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This study assesses the aerosol optical depth (AOD) from historical simulations 
(2003–2014) and future climate scenarios (2015–2100) of the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) over the Middle East and North 
Africa (MENA) region. Multi-model mean (MME) AOD statistics are generated 
as the average of those from the five best-performing CMIP6 models, which 
reproduce observational climate statistics. These models were selected based 
on the validation of various climate metrics, including strong pattern correlations 
with observations (>0.8). The resulting MME reproduces the observed AOD 
seasonal cycle well. The observed positive trends (summer and annual) over the 
Arabian Peninsula (AP) and negative trends (winter) over North Africa are well 
captured by MME, as regional meteorological drivers associated with observed 
AOD trends, with few discrepancies. Crucially, the MME fails to capture the 
AOD trends over North West Africa (NWA). For MENA and NWA regions, two 
high-emission scenarios, SSP370 and SSP585, project a continuous rise in the 
annual mean AOD until the end of the century. In contrast, the low-emission 
scenarios, SSP126 and SSP245, project a decreasing AOD trend. Interestingly, 
the projected future AOD area-averaged over the AP region varies significantly 
across all four scenarios in time. Notably, a substantial decrease of about 8–10% 
in the AOD is projected by the SSP126, SSP245, and SSP585 scenarios at the 
end of the century (2080–2100) relative to the current period. This projected 
decrease in annual-mean AOD, including the frequency of extreme AOD years 
under SSP585, is potentially associated with a concurrent increase in annual-
mean rainfall over the AP.
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1 Introduction

Aerosols significantly impact the energy budget of the Earth-
atmosphere system. The sharp rise in aerosol emissions over the 
Middle East and North Africa (MENA) region is primarily due to 
factors such as enhanced local surface heating, intensified local winds, 
and decreased soil moisture and vegetation (Davis et al., 2015; Yu 
et al., 2016; Ravi Kumar et al., 2019; Karumuri et al., 2021, 2022). The 
Middle East experiences an average of twenty major dust storms 
annually (Prakash et al., 2015; Ravi Kumar et al., 2019). The lifecycle 
of atmospheric aerosols from emission to transport and deposition is 
heavily influenced by atmospheric dynamics and thermodynamics 
(Kok et al., 2018). Atmospheric aerosols originate from a variety of 
sources, including biogenic (natural) and anthropogenic (human-
related) activities. Mineral dust, a major component of aerosols, 
profoundly affects the Earth’s climate system (Pöschl, 2005; Vinoj 
et al., 2014), air quality (Islam and Almazroui, 2012), human health 
(Burnett et al., 2014; Krishna et al., 2019), and the fertilization of iron-
deficient marine ecosystems (Mahowald et  al., 2005; Jickells and 
Moore, 2015). A significant portion of global mineral dust originates 
from large desert regions such as the Sahara, Sahel, and Rub’ al Khali 
(Goudie and Middleton, 2001; Engelstaedter et al., 2006; Kok et al., 
2018; Kumar et al., 2018). Aerosols from these deserts are known for 
their high optical depths (Masmoudi et al., 2015).

Nowadays, information about aerosols is primarily obtained 
through ground-based observations, satellites, and model simulations 
(Kalenderski and Stenchikov, 2016; Mehta et al., 2016; Kumar et al., 
2018; Karumuri et al., 2021). Ground-based observations are collected 
from fixed monitoring stations and through campaigns that utilize 
mobile vehicles, ships, and other means. However, the deployed 
networks limit their spatial coverage (Li et  al., 2020). Satellite 
observations offer relatively continuous long-term data of global 
aerosol concentrations over large areas, albeit with limitations in terms 
of time and altitude resolution (Li et al., 2022). Therefore, numerical 
models are utilized to simulate aerosol concentrations and provide 
information about different aerosol types based on emission 
inventories and atmospheric conditions (Ghan and Schwartz, 2007). 
Once validated, these models enable a comprehensive assessment of 
aerosol transport dynamics and variability. The simulated distributions 
of aerosols and dust emission processes depend on various factors 
such as land use, land category, soil conditions, precipitation, and the 
relevant physics (Titos et  al., 2017; Shukla et  al., 2022). Targeted 
simulations offer insights into the historical and possible future 
evolutions of aerosols, and to understand their trends and long-term 
variations spanning from years to decades (Ghan and Schwartz, 2007). 
This information is particularly valuable for regions with limited 
observed data, such as the Middle East and North Africa (MENA) 
region, in interpreting climate variations.

The MENA region, consisting of the Eastern Mediterranean 
Arabian Peninsula (AP) and North African sub-regions, including 
the Sahel and Sahara deserts, is one of the primary sources of dust 
aerosols in the world (Parajuli et al., 2016; Kumar et al., 2018; Ravi 
Kumar et al., 2019). It is a significant hotspot for dust, contributing 
approximately 75% of the global aerosol loading (Ginoux et al., 
2012). Surface winds in the region play a crucial role in driving 
local dust emissions and transporting the dust downstream. For 
instance, prolonged periods of drought in the North African 
sub-regions have led to local drying (Chaibou et al., 2020). This 

resulted in desertification that has been associated with a significant 
increase in dust aerosol loading across the MENA region 
(Middleton, 1985; Held et al., 2005; Ackerley et al., 2011; Giannini 
and Kaplan, 2019; Almazroui, 2020).

The aerosol optical depth (AOD) represents the attenuation 
coefficient of insolation associated with particulate matter in the 
atmosphere (Sartelet et al., 2018). The AOD variability over the MENA 
region is closely linked to the frequency and intensity of regional dust 
storms, which are often triggered by atmospheric instability 
(Knippertz and Todd, 2012). Dust storms and strong surface winds 
are common in the MENA region, particularly in the Sahara and Sahel 
areas as well as the eastern and southern parts of the Arabian 
Peninsula during the summer (June–September) and winter 
(November–April) seasons (Mashat et al., 2008;; Alharbi et al., 2013; 
Kumar et al., 2018; Ravi Kumar et al., 2019; Chaibou et al., 2020). High 
AOD concentrations are often associated with the increased number 
and intensity of regional dust storm events (Sultan et al., 2013; Esmaeil 
et al., 2014; Farahat et al., 2015; Xian, 2016). In addition, the local 
topography and atmospheric circulation patterns play a significant 
role in driving dust distribution across the MENA region (Jiang et al., 
2009; Roberts and Knippertz, 2014; Kumar et al., 2018).

Several studies utilized regional climate models to identify dust 
sources and understand their impacts on the MENA climate (Pérez 
et al., 2006; Cuesta et al., 2010; Jones et al., 2011; Knippertz and Todd, 
2012; Kalenderski and Stenchikov, 2016; Karumuri et  al., 2021). 
However, most of these studies focused on specific cases of dust 
storms or dust changes over particular periods, such as weeks to 
seasons, to examine AOD modulations in the region. Studies based on 
long-term variations and trends in AOD over the MENA region are 
particularly lacking. Interestingly, significant improvements in aerosol 
parameterization schemes in successive Coupled Model 
Intercomparison Project Phase (CMIP) phases have resulted in better 
AOD simulations over various regions (Sanap et al., 2014; Tilmes 
et al., 2015; Misra et al., 2016). Specifically, compared to the CMIP5 
models, the latest CMIP6 models have demonstrated increased skill 
in producing realistic simulations of AOD distributions and observed 
trends (Cherian and Quaas, 2020). In this context, analyzing the 
outputs from the latest-generation CMIP6 models will help investigate 
the mean AOD distribution over the MENA region, its long-term 
variations, and the associated dynamics. Evaluating the fidelity of 
CMIP6 simulated climatological AODs in relation to observations 
over the MENA region is a prerequisite for such an analysis.

Here, we  examine the fidelity of historical simulations from 
CMIP6 models in reproducing observed climatological features, 
seasonal variability, and trends of AOD over the major dust hotspot 
regions of MENA. We evaluate the AOD simulations from 16 CMIP6 
models (Eyring et al., 2016; O’Neill et al., 2016) using satellite AOD 
data from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) and Multiangle Imaging Spectroradiometer (MISR), as well 
as data from the Modern-Era Retrospective analysis for Research and 
Applications, version 2 (MERRA2). The best set of aerosol models for 
the MENA region was identified based on Taylor diagram analysis 
(Martin, 1991; Taylor, 2001). This analysis allowed us to compute a 
multi-model mean (MME), focusing on the simulated mean Aerosol 
Optical Depth (AOD) and its interannual variability over the region. 
Additionally, we assessed the fidelity of the spatial trends of AOD in 
the CMIP6 historical simulations over the MENA region for the 
common period (2003–2014) of satellite observations.
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Only a few studies have so far assessed future changes in AOD 
using CMIP6 simulations. For instance, Wang et al. (2021) explored 
AOD projections until the end of the 21st century and compared them 
to historical simulations. However, no studies have specifically focused 
on the MENA region. Hence, future changes in AOD over the MENA 
region are investigated using four different Shared Socioeconomic 
Pathway (SSP) scenarios (SSP126, SSP245, SSP370, and SSP585) from 
CMIP6 models. Leveraging CMIP6 models offers valuable 
information for understanding the dynamics of aerosols and their 
impacts on the climate and air quality over MENA, supporting 
research efforts, policymaking, and mitigation strategies in this region.

The remainder of the study is organized as follows. Section 2 
describes the analyzed data from CMIP6 models and the satellite and 
reanalysis data products. Section 3 presents and discusses the AOD 
climatology, variability, trends, and future projections over the MENA 
region as simulated by the MME of selected CMIP6 models. We also 
further extended the analysis by analyzing the dominant 
meteorological variables behind the AOD trends in CMIP6 models. 
Finally, Section 4 concludes the work along with a summary of the 
main results and a general discussion.

2 Datasets and methods

The observed AOD fields are derived from MODIS (MOD08_D3_
v6.1) level 3 and combined Dark Target and Deep Blue AOD products 
at 550 nm with a resolution of 1° × 1° (De Meij and Lelieveld, 2011). 
MODIS sensors are known to provide the best available aerosol 
retrievals compared to other satellite sensors (De Meij et al., 2012; Che 
et  al., 2019). In the following discussion, references to satellite 
observations include both Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Multi-angle Imaging 
SpectroRadiometer (MISR).

The MERRA-2 AOD fields (Gelaro et al., 2017) with a resolution 
of 0.5° × 0.625° are also utilized. MERRA-2 is the latest atmospheric 
reanalysis dataset provided by NASA’s Global Modeling and 
Assimilation Office, which incorporates assimilated meteorological 
and AOD observations from various sources, including MODIS, 
MISR, Aerosol Robotic Network, and the Advanced Very High-
Resolution Radiometer instrument (Buchard et al., 2015). These AOD 
datasets are analyzed to assess the ability of the CMIP6 models to 
reproduce the variations in aerosol loading over the MENA region.

The historical simulations from the 16 CMIP6 fully coupled Earth 
System Models (ESM), which we analyzed cover the period 1850–
2014. The outputs of these simulations are publicly available as 
contributions from different institutions participating in the CMIP6 
of the World Climate Research Programme. The CMIP6 simulations 
consider time-varying externally imposed forcing fields, including 
solar variability, volcanic aerosols, and changes in atmospheric 
composition due to greenhouse gases and aerosols generated by 
human activities (Eyring et al., 2016). Table 1 summarizes the details 
of the CMIP6 models, parent institutions, and their resolutions. Since 
the models have different horizontal resolutions, all model outputs are 
horizontally interpolated onto a common 1° × 1° grid using Climate 
Data Operator tools. We adopt a multi-model mean (MME) approach 
following the “climate filter” concept introduced by Lee and Liang 
(2020). In essence, this concept suggests that the MME should 
be estimated based on models that demonstrate the best agreement 
with observations regarding the climate features of interest. Analogous 
approach have been recently adopted in several studies (Singh et al., 
2022). In our case, the MME of AOD at each grid point is computed 
by averaging the selected model simulations at each time step. Trends 

TABLE 1 Shows the statistics of AOD against all CMIP6 models over the MENA region.

S. no. CMIP6 model Institution ID Atmosphere (Lon × 
Lat, Levels)

Nominal 
resolution

References

1 ACCESS-ESM1-5 CSIRO 192 × 145, L38 250 km Ziehn (2019)

2 AWI-ESM-1-1-LR AWI 192 × 96, L47 250 km Danek et al. (2020)

3 BCC-ESM1 BCC 128 × 64, L26 250 km Zhang (2018)

4 CanESM5 CCCma 128 × 64, L49 500 km Swart (2019)

5 CESM2 NCAR 288 × 192, L32 100 km Danabasoglu (2019a)

6 CESM2-FV2 NCAR 144 × 96, L32 250 km Danabasoglu (2019b)

7 CESM2-WACCM NCAR 288 × 192, L70 100 km Danabasoglu (2019c)

8 CESM2-WACCM- FV2 NCAR 144 × 96, L70 250 km Danabasoglu (2019d)

9 CMCC-CM2-SR5 CMCC 288 × 192, L30 100 km Lovato and Peano (2020)

10 MIROC6 MIROC 256 × 128, L81 250 km Tatebe and Watanabe (2018)

11 MPI-ESM-1-2-HAM HAMMOZ-

Consortium

192 × 96, L47 250 km Neubauer (2019)

12 MPI-ESM1-2-HR MPI-M 384 × 192, L95 100 km Jungclaus et al. (2019)

13 MPI-ESM1-2-LR MPI-M 192 × 96, L47 250 km Wieners (2019)

14 MRI-ESM2-0 MRI 192 × 96, L80 250 km Yukimoto (2019)

15 NorESM2-LM NCC 144 × 96, L32 250 km Seland (2019)

16 TaiESM1 AS-RCEC 288 × 192, L30 100 km Lee and Liang (2020)
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FIGURE 1

Spatial distribution of annual climatological mean obtained from the CMIP6 models (A-P) along with MODIS (Q) and MISR (R) satellite observations and 
MERRA2 (S) reanalysis datasets.

are identified through linear regression analysis, and their significance 
(at a 95% confidence level) is assessed using the Student’s t-test.

Unless otherwise stated, we utilize monthly mean AOD fields 
simulated, observed, and reanalyzed at a wavelength of 550 nm. The 
AOD values presented in this study specifically cover the period of 
2003–2014, for which satellite AOD observations are available to 
validate the models over the historical period.

3 Validation and analysis of CMIP6 
AOD simulations over MENA

This section presents an analysis of the AOD distribution and 
variability in the MENA region based on the CMIP6 model outputs, 
MODIS and MISR satellite observations, and MERRA-2 data. The 
CMIP6 AOD fields are first validated against the satellite and 
reanalysis datasets. Subsequently, a multi-model ensemble (MME) 
designed from the best suite of CMIP6 models is implemented to 
examine the climatology, variability, and trends of the AOD, both on 
seasonal and annual scales. Though the Arabian Peninsula (AP) 

region is included within the MENA region owing to its distinct 
characteristic of high dust loading during the summer as well as the 
distinct climate, the region is given particular emphasis in the analysis 
as necessary.

3.1 CMIP6 observation comparison and 
MME selection

Figure 1 illustrates the climatological spatial distribution of the 
annual AOD obtained from the CMIP6 models, satellite 
observations, and reanalysis. Satellite observations suggest hotspots 
with the highest observed aerosol loading located over North Africa 
and the AP (Figures 1Q,R), with AOD values ranging from 0.2 to 0.6 
across the MENA region. These hotspots are also captured by the 
MERRA-2 reanalysis (Figure 1R) and some of the CMIP6 models, 
such as CESM2 (Figure  1D), MPI-ESM-HR (Figure  1N), 
NorESM2-LM (Figure 1P), TaiESM1 (Figure 1H), and AWI-ESM-
1-1-LR (Figure 1I). The modeled AOD across the MENA region 
varies between 0.2 and 0.8. The area-averaged annual climatological 
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AOD value over the MENA region is about 0.35 for satellite 
observations, while the corresponding simulated values vary 
between 0.15 and 0.5, which is marginally high in a few regions. The 
magnitude of the simulated AODs over the major dust loading 
regions, especially the AP, is close to observations. Conversely, a few 
CMIP6 models simulate substantially higher AOD values than those 
observed over the North Africa region; for example, the AOD from 
CESM2-FV2, CESM2-WACCM-FV2, and CESM2-WACCM models 
reaches as high as 0.8. Interestingly, while the simulated AOD 
distribution over North Africa and the AP is in good agreement with 
the observations and reanalysis, several of the individual models 
overestimate the AOD distribution in the remaining portions of the 
broader MENA region. This overestimation is also reflected in the 
CMIP6 area-averaged AOD values over the MENA region obtained 
from the CMIP6 models (Table 2), where these values vary between 
a minimum of 0.14 (MICRO6) and a maximum of 0.75 (CESM2-
WACCM-FV2). In comparison, the observed AOD is only 0.32 
(MODIS and MISR). Few of the models, such as CESM2-FV2, 
NorESM2-LM, CESM2, CESM2-WACCM, and TaiESM1, simulate 
climatological mean AODs close to the satellite observations 
(~0.32), while other models, such as AWI-ESM-1-1-LR, MIP-ESM-
1-2-HR, and MPI-ESM-1-2-LR, provide mean AODs between 0.28 
and 0.3.

The spatial distribution of the standard deviations (SDs) of the 
annual AOD is from satellite observations and the CMIP6 models, 
which are now analyzed to examine the variability. The highest SD is 
observed over North Africa and dust sources regions of the Arabian 
Peninsula (Figure  2). In contrast, the simulated for most CMIP6 
models, the SD varies between 0.1 and 0.4 (Figure 2). CanESM5, 
CESM2-FV2, CESM2-WACCM-FV2, and MPI-ESM-1-2-HAM 
models simulate considerably higher SDs (>0.4) than observed. On 
the other hand, some models, such as ACCESS-ESM1-5, AWI-ESM-
1-1-LR, MIROC6, MPI-ESM-1-2-HR, and MPI-ESM-1-2-LR exhibit 
a low SD of 0.1, half of that than the observed.

Table  2 lists various statistics used to assess the skill of the 
CMIP6 models in reproducing the observed AOD variability across 
the MENA region. This includes standard deviations (SDs), bias, 
pattern correlation coefficients (CCs), root-mean-square errors 
(RMSEs), and mean absolute errors (MAEs) of the area-averaged 
climatological AOD over the MENA region. The area-averaged AOD 
values for most CMIP6 models range from a minimum of 0.14 
(MICRO6) to a maximum of 0.75 (CESM2-WACCM-FV2), 
compared to 0.32 in the observations (MODIS and MISR). Some 
models (AWI-ESM1-1-LR, MPI-ESM-1-2-HR, MPI-ESM-1-2-LR, 
CMCC-CM2-SR5, and TaiESM1) exhibit lower bias and errors 
(RMSEs and MAEs) compared to satellite observations and the 
MERRA-2 reanalysis, providing a closer approximation to the 
observed AOD of ~0.32.

We carry out a Taylor diagrams analysis to compare the pattern 
correlations between the annual mean AODs from various models 
and the satellite observations, including the SDs, over the period from 
2003 to 2014 are shown in Figure 3. The simulated area-averaged 
mean AODs from most of the models are significantly correlated with 
the corresponding observations at the 95–90% confidence level based 
on a 2-tailed Student’s t-test. The SDs obtained from some of the 
CMIP6 models (e.g., CMCC-CM2-SR5, BCC-ESM1, CESM2-FV2, 
CESM-WACCM, MRI-ESM2, and CESM2) agree well with those of 
satellite observations. The performance of MERRA-2 reanalysis over 

the MENA region was also assessed and we found that the CMIP6 
models are able to produce the similar spatial distributions as 
compared to MERRA-2. However, these CMIP6 models exhibit higher 
variability compared to MERRA2. Based on the Taylor diagram 
analysis (>0.8 pattern correlations against the satellite observations at 
the 95% confidence level), we identify the five best CMIP6 models 
(namely AWI-ESM1-1-LR, MPI-ESM-1-2-HR, MPI-ESM-1-2-LR, 
CMCC-CM2-SR5, and TaiESM1). Most models showed significant 
correlations (90–95% confidence) and similar standard deviations 
with MERRA-2. These models are then utilized to generate the MME 
(Multi-Model Ensemble) mean for further analysis, which is presented 
in the subsequent sections.

We also conducted a scatter analysis by comparing AOD from 
MME with AERONET measurements at two locations: Solar Village 
(2003–2013) and KAUST campus (2012–2014) within the study 
region. The results indicate that the MME effectively captures the 
monthly variations when compared to ground-based observations 
(Supplementary Figure S1).

3.2 Spatiotemporal variability of the AOD

In this sub-section, we  study the spatial distribution of the 
climatological annual mean AOD (Figure 4) using the MME outputs, 
reanalysis, and satellite observations. Due to significant variations 
across seasons (Kumar et al., 2018), we analyze the AOD in both the 
summer (June–September) and winter (December–March) seasons in 
addition to the annual timescales. Figure  4 illustrates the spatial 
distributions of the climatological annual mean AOD estimated from 
satellite observations (Figure 4A for MODIS and Figure 4B for MISR), 
MERRA-2 (Figure  4C), and the CMIP6 MME (Figure  4D). 
Figures 4A–C are just the replicates of the same as those shown in 
Figure 1 and are reproduced here for the ease of comparison. The 
distribution and magnitude of the annual climatological AOD over 
North Africa and the AP are primarily influenced by the summer 
AOD values in these regions (Figures 4E–G). The spatial patterns of 
the annual mean AOD from the MME (Figure 4D) closely resemble 
the observed patterns. The MME successfully reproduces the 
maximum values of annual aerosol loading (~0.5–0.6). However, 
observations suggest less loading (<0.2) over parts of northern and 
central AP and Sudan (Figures  4A–C), indicating that models 
overestimate AOD in these regions.

We also examine the spatial distribution of AOD during the 
summer (Figures 4E–H) and winter seasons (Figures 4I–L). The MME 
exhibits high AOD loading (0.7–0.8) over North Africa and the AP, in 
agreement with the observations. However, it fails to reproduce the 
high AOD over the Southern Red Sea (SRS), which is an AOD hotspot 
in the AP. The MME successfully captures high aerosol loading over 
the source regions of Saharan Africa during the summer season, 
which is generated by strong westerly winds prevailing over the Tokar 
Gap (Jin et al., 2016; Kumar et al., 2018; Ravi Kumar et al., 2019; 
Karumuri et al., 2021).

During the winter season, satellite observations (Figures 4I–J) 
depict a high AOD loading (~0.6) over the Saharan source regions, 
which is also captured by the MME (Figure 4L). The MME reproduces 
the high aerosol loading over North Africa, albeit slightly higher 
values. Over the AP, the MME suggests lower annual mean values 
(0.1–0.3) that are comparable to the observations, except for the 
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TABLE 2 Shows the statistics (correlation coefficients, root mean square errors, bias and mean absolute errors) of the AOD between observations and CMIP6 models over MENA region.

Models Mean SD Corr
MERRA2

Corr
MISR

Corr
MODIS

Bias
MERRA2

Bias
MISR

Bias
MODIS

RMSE
MERRA2

RMSE
MISR

RMSE
MODIS

MAE
MERRA2

MAE
MISR

MAE
MODIS

AWI-ESM 0.290 0.058 0.89* 0.93* 0.89* −0.008 −0.032 −0.027 0.001 0.000 0.004 0.025 0.03 0.03

CESM2-Fv2 0.321 0.080 0.66 0.750 0.664 0.024 −0.001 0.005 0.003 0.001 0.003 0.051 0.04 0.04

CESM2-

WACCM-FV2

0.749 0.206 0.64 0.70 0.67 0.452 0.427 0.433 0.036 0.037 0.035 0.45 0.42 0.43

MIRCO6 0.144 0.032 0.71 0.77 0.73 −0.153 −0.178 −0.173 0.008 0.012 0.020 0.15 0.17 0.17

MPI-ESM-HAM 0.226 0.086 0.35 0.29 0.35 −0.072 −0.096 −0.091 0.002 0.007 0.009 0.09 0.11 0.11

MPI-ESM-HR 0.287 0.058 0.88* 0.93* 0.89* −0.010 −0.035 −0.029 0.000 0.000 0.004 0.025 0.03 0.03

MPI-ESM-LR 0.290 0.058 0.87* 0.92* 0.88* −0.008 −0.032 −0.027 0.001 0.000 0.004 0.025 0.03 0.03

NorEsm-LM 0.329 0.054 0.67 0.74 0.66 0.031 0.007 0.012 0.004 0.005 0.006 0.050 0.04 0.04

ACCESS-ESM 0.202 0.049 0.57 0.56 0.56 −0.095 −0.120 −0.114 0.003 0.004 0.008 0.097 0.12 0.11

BCC-ESM 0.421 0.083 0.73 0.78 0.74 0.124 0.099 0.104 0.008 0.009 0.001 0.124 0.10 0.10

CanESM 0.277 0.127 0.47 0.45 0.45 −0.020 −0.045 −0.039 0.002 0.006 0.011 0.09 0.10 0.10

CESM2 0.322 0.076 0.61 0.70 0.62 0.024 0.000 0.005 0.002 0.001 0.005 0.05 0.04 0.05

CESM2_

WACCM

0.332 0.080 0.67 0.73 0.68 0.035 0.010 0.015 0.001 0.001 0.003 0.057 0.04 0.05

CMCC-CM2-

SR5

0.274 0.083 0.83 0.90 0.84 −0.023 −0.048 −0.043 0.001 0.003 0.010 0.03 0.05 0.04

MRI-ESM 0.298 0.081 0.62 0.67 0.62 0.001 −0.024 −0.018 0.004 0.004 0.001 0.04 0.04 0.05

TaiESM1 0.328 0.115 0.81* 0.88* 0.80* 0.031 0.006 0.011 0.002 0.001 0.007 0.06 0.04 0.05

MERRA2 0.297 0.067

MISR 0.322 0.078

MODIS 0.317 0.078

*Represents the statistically significant at 95% confidence level with bold in symbol. Bold symbols also indicate best suite of models considered for the M.
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northern AP where the satellite observations are slightly higher (~0.4). 
Overall, the results indicate that the MME effectively reproduces the 
mean spatial AOD patterns at annual and seasonal time scales, and 
these patterns are in good agreement with the observations 
and reanalysis.

The standard deviation (SD) of the AOD field from MME, 
MODIS, MISR, and MERRA-2 was also analyzed for the annual mean, 
summer, and winter seasons (Figure 5). On an annual timescale, a 
high AOD variability is observed over both Africa and the AP, with an 
SD of about 0.3, as discussed earlier. The MME adequately reproduces 
the AOD variability, with SD values ranging between 0.2 and 0.3 over 
the oceanic regions adjacent to the AP. However, it fails to capture the 
high variability over the Southern Red Sea (SRS). During the dry 
season (Figures 5E–H), a stronger variability is observed over the 
oceanic regions in the MME. While the MME appears to 
underestimate the observed high variability over some parts of Africa 
and the Red Sea, it reasonably reproduces the observed weaker 
variability (0.1–0.2) over most parts of the MENA region. The SD 
from the MME exhibits significant disparity over the Saharan Africa 
during the winter season (Figures  5I–L), where the simulated 
variability (0.15) is lower than those of MODIS, MISR, and MERRA-2 

(0.35). Overall, the MME successfully captures the annual variability. 
However, it underestimates the seasonal variability in some areas of 
the MENA region, particularly over parts of Africa and the Red Sea.

Figure 6 displays the bias in the MME-derived mean AOD over 
the MENA region relative to MODIS, MISR, and MERRA-2 on annual 
as well as seasonal scales. On the annual scale, the MME simulations 
of the climatological AOD exhibit a positive bias over most parts of 
the African region and a negative bias over the southern and northern 
parts of the AP, including the SRS. On the seasonal scale, during the 
summer season, a positive bias persists over most parts of Africa and 
the AP; this is in contrast with the SRS, over which a clear negative 
bias is observed. During the winter season, a negative bias exists 
throughout the AP region, including the SRS. A positive bias is also 
seen over Africa, except for the western parts. The largest positive bias 
of 0.3 is observed in the summer season. The biases shown in Figure 6 
are possibly due to potential biases in the simulated circulation 
patterns in CMIP6 models.

The time series of the area-averaged monthly AOD from MODIS, 
MISR, MERRA-2 datasets, and the MME over the MENA, AP, and 
North West Africa (NWA) are further examined (Figure 7). We chose 
these regions for their significant aerosol loading and AOD variability, 

FIGURE 2

Same as Figure 1, but for standard deviation.
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allowing us to assess the CMIP6 models’ ability to capture aerosol 
dynamics and evaluate their skill in simulating regional climate and air 
quality impacts. The evolution of the simulated AOD annual cycle over 
the MENA region is comparable to that of the observations (Figure 7A); 
however, the magnitude of simulated peak in July is slightly lower than 
those of the satellite observations (0.43) and reanalysis data (0.39). The 
corresponding monthly SD for July is as low as 0.03, whereas the SDs 
from the observed values are about 0.07 and 0.09 for MODIS and MISR, 
respectively (Figure 7). The MME suggests the minimum AOD of 0.18 
for the MENA region in November, which is in good agreement with 
the observed value of 0.2. Although the MME can capture the annual 
cycle of the AOD over the MENA region, it exhibits some differences in 
the magnitude of the AOD peak. This indicates that the high aerosol 
loading over the study region is not well reproduced by the MME, 
though the minimum is well captured.

The climatological annual cycle for the AP region, which is one of 
the prominent dust source regions, is also analyzed. In this region, the 

maximum and minimum monthly AODs occur during July and 
December, respectively (Kumar et al., 2018). The MME suggests an 
AOD peak of 0.50 for July, which is comparable to the observed value 
of 0.56 for both MODIS and MISR. The mean AOD from MERRA-2 
for July (0.53) is closer to that of the MME. The AOD maximum in 
July is higher over the AP (shown with the box in Figure 4) than over 
the MENA region. The MME simulated SD of the monthly AOD 
during the peak month of July is about 0.05, while the SD obtained 
from both MODIS and MISR data is 0.10, and that from MERRA-2 
is 0.08.

Over the AP, the simulated monthly climatological AOD 
minimum during December is 0.16, which is marginally lower than 
values of 0.2 obtained from MODIS and MISR, and 0.18 from 
MERRA-2. The AOD SDs during this month are low and vary between 
0.02 and 0.04 for all the datasets. Furthermore, the annual cycle of the 
AOD (Figure 7C) simulated by the MME over the NWA (box shown 
as in Figure 4), which is another dust source region in MENA, is 

FIGURE 3

Taylor diagram of AOD for the CMIP6 models with (A) MODIS and (B) MISR satellite observations and (C) MERRA2 reanalysis products over the MENA 
region.
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comparable to the annual AOD cycle from MODIS satellite 
observations. The simulations correctly capture the peak during the 
summer season; however, the values are slightly underestimated 
compared to the MISR observations. Overall, the AOD annual cycle 
over the MENA, AP, and NWA regions shows that the MME AOD 
maximum and minimum are in good agreement with the satellite 
observations and reanalysis products (CC > 0.8 at the 95% 
confidence level).

3.3 Spatial AOD trends and their 
influencing factors

The above analysis clearly suggests that the strong seasonal 
variations in AOD over the MENA region, particularly the AP, are 
likely associated with dust activities. The variations are highest during 

summer and lowest during winter (Basart et al., 2009; Rashki et al., 
2014). Recent studies have classified the Middle East as a hotspot of 
mineral dust and have reported a significant increase in AOD activity 
in recent decades (Klingmüller et al., 2016; Ravi Kumar et al., 2019; 
Gandham et al., 2020). A spatial trend analysis is presented here for 
the observed and simulated AODs over the period of 2003–2014 for 
the MENA region and its sub-regions. Figure 8 shows the spatial 
distribution of trends in monthly AOD at annual and seasonal scales 
from the observations, reanalysis, and MME datasets, with dots 
indicating statistically significant signals at the 95% confidence level.

At the annual scale, a significant positive trend exceeding 
0.005 yr.−1 is observed over the AP (Figures 8A,D,G) in all datasets. 
The satellite observations and reanalysis suggest significant negative 
AOD trends of −0.006 yr.−1 over most of North Africa, Southern 
Algeria, north Mali, and north Niger, where the AOD shows 
significant positive trends. The AOD simulates weaker positive trends 

FIGURE 4

Spatial distribution of annual climatological mean (A–D), summer climatology (E–H) and winter climatology (I–L) obtained from MODIS and MISR 
satellite observations, MERRA2 reanalysis datasets and CMIP6 Multi Model Ensemble (MME) consisting of best models for the period 2003–2014. The 
boxes in the central panel represents the Arabian Peninsula (AP) and North West Africa (NWA) regions.
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than those observed over the MENA region, but capture the strong 
positive trends over the AP are well captured. The MME also indicates 
significant positive trends over the western Sahel, in contrast to the 
observations (Figure  8J). During the summer season, the spatial 
patterns of AOD trends (Figures 8B,E,H,K) replicate the annual AOD 
trend patterns over the MENA region across all datasets. The strong 
positive trend of >0.01 yr.−1 observed over the AP is well captured by 
the MME, albeit slightly underestimated. It is also important to 
mention that the MME does not capture the observed local-scale 
negative AOD trends over the North African region.

Most parts of the MENA region show negative AOD trends 
during the winter season, which are well captured by the 
MME. During winter, strong and significant negative trends are 
noticeable over the North African region. The rising trends in AOD 
over the MENA region are primarily driven by the summer AOD 
trends. Kumar et al. (2018), Ravi Kumar et al. (2019) reported that 
low-level northerly winds (Shamal winds) over the northern AP 
region trigger dust saltation activity over the AP. The recent 

intensification of westerly winds (Davis et al., 2015) in the western AP 
apparently drives the observed positive AOD trends in the AP region 
(Figure 8, central panel). Meanwhile, the negative trends over North 
Africa in winter (Figure  8, right panel) are mainly attributed to 
variability in large-scale circulation patterns (Ridley et  al., 2014; 
Mehta et al., 2016) and greening (more precipitation) of the Sahel 
region (Olsson et al., 2005; Cowie et al., 2013; Ridley et al., 2014). 
Overall, the selected CMIP6 models in this study successfully simulate 
the observed AOD trends over the AP on both annual and seasonal 
scales, despite underestimating the trend over a few regions. These 
models fail to simulate observed AOD trends over some parts of the 
North African regions.

Klingmüller et al. (2016) suggested several dominant drivers of 
AOD trends, and the quality of simulating these drivers is likely to 
determine the performance of the CMIP6 models (e.g., Zhao et al., 
2021). To investigate the factors behind the reduced AOD trends, 
we  further examined the simulated trends in other relevant 
meteorological factors, such as soil temperature, soil moisture, surface 

FIGURE 5

Same as Figure 4, but for standard deviation.
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winds, relative humidity, and precipitation, which can potentially 
influence the local AOD (Figure 9).

In the CMIP6 MME, soil temperatures exhibit a warming trend 
exceeding 0.07 K yr.−1 during summer (Figure 9B) as well as on an 
annual scale (Figure 9A). Conversely, in winter, they exhibit a cooling 
trend of 0.09 K yr.−1 (Figure 9C). Regarding soil moisture, significant 
drying trends (>0.06 kg m−2 yr.−1) are observed in summers and on 
annual scales, while strong soil wetting trends (0.1 kg m−2 yr.−1) are 
noticeable in the Sahel region. Generally, positive soil temperature 
trends and negative soil moisture trends favor rising AOD trends, 
while negative soil temperature trends and positive soil moisture 
trends mostly influence decreasing AOD trends (Klingmüller 
et al., 2016).

The CMIP6 MME also indicates negative and positive relative 
humidity trends for both the summer and winter seasons, respectively 
and the annual mean over the MENA region. For summer (winter) 
and annual scales, rising (decreasing) soil temperatures and 
decreasing (increasing) soil moisture and relative humidity 
apparently promote evaporation and soil drying. These conditions 
could favor an increase (decrease) in AOD emissions. Additionally, 
the reduction (enhancement) in AOD in the CMIP6 MME can 
be attributed to the weakening (strengthening) of surface winds over 
the regions of dust sources. The higher AOD in the NWA may also 

be potentially related to the decreasing rainfall trends reflected in the 
relative humidity. A further detailed investigation is needed to 
understand the impact of decreasing rainfall on wet scavenging in the 
CMIP6 MME.

3.4 Future projections of the AOD

We finally investigate the projected future evolution of AOD over 
three regions: MENA, AP, and NWA by analyzing the regionally 
averaged AOD from four selected SSP scenarios (SSP126, SSP245, 
SSP370, and SSP585) from CMIP6 MME (Figure  10). Since the 
interpretations of future projections of MME AOD may be influenced 
by outlier values, we conduct an analysis of projected area-averaged 
annual AODs (AAOD), the individual selected models as well the 
analysis is conducted across different time periods, including the 
historical period (1995–2014) and three future time slices: near-future 
(2,021–2,040), mid-future (2,040–2,060), and far-future (2,080–2,100).

Over the MENA region (Figure 10A), the projected evolution of 
AAOD suggests its increasing tendency over time under the two high 
emission scenarios SSP370 and SSP585 (Supplementary Figure S2) 
compared to the historical period (1995–2014). However, it remains 
relatively constant throughout the study period in SSP245. In contrast, 

FIGURE 6

Spatial distribution of mean differences in CMIP6 MME against MODIS, MISR and MERRA2 for annual (A–C), summer (D–F) and winter (G–I) seasons, 
respectively.
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a decrease is projected under the SSP126 scenario (Figure  10A; 
Supplementary Figure S2). To quantify these projected changes in 
time, the projected AODs are averaged over each of the three time 
slices, separately and are shown in Supplementary Figure S2. In the 
near-future, an estimated increase of 5% for SSP245, 7% for SSP370, 
and 8% for SSP585 in AAOD is projected to relate to the historical 
period (Supplementary Figure S2A). Moving to the mid and far-future 
(Supplementary Figure S2A), AAODs over the MENA are projected 
to increase by approximately 9% under high emission scenarios, while 
a noticeable decrement of 5–9% is expected under the lower emission 
scenario (SSP126).

The AAOD over the AP region is projected to decrease, relative to 
the historic values, by 7–10% across all future climate change scenarios 
until the end of the 21st century (Figure 10B). However, the rate of 
decrease is relatively weak in the SSP370 scenario 
(Supplementary Figure S2B). The AAOD over the AP region exhibits 
distinct patterns among the different SSP scenarios (Figures not 
shown), with a significant decrease of about 8% in projected AOD for 
the far-future under SSP585. In the case of the NWA (Figure 10C), the 
AAOD is projected to remain constant throughout the future under 
the SSP126 and SSP245 scenarios. However, it is indicated to increase, 
respectively, at a moderate and fast rate under the SSP370 and SSP585 
scenarios. The AAOD over NWA is projected to increase by 9% by the 
end of the century under SSP585 (Supplementary Figure S2C).

We now look for any outliers that may have biased the MME 
projections. The box-whisker plots presented in Figures  11A–C 
display the area-averaged AOD from the MME of selected models for 
each time slice period (historical, near-future, mid-future, and 
far-future) over the three regions of interest. Unless mentioned 
otherwise, the upper and lower limits of each box (Figure 11) represent 

the 75th and 25th percentile values, respectively, while the horizontal 
line (solid dot) in each box shows the median (mean) of the 
distributions. Upper and lower whiskers indicate the 90th and 10th 
percentile values, respectively. Figures 11A–C do not indicate any 
substantial differences in the mean and median values of the AAODs 
over the very broad three regions, suggesting that the models exhibit 
similar AAOD evolutions to the scenario forcings. These results also 
provide a concise overview of the evolution of median AOD values 
from the historical to far-future periods, supporting the broad 
conclusions regarding the projected changes in AOD discussed in the 
preceding subsection.

Increasing mean and median AOD values with time is noticeable 
over the MENA region under the SSP370 and SSP585 scenarios 
relative to the historical period (Figure 11A). The extreme AOD values 
also increase in time, as can be discerned by the higher values of the 
90th percentile annual AOD, which we deem as the upper threshold 
for extremes in each of the different future periods. In particular, even 
the lowest threshold (10 percentile) of the AAOD distribution under 
the SSP370 and SSP585 scenarios during the future across the MENA 
region is projected to be  higher than the upper threshold for the 
corresponding historical period. Thus, nearly all the far-future and 
mid-future periods can be categorized as AAOD extreme periods over 
the MENA region under these scenarios (also see Supplementary  
Figure S3). It is worth noting that the extreme AAOD intensity over 
MENA in the far-future is anticipated to be slightly weaker compared 
to the mid-future under the SSP370 scenario (Figure  11A; 
Supplementary Figure S3).

In contrast to the SSP585 scenario, the projected magnitude of 
extreme AAOD values over the MENA region weakens progressively 
in the future relative to the historical period under the lower emission 

FIGURE 7

Climatological annul cycle with their standard deviations (error bars) of AOD from MODIS and MISR and MERRA2 reanalysis and CMIP6 MME datasets 
over (A) MENA, (B) AP, and (C) NWA regions.
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scenarios of SSP126 and SSP245 (Figure 11A). The projected future 
evolution of the extreme annual AOD over NWA under various 
scenarios (Figure 11B) is qualitatively similar to that over the MENA 
region, though the rate of the relative increase in the extreme AOD 
under the SSP585 is higher in this region compared to the 
MENA region.

However, in contrast to the projections for the NWA and MENA 
regions, the projected evolution of AOD over the AP under high 
emission scenarios indicates a decline in the extreme AOD threshold 
in the future (as shown in Figure 11C). This decline aligns with a 
similar decrease in the projected mean (as seen in Figure 10) and 
median AOD values. The declining trend is also projected for the 
lower emission scenarios. To further explore the projected changes in 
AOD and its relationship with precipitation, we  calculated the 
percentage changes in future projected AOD and precipitation over 
the AP. Figure 12 shows a decreasing trend in AOD alongside an 
increasing trend in precipitation in future scenarios. This projected 
increase in precipitation over the AP was also noted by Almazroui 
(2020). Importantly, the SSP585 scenario shows the highest projected 
area-averaged future precipitation across all scenarios. The projected 

future precipitation in SSP585 is strongly correlated with concurrent 
decreases in AOD over the AP, with a correlation coefficient of 0.77. 
This strong and statistically significant correlation suggests that the 
projected high rainfall in the future over the AP is likely associated 
with a weakened AOD through the washout mechanism. However, a 
further comprehensive investigation is required to ascertain this 
potential association of the projected decrease in the AOD with that 
in the rainfall, as changes in AOD can also be influenced by other 
factors such as transport mechanisms, soil moisture, and seasonality.

4 Summary and discussion

This study evaluated the AOD over the Middle East and North 
Africa (MENA) region as simulated by 16 CMIP6 models. AOD 
observations from the MODIS and MISR available between the 
period 2003 and 2014, as well as the corresponding reanalysis data 
sets from the MERRA-2, were used in validating the model outputs. 
The simulated climatology and variability of the AOD and its trends 
over the MENA region were compared against the observations and 

FIGURE 8

Spatial trends of AOD obtained from MODIS (A–C), MISR (D–F), MERRA2 (G–I) reanalysis and CMIP6 MME (J–L), datasets during annual, summer and 
winter seasons for the period from 2003 to 2014. The black dots represent the statistical significance at 95% confidence level.
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reanalysis. The five best models chosen through a Taylor diagram 
analysis of both simulated and observed AOD demonstrate their 
ability to quantitatively replicate the mean and variations of the 
area-averaged observed AOD over these broad regions. 
Furthermore, using the outputs from the best 5 models, a Multi-
Model Ensemble (MME) analysis of various simulated AOD 
statistics was carried out.

The main findings of this study can be summarized as follows:

 1. Observations as well as models show the maximum annual 
mean AOD in the MENA region occurring over a broad region 
with MENA, which encompass the AP and North Africa. Most 
of the mean AOD values simulated by various CMIP6 models 
vary between 0.2 and 0.8 across the MENA region, which is 
comparable to the range of 0.2–0.6 from MODIS and MISR 

observations. On the annual scale, the area-averaged AOD over 
the MENA region is 0.35 from the satellite observations, while 
the corresponding value across all the CMIP6 models varies 
between 0.15 and 0.5. For North Africa, some of these models 
show substantially higher AOD values, about 1.2–1.5 times the 
corresponding satellite observations and reanalysis.

 2. The aerosol loading regions, especially over the AP, are 
relatively better captured by some of the CMIP6 models. The 
mean spatial distributions of the AOD as predicted by 
MERRA-2 over North Africa and the AP region are in good 
agreement with the MODIS and MISR observations. Individual 
CMIP6 models show significant discrepancies in simulating 
the AOD distributions over the source regions in the 
MENA. However, the MME average of the simulated AOD 
reproduces the spatial distribution of the AOD on the annual 

FIGURE 9

Spatial trends (year−1) of soil temperature (deg K) (A-C), soil moisture (kg m−2) (D-F), relative humidity (%) (G-I) and surface winds (ms−1) (J-L) from 
CMIP6 MME over the MENA region during annual, summer and winter seasons respectively. The black dots represent the statistical significance at 95% 
confidence level.
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scale and for the summer and winter seasons reasonably well. 
In general, the MME also reproduces the AOD variability over 
the MENA region despite some discrepancies from 
the observation.

 3. The annual cycle of the satellite observations of AOD over the 
MENA region shows the maximum AOD during the summer 
season. Although the MME AOD also reproduces this 
climatological annual cycle, the simulated magnitudes are 
slightly weaker than the satellite observations.

 4. A linear trend analysis of the AOD datasets from the 2003 to 
2014 period was conducted. Given the short duration of the 

data, the identified trends may not so much reflect long-term 
and decadal variations. However, they help in identifying the 
slow changes and in evaluating the models’ ability to reproduce 
observed AOD changes. The analysis reveals that annual AOD 
values are increasing over the AP and decreasing over North 
Africa. While the MME successfully reproduces the positive 
trends over the AP, the simulated trend in annual AOD values 
over the NWA is relatively weak and exhibits an opposite sign 
compared to the observations in some regions.

 5. The MME (based on historical simulations) reasonably 
reproduces the summer AOD trends over the AP region, but 

FIGURE 10

Time series of annual future projections of AOD changes with respect to the (1995–2014) period for all three regions namely (A) MENA, (B) AP, and 
(C) NWA regions.
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not over North Africa. The MME suggests significant negative 
trends in AOD over the AP and North Africa during the winter 
season, which is consistent with the observed spatial trends. 
The negative trends over North Africa in winter are possibly 
due to weakened surface winds and increased rainfall over the 
dust sources, in agreement with previous studies.

 6. The projected AOD in the MENA and NWA regions 
consistently increase over the 21st century under high emission 
scenarios (SSP370 and SSP585). However, lower emission 
scenarios suggest a decrease in AOD starting from the 2040s. 
In contrast, the projected AOD trends over the AP across all 
scenarios decreases continuously in the future. Notably, a 

substantial decrease of approximately 8% in AOD is projected 
for the distant future under the SSP585 scenario.

 7. Our results show that the NWA region is projected to 
experience more extreme (exceeding the 90th percentile 
threshold) AOD years in the future under the SSP585 
scenario. On the other hand, the projected AOD over the AP 
region suggests a significant decline in the mean AOD as well 
as in the magnitudes of the extreme AOD thresholds in the 
future. This decline in projected AOD over the AP region is 
likely due to a concurrent increase in annual precipitation. 
Further investigation is needed to confirm this hypothesis, 
as projected long-term changes in other factors such as 

FIGURE 11

Box-and-whisker plots for the historical and projected AODs over (A) MENA, (B) AP, and (C) NWA regions for near (2,021–2,040), mid (2,061–2,080) 
and far future (2,081–2,100) time periods under four SSP scenarios. The dots in red color are indicates the extreme AOD years (more than 90 
percentile thresholds).
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transport mechanisms, soil moisture, and seasonality also 
influence these future changes in AOD. Similar declines in 
the projected AOD over the AP are also indicated in lower 
emission scenarios.

Overall, the findings highlight the reliability of the MME of 
CMIP6 models in accurately simulating AOD climatology and 
seasonality across the MENA region. However, certain discrepancies 
persist in CMIP6 simulated AOD over specific areas within 
NWA. Furthermore, the results from this study underscore a notable 
shortcoming in CMIP6 models—their inability to accurately 
simulate recently observed aerosol trends, both in terms of 
magnitudes and regional distributions over the NWA and adjoining 
regions. These disparities could be attributed to various simulated 
meteorological biases (including land surface physics) and the 
representation of dust emission inventories in the CMIP6 models. 
Despite these limitations, these datasets prove input for 
comprehending aerosol-climate interactions over the broad domain. 
It is worth noting that some of the limitations of CMIP6 simulations 
identified in this study, such as the failure to capture observed 
annual and summer AOD trends (particularly over NWA), 
underscore the need for further improvement in the model 
resolution, physics, and updating the anthropogenic aerosol 
emission inventories, especially in the context of regional studies, 
and in improving the fidelity of the simulations at the local level and 
thereby increasing the reliability of the future climate projections 
locally. Given the potential role of rainfall over AP in the future 
evolution of AOD, it is worth downscaling the coarser GCM 
projections with a high resolution (~5–15 km) regional model with 
explicit convection in order to capture the role of critical moisture 
transport from the narrow marginal seas. For example, high-
resolution chemistry-enabled regional models, such as WRF-Chem, 
may be useful in addressing these challenges.
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