating factor that heightens vulnerability
and makes movement more likely.

The methodology emphasizes a physically-based modeling
approach rather than relying solely on historical data and empirical
models, enabling simulation of future conditions in explicit terms.

The anticipated tripling of AAD in Fiji and quadrupling in
Vanuatu underscores the urgency of addressing these risks. This is
valid also for rarer events, e.g., for a 50-year return period, which
might pose serious challenges in managing the displacement situation,
exacerbating the potential criticality of the situation in terms of
general disaster management. PMD curves further highlight a
frequency shift, suggesting that events with a 250-year RP under
current conditions may become more frequent by the end of the
century, occurring on average every 5 to 25 years.

Crucially, the method allows for the differentiation of
displacement causes, distinguishing between house loss and job loss.
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PMD curves for current climate conditions and long-term projections under both optimistic and pessimistic scenarios: (A) Fiji, (B) Vanuatu.
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In Fiji, under current climate conditions, 70% of displacements are
attributed to housing loss, with the remaining 30% attributed to the
loss of livelihood. In Vanuatu, there is an approximate 60-40% split
between displacements caused by housing loss and those caused by
the loss of livelihood. This suggests that estimates focusing solely on
housing loss are likely to be significantly underestimated, as they
overlook the impact of livelihood loss. In all the projected climate
scenarios explored, a minimum of 20% of displacement results from
job loss, confirming the importance of incorporating this aspect in
vulnerability assessments also for future assessment.

This distinction offers actionable insights for implementing
mitigation and adaptation measures. Explicitly differentiating the
vulnerability by house typology, including loss of livelihoods and
access to critical services, indirectly accounts for social and economic
factors in determining displacement risk.

We acknowledge the data-intensive nature of the methodology,
emphasizing the need for a robust data collection framework. With
respect to traditional approaches, the proposed methodology requires
greater effort during exposure model preparation, which needs to
incorporate information not only on resident population but on
occupation as well, distinctly mapping the relation between where
people live and where people work to avoid double counting.

As a collateral implication of employing this method,
we emphasize the importance of differentiating the causes of
displacement when collecting impact data on observed events. This
enhances calibration of the vulnerability approach on the one hand
and on the other strengthens knowledge of the factors to be accounted
for in managing and reducing the displacement issue.

Direct validation of the methodology using historical data from
Fiji and Vanuatu brought challenges due to the limited number of
events reported in the IDMC database. While an empirical AAD for
Fiji was estimated at about 1,890 displacements per year, the reliability
of the data remains low. Despite a match with the model-derived AAD
of 936 displacements at least in the order of magnitude, the scarcity of
observed data limits the scientific soundness of this comparison.
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While the overall approach shows promise, its scalability hinges
on the availability of sufficient data to describe livelihoods and
essential service features beyond residential population. However, the
choices made in this study (e.g., use of dependency ratio to estimate
the number of people who would be displaced together with the
breadwinner) are dictated by the intention to increase the portability
of this method to the geographical areas where classic census data are
available. We acknowledge that, in the absence of literature, certain
assumptions had to be made, especially regarding the damage
threshold that makes houses uninhabitable and the proportion of
people who would decide to move after experiencing loss of
livelihoods. While the first one can be estimated to a certain extent
from datasets, the second one would require firsthand data collection
about displacement causes in past events (Table 5).

As climate-related risks escalate globally, this methodology opens
avenues for similar assessments on a larger scale, contributing valuable
insights for informed decision-making and adaptive strategies in
vulnerable regions.

More specifically, the ability to estimate displacement numbers
resulting from present and future climate change has significant policy
implications across various sectors, including loss and damage, climate
change adaptation and mitigation, and humanitarian aid and
relief efforts.

Estimating displacement numbers due to climate change
contributes to understanding the extent of loss and damage caused by
climate-related events. This influences policies that revolve around the
need for mechanisms to address the financial, physical and social
impacts of displacement. A quantitative estimation in probabilistic
terms may favor the development of insurance schemes, compensation
mechanisms or liability frameworks to support affected communities.

Dimensioning the displacement issue with a prospective approach
that highlights the main cause for displacement (e.g., loss of housing,
loss of livelihood), disaggregated per sector, as well as some key
aggravating factors (e.g., limited access to essential services) informs
the and risk reduction and

design implementation  of
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resilience-building measures to minimize future displacement and
associated loss and damage.

Quantitative estimates of displacement numbers can also inform
climate change adaptation strategies by identifying areas most vulnerable
to displacement, in this case due to riverine floods. Policy responses may
involve land-use planning, infrastructure development, and relocation
programs aimed at reducing vulnerability and enhancing resilience in
high-risk areas. In the context of humanitarian aid and relief, estimating
displacement numbers is crucial for humanitarian agencies and
governments to anticipate and respond effectively to the needs of
displaced populations. Policy implications include the need for early
warning systems, contingency planning, and coordination mechanisms
to ensure timely and appropriate humanitarian assistance.

Furthermore, displacement estimates can inform resource
allocation and funding decisions for humanitarian aid and relief
efforts, ensuring that adequate support reaches affected communities.

When the dimension of the problem requires it, policies may also
focus on ensuring the protection of human rights, including the rights
of displaced persons, and promoting durable solutions such as
voluntary return, local integration, or resettlement.

Overall, the possibility to estimate displacement numbers in
present and future climate scenarios underscores the importance of
integrated and proactive policy responses across multiple sectors. By
addressing the challenges posed by climate-induced displacement,
policymakers are given a tool to enhance resilience, reduce
vulnerability, and uphold the rights and well-being of affected
populations in the face of climate change.
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