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This study examines several methods and new ideas for climate analysis, including 
expanded ensembles, that combine model projections from different greenhouse 
gas emissions pathways and different time periods. These methods are tested on 
Australian projections data previously made available based on outputs from the 
Energy Sector for Climate Information (ESCI) project that included all available 
dynamical downscaling approaches with bias correction designed with attention 
to detail on extremes. The expanded ensemble method provides larger sample 
sizes to help enhance confidence, with results showing that the projected changes 
per degree of global warming have relatively small differences when calculated 
using two different emission pathways and different time periods, with smaller 
differences than variations between individual models in the ensemble. Results 
include maps of mean values and extremes for temperature and rainfall metrics, 
as well as for compound events associated with dangerous bushfire weather 
conditions, providing new insights on climate change in Australia. The results also 
show that extremely dangerous fire conditions such as those of the Black Summer 
2019/2020 and of Black Saturday in February 2009 are currently still very rare, but 
that climate change has already increased the chance of their occurrence, as well 
as larger increases projected in the future for higher amounts of greenhouse gas 
emissions. New analysis is also presented for changes in rainfall-based metrics 
associated with agriculture and biogeography such as Goyder’s Line, discussed 
in relation to the use of climate analogues for adaptation decision making.
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1 Introduction

Understanding how the climate might change in the future is important for effective 
decision making and adaptation and there are growing needs for climate services in many 
sectors of society (e.g., environmental management, emergency services, health, finance, 
agriculture, water availability and energy) (Kirono et al., 2020; Burrell et al., 2020; Ukkola et al., 
2020; IPCC, 2021; Wasko et al., 2024). These needs often require climate analysis for specific 
time periods, locations or emission pathways, including for extremes as well as mean values, 
noting that many of the largest impacts from human-caused climate change are being 
experienced through changes in extremes (Perkins-Kirkpatrick et al., 2016; Guerreiro et al., 
2018; Rauniyar and Power, 2020; van Oldenborgh et al., 2021).

Global climate models (GCMs) are a useful tool to aid in understanding fundamental 
processes in the climate system including potential future climate changes, while noting a wide 
range of uncertainties around this as detailed in reports such as those of the (IPCC, 2021; 
Iturbide et al., 2021). This includes uncertainties associated with the range of future pathways 
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that might be followed for anthropogenic greenhouse gas emissions 
(Taylor et  al., 2012). Furthermore, GCMs can simulate many key 
aspects of the Earth’s climate, particularly for large-scale features, but 
have a limited ability to simulate some aspects (e.g., fine-scale physical 
processes in particular). For example, the resolution of GCMs is 
currently not fine enough to directly simulate convective processes 
such as those that cause thunderstorms and associated rainfall in 
convective updrafts, with the simulation of these processes requiring 
much finer-scale (high resolution) modelling (Huang et  al., 1987; 
Dowdy et  al., 2019; Gutowski et  al., 2020). Fine-scale dynamical 
downscaling that uses regional climate models (RCMs) applied to 
GCM output data can help reduce some limitations of GCMs. 
However, RCM approaches are also not perfect at simulating some 
processes and many uncertainties still exist, including biases 
associated with the GCM providing boundary conditions, as well as 
model resolutions typically not fine enough for accurately simulating 
some processes such as fine-scale turbulence and entrainment 
(Droegemeier and Wilhelmson, 1987; Hoogewind et al., 2017; Huang 
et al., 1987; Dowdy et al., 2021; Nishant et al., 2021; Su et al., 2021; 
Thatcher, 2021). As such, analysis methods and interpretation of data 
for climate projections should be considered appropriately, with a 
focus on minimizing uncertainties in results where feasible.

There are many sets of climate projections data available through 
Australia, including existing data sets produced previously by various 
State and Federal Government groups. These include projections 
based on the CMIP5 set of GCM simulations (Taylor et al., 2012) with 
RCM downscaling approaches applied for the Australian region: 
referred to as NARCliM (Evans et al., 2014; Nishant et al., 2021), 
CCAM (McGregor, 2005; Thatcher, 2021) and BARPA (Su et al., 2021; 
Thatcher, 2021). The Energy Sector Climate Information (ESCI) 
project (Dowdy et al., 2021; Thatcher, 2021) was the first to bring 
together climate projections across Australia including based on those 
three downscaling approaches (NARCliM, CCAM, and BARPA), 
leading to the collation of a 16-member model ensemble of bias 
corrected projections (as detailed in Section 2.2). This ensemble of 
projections was selected for use here to test the main aims of this 
study: i.e., to examine several methods and new ideas for climate 
analysis of mean values and extremes through Australia. These 
methods include the use of expanded ensembles for increased sample 
size, based on combining different emissions pathways and time 
periods for the projected changes per degree of global warming, with 
further details in the following paragraphs. It is also noted that there 
are steps currently underway in Australian State and Territory as well 
as Federal groups for producing new sets of climate projections for the 
Australian region based on applying RCMs to CMIP6 GCMs (Grose 
et al., 2020; Howard et al., 2023; Stassen et al., 2023; Di Virgilio et al., 
2024), including some initial steps to apply bias correction (Zhang 
et al., 2024), providing scope for future studies to extend the analyses 
presented here to bias corrected RCM downscaling of CMIP6 
projections for Australia (which are currently not available).

This study tests some climate analysis methods including using 
expanded ensembles to help increase sample sizes, noting that larger 
sample sizes can help reduce uncertainties, particularly for extremes 
(Gumbel, 1958; Koutsoyiannis, 2004; Dowdy, 2023). Results are 
presented here for mean values and for extremes throughout Australia, 
including for metrics based on temperature, rainfall and fire weather 
conditions. This analysis is intended to be complementary to other 
existing climate information (e.g., Iturbide et al. (2021)), noting that 

consideration of a broad range of data, methods and other information 
sources is often beneficial for assessing climate risk.

A particular focus of this study is on examining projected changes 
calculated per degree of global warming [e.g., King et al. (2017, 2021)]. 
Projections calculated in this way could potentially be combined with 
similar estimates from other modelling ensembles (e.g., based on a 
wide range of emission pathways used in other modelling 
experiments). Another aspect explored here is on how model 
ensembles can be utilized to represent changes in extremes, such as 
for weather conditions associated with some of the extremely severe 
wildfire events that have occurred in recent years with disastrous 
impacts. In addition to impacts of climate change on human and built 
environments, many ecological impacts are also occurring such as 
through changing habitats for threatened species. One example is 
considered here using a rainfall-based biogeographical indicator, 
mapping changes in where desert ecoregions may be likely to occur as 
compared to more heavily vegetated regions.

2 Materials and methods

2.1 Weather metrics

The analysis presented here uses several weather metrics that are 
often considered for climate risk and adaptation purposes in Australia, 
including near-surface daily maximum temperature (tasmax; with 
units of °C) and minimum temperature (tasmin; with units of °C), as 
well as daily precipitation (pr; with units of mm). The Forest Fire 
Danger Index (FFDI: unitless; McArthur, 1967) is also used, 
interpreted here as a useful way to combine several weather conditions 
known to influence fire behavior, noting various similar fire weather 
indices are also available and used in other regions of the world. The 
FFDI is calculated as shown in Equation 1 using inputs of daily 
maximum temperature, mid-afternoon (i.e., 0600 Universal Time 
from the 6-hourly model data used here corresponds to mid-afternoon 
local time for Australia) values of relative humidity and wind speed, 
as well as a Drought Factor based here on the Keetch Byram Drought 
Index (KBDI) (Keetch and Byram, 1968) that estimates accumulated 
moisture deficit based on rainfall and temperature. Further details on 
FFDI are also available in previous studies including for FFDI data sets 
based on observations and model projections (Dowdy, 2020).

 
[ ]

0.987
FFDI exp. 0.0338T 0.345 RH 0.0234V 0.243

x DF .

= − + +
 (1)

where T = Temperature (°C), RH = relative humidity (%), 
V = horizontal wind speed averaged over a 10-min period at a height 
of 10 m above the surface (km.hr.−1) and DF = Drought Factor 
(unitless).

The results presented in this study include analysis of mean 
values as well as of extremes based on exceeding various thresholds. 
There are many ways to analyze extremes, such as defining individual 
thresholds for each location defined by a particular occurrence 
frequency. For example, metrics of the order of 90th to 99th 
percentile for the magnitude of a value are used for representing 
extremes in some studies (Dowdy, 2020; Peter et  al., 2024), 
representing extremes that occur several times a year on average 
based on daily values. However, what is considered extreme is 
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somewhat arbitrary and could depend on the intended application, 
noting that for design standards extremes are typically defined using 
multi-year return periods, e.g., very rare events that may be expected 
to occur on average only once in several years (Gumbel, 1958; Wasko 
et al., 2024). Extremes can also be defined based on fixed magnitude 
thresholds applied through a broad region. For example, the number 
of days with maximum temperature above 45°C (or similarly for 
46°C, or 47°C, etc.) could be examined at all locations throughout 
Australia. This means that some places will exceed a given threshold 
more frequently than other places, such that results should 
be interpreted accordingly. This study includes analysis for extremes 
defined using percentile-based thresholds, showing results based on 
exceeding a threshold corresponding to the value that is exceeded 
once a year on average (equal to the 99.7th percentile) during a 
historical period from 1980 to 2005. Some results are also shown 
using a fixed magnitude threshold, based on daily minimum 
temperature being lower than 0°C, noting relevance for freezing of 
water at that temperature.

2.2 Dataset selection

Many different sources of climate projections data are available for 
Australia. Some examples include State and Territory activities for 
individual regions within Australia (e.g., Corney et al. (2010); Evans 
et al. (2014); Fita et al. (2016); Clarke et al. (2019)) as well as other 
examples with national coverage such as collated by previous projects 
including Climate Change in Australia (CSIRO and Bureau of 
Meteorology, 2015), the ESCI project (Dowdy et al., 2021; Thatcher, 
2021) and the National Hydrological Projections (NHP) project 
(Srikanthan et al., 2022; Vogel et al., 2023; Peter et al., 2024).

The projection data selected for use here were based on an 
ensemble collated by the ESCI project that included outputs from the 
CMIP5 set of GCM projections (Taylor et  al., 2012) with three 
different RCM approaches applied: NARCliM (New South Wales and 
Australian Regional Climate Modelling: Evans et al., 2014; Nishant 
et  al., 2021), CCAM (Conformal Cubic Atmospheric Model) 
(McGregor, 2005; Thatcher, 2021) and BARPA (Bureau of Meteorology 
Atmospheric Regional Projections for Australia) (Su et  al., 2021; 
Thatcher, 2021). These data have been used in various previous 
applications and studies have documented aspects such as model 
assessment, representativeness and projected future changes for many 
different quantities relating to those data (CSIRO and Bureau of 
Meteorology, 2015; Dowdy et al., 2021; Thatcher, 2021). The ensemble 
consists of 16 members from a range of model approaches as follows:

 - Dynamical downscaling using the NARCliM modelling approach 
(NSW and ACT Regional Climate Model) applied for the 
Australian region to three GCMs (ACCESS1-0, ACCESS1-3 and 
CanESM2) with two configurations of each, providing six 
ensemble members.

 - Dynamical downscaling using the CCAM modelling approach 
(conformal cubic atmospheric model) applied for the Australian 
region to five GCMs (ACCESS1-0, CanESM2, GFDL-ESM2M, 
MIROC5 and NorESM1-M), providing five ensemble members.

 - Dynamical downscaling using the BARPA modelling approach 
(Bureau of Meteorology Atmospheric Regional Projections for 
Australia), initially for eastern Australian then also similarly for 

western Australia to cover the entire Australian region, applied 
to one GCM (ACCESS1-0 GCM) providing one 
ensemble member.

 - Four GCMs without downscaling applied (ACCESS1-0, 
CNRMCM5, GFDL-ESM2M and MIROC5 GCMs), providing 
four ensemble members.

The 16-member model ensemble covers a historical baseline 
period from 1980 to 2005 as well as the period from 2006 to 2099 
using two different emissions pathways: a low-moderate emissions 
pathway (RCP4.5) and a high emissions pathway (RCP8.5) (Taylor 
et al., 2012). Global average temperature data for each GCM (obtained 
from https://github.com/traupach/warming_levels) were used for the 
analysis of projected changes per degree of global warming, with a 
boxcar moving average of ±10 years applied to those temperature data 
to help represent the average climate around a given time period.

The ESCI project also applied bias correction to the projections 
data using the QME (Quantile Matching for Extremes) (Dowdy et al., 
2021; Dowdy, 2023; Peter et al., 2024). The QME bias correction in the 
ESCI project was applied to the projections data at 0.05×0.05-degree 
grid cells in latitude and longitude through Australia, with quantile-
quantile matching to the observations-based dataset known as AWAP 
(Jones et al., 2009). Previous studies have found the AWAP data to 
be suitable for use in climate analysis (King et al., 2013) while noting 
limitations such as the observations network being relatively sparse in 
parts of the central and western desert regions where additional care 
should be taken when interpreting results.

The climate analysis presented here using the ESCI projections 
dataset as described above is intended to provide examples of plausible 
climate change, including based on ensemble-based metrics, while 
noting that values above or below those given could also be possible 
and acknowledging a broad range of factors that contribute to 
confidence and uncertainties. The range of model spread is also 
considered here, providing additional estimates of plausible changes 
above and below the ensemble mean. Additionally, a smoothing of 
0.25-degrees is applied to figures in this study, as a moving average in 
latitude and longitude, to help the interpretation of regional features. 
For results throughout this study, projected changes are shown only if 
they are statistically significant at the 90% confidence level (using 
bootstrapping with 500 iterations).

2.3 Expanded ensemble approach

An expanded ensemble of model data is used in this study with an 
aim of increasing sample size for enhanced confidence in results. This 
is based on calculating the projected change per degree of global 
warming for several combinations of different emission pathways with 
different time periods, then using all of those projected changes 
together to increase the number of members in the ensemble. The 
available emission pathways in the dataset used here included 
relatively low (RCP4.5) and high (RCP8.5) pathways. Emissions in 
recent decades have been following the high emissions pathway 
RCP8.5 more closely than other emissions pathways (Schwalm et al., 
2020), while noting that reductions in global emissions in coming 
decades are likely such that RCP8.5 could be  considered a high 
pathway when considering this likelihood for later this century (Taylor 
et al., 2012; IPCC, 2021). The steps used are as follows:
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 1 The projected changes per degree of global warming are 
calculated for a relatively low emission pathway (RCP4.5) 
corresponding to a climate period of ±10 years centered on 
when each model reaches 1°C of global warming above the 
mean for the historical period 1980 to 2005 (as listed in 
Table 1). As an example of how this is done for one of the 16 
ensemble members, the BARPA downscaling is based on the 
GCM called ACCESS1-0 which reaches 1°C of global warming 
above that historical period around the year 2031 as shown in 
Table 1 (i.e., 1°C above the historical mean global temperature 
for the period 1980 to 2005). As such, the projected change for 
that ensemble member is calculated as the average change in 
annual rainfall from the historical period (i.e., 1980 to 2005) to 
the period 2021 to 2041 (i.e., ±10 years centered on 2031). This 
approach is repeated individually for each of the 16 ensemble 
members, for the years listed in Table 1 corresponding to the 
GCMs the projections are based on (with details on the 16 
ensemble members as listed in Section 2.2). The ensemble 
average of the projected change at each grid cell is 
then calculated.

 2 A similar method is used to the above step 1 for the projections 
from the low emissions pathway, but using a later time period 
for each model, based on when they reach 1.5°C global 
warming above the historical period 1980 to 2005 (as listed in 
Table 1). The projected changes are then divided by 1.5, so that 
they represent the change per degree of global warming.

 3 The methods used for steps 1 and 2 are repeated for the high 
emission pathway (RCP8.5). This includes using the time 
periods listed in Table 1 for the high emissions pathway.

The above steps are one example of how this could be done, noting 
a range of other variations based on this that might be considered in 
future potential research and applications. For example, instead of 1°C 
and 1.5°C global warming, it could similarly be  done for other 
warming levels (e.g., 2°C or more perhaps), such as depending on the 
emissions pathway or time periods considered for a given application.

An important point to note is that the changes calculated here per 
degree of global warming are intended to be interpreted considering 
that about 1.1°C of global warming has already occurred due to 
anthropogenic causes since industrialization (IPCC, 2021). As such, 
the change per degree of global warming can be interpreted as an 
estimate of the change that has already occurred due to human-caused 

climate change (or a slight underestimation given global warming in 
now slightly higher than 1°C). Additionally, further anthropogenic 
global warming is expected in coming decades added on top of these 
changes that have already occurred, with potential to soon exceed 
global warming above the 1.5°C level recommended to try to limit the 
worst impacts of climate change (King et al., 2017; IPCC, 2021).

3 Results

3.1 Rainfall analyses

Rainfall is highly variable in Australia, including on seasonal to 
interannual time scales, due to the influence of modes of natural 
climate variability such as ENSO (Nicholls et al., 1997; King et al., 
2015a; McKay et al., 2023). As such, it can be beneficial to have large 
sample sizes when examining the climatology of Australian rainfall. 
Methods are tested here for expanding the sample size based on 
combining model data from different time periods and 
emissions pathways.

Figure  1A shows the mean annual rainfall based on the 
16-member model ensemble for a historical period from 1980 to 2005 
based on the available data from the ESCI projections dataset. There 
are higher totals in northern and eastern Australia and lower values 
in inland regions consistent with observations noting uncertainties for 
rain data in regions of sparse observations such as some of those 
shown here with low values of mean rainfall (e.g., King (2023)). 
Projected changes in annual rainfall are also shown in Figure  1, 
calculated using a range of different methods that are described here 
as follows. Figure 1B shows the projected change for a low emission 
pathway (RCP4.5) corresponding to a climate period of ±10 years 
centered on when each model reaches 1 degree of global warming 
above the mean for the historical period (as listed in Table  1), 
following the method detailed in Section 2.3. Those projections 
indicate decreased mean rainfall through many regions of Australia, 
with the main exceptions of northwest and adjacent inland regions, 
along the east coast in a narrow region, as well as for the island of 
Tasmania to the south of the Australian continent for which increased 
rainfall is shown.

A similar method is used for the results shown in Figure 1C, but 
using a later time period for each model, based on when they reach 
1.5 degrees of global warming for the low emissions pathway (as listed 

TABLE 1 The timing (year) for when each GCM shows either 1.0°C or 1.5°C warming of the global average surface air temperature, with the warming 
calculated above the mean for the historical period 1980 to 2005.

GCM 1.0°C above 1980 to 2005 1.5°C above 1980 to 2005

Low emissions High emissions Low emissions High emissions

ACCESS1-0 2031 2027 2052 2040

ACCESS1-3 2032 2026 2061 2039

CNRM-CM5 2039 2032 2061 2046

CanESM2 2024 2020 2038 2032

GFDL-ESM2M 2054 2039 2083 2054

MIROC5 2035 2030 2062 2046

NorESM1-M 2040 2033 2074 2049

This is shown for each GCM that the study results are based on including for both a low emissions pathway (RCP4.5) and a high emissions pathway (RCP8.5).
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in Table 1). The projected changes are then divided by 1.5, so that they 
represent the change per degree of global warming. This results in 
similar magnitudes for the projected changes in Figure 1C to what was 
seen previously in Figure 1B, as they both now represent the change 
per degree of global warming, even though Figure 1C is based on data 
from later time periods than used for Figure 1B. The methods used for 
Figures 1D,E are the same as used for Figures 1B,C, respectively, apart 
from being based on a high emission pathway for the projections and 
their corresponding time periods (as listed in Table 1).

The four different versions of the projected changes per degree of 
global warming (Figures 1B–E) show some similar spatial features 
such as reduced rainfall projected in many locations with increases 
around the northwest. Some small-scale localized variations are also 
indicated, such as narrow region of increased rainfall not apparent 
along the east coast in Figure  1D to the extent seen in 

Figure 1B. However, some of these fine-scale details might relate to 
natural variability, including from weather processes and randomness 
noting the inherent chaotic nature of the atmosphere (Lorenz, 1965), 
and potentially could look somewhat different if a larger sample size 
was available.

The general similarities between the changes calculated per degree 
warming in those four different ways (as shown in Figures 1B–E) 
suggests potential for considering those data all together in 
combination with each other. This expanded ensemble, based on using 
2 emissions pathways and 2 different time periods for each model in 
the 16-member ensemble, effectively provides 64 estimates of the 
projected change per degree of warming (i.e., 2 × 2 × 16 = 64 
members). The mean change based on that 64-member expanded 
ensemble is shown in Figure 1H. Additionally, to provide an indication 
of the variation between models, the 10th and 90th percentiles of the 

FIGURE 1

Mean annual precipitation shown for a historical period 1980:2005 (A) based on the 16-member model ensemble. The change per degree of global 
warming is also shown for four different climate periods corresponding to an additional 1°C (B) and 1.5°C (C) warming following a low emissions 
pathway (RCP4.5) and 1°C (D) and 1.5°C (E) warming following a high emissions pathway (RCP8.5). To provide an indication of the range within the 
model ensemble members used to calculate the change per degree of warming, the 10th (F) and 90th (G) percentiles of the modelled changes are 
shown together with the mean (H). Results are shown for changes only if statistically significant above 90% confidence level.
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projected change is shown in Figures  1F,G, respectively. Those 
percentiles are calculated individually for each grid cell location. For 
example, the 10th percentile value at a given location is the projected 
change for the model ensemble member that has the 6th smallest 
projected change from the 64-member ensemble. Similarly, the 90th 
percentile value at a given location is the projected change for the 
model ensemble member that has the 6th largest projected change 
from the 64-member ensemble.

The variation between models in the ensemble is considerable, as 
demonstrated by the 10th and 90th percentile changes being opposite 
in sign at all locations throughout Australia (Figures  1F,G). This 
variation is much larger than the degree of variation between the four 
methods shown in Figures 1B–E. Another notable feature of these 
results is that significant changes (at a 90% statistical confidence level) 
are identified for a much larger area for the expanded ensemble 
(Figure 1H) than for its constituents (Figures 1B–E).

Annual rainfall projections are considered further in Figure 2, 
presenting results based on the 250 mm contour line for a region of 
southern Australia. Metrics such as this can be  associated with 
drought and vegetation–weather relationships relevant for ecology, 
fire management or agricultural sectors. One example is Goyder’s 
Line, such as approximated by 250 mm annual rainfall, noting a range 
of other measures can also be used for that agricultural indicator 
(Meinig, 1961; Nidumolu et al., 2012; Tozer et al., 2014). This 250 mm 
contour line is shown for the historical period 1980 to 2005, as well as 
changes in that line corresponding to different global warming levels 
(using the results shown in Figure 1H), such as +1°C and + 2°C above 
that historical period. The results shown in Figure 2 are an example of 
considering how the future climate in a particular location might 
become similar to the climate from other locations based on what they 
had in the past (e.g., based on their historical climate). This relates to 
the concept of a ‘climate analogue’ between different locations and 
time periods, such as examined in King (2023) for some 
Australian locations.

The results show that the 250 mm contour line moves further 
south for higher global warming amounts (Figure 2). The historical 
period used here already has some global warming above the 

preindustrial period, noting that about 1°C global warming has 
already occurred (IPCC, 2021), such that a contour line is also shown 
in Figure 1 corresponding to −1°C below that historical period of 
1980 to 2005, which results in the 250 mm contour line shifting 
further to the north. A satellite image is also shown in Figure 2 for 
qualitative illustrative purposes, with somewhat similar spatial 
patterns (i.e., variations between vegetation and desert regions) to 
what is indicated based on the 250 mm rainfall contour. For example, 
this provides some indication of where ecosystems currently change 
from the light brown desert regions in northern regions to the darker 
brown and green vegetated regions towards the more southern 
regions in general, while noting potential for many other metrics and 
climate analogue approaches that could also potentially 
be considered.

Results such as presented in Figure 2, or similar analyses for other 
metrics, might be useful for different types of climate adaptation. For 
example, one kind of adaptation (‘Type 1’) might involve moving away 
from a current location, to be a location that has a similar future 
projected climate to what the current location had in the past. A 
second type of adaptation (‘Type 2’) might involve not moving away 
from a current location, but instead changing the situation at that 
location such as to be more similar to other locations with similar past 
climates to what is projected in the future for the current location (to 
the extent that may be possible). Maps similar to Figure 2 that show a 
range of suitable locations for these different types of climate 
analogues might be useful for various ecological decision making, 
including in relation to threatened species management in our 
changing climate.

3.2 Temperature analyses

Results are presented for daily maximum temperature (tasmax) in 
Figure 3, using the same set of methods as used for rainfall in Figure 1. 
Mean values are shown for the historical period, similar to 
observations-based data such as King (2023), with projected changes 
also shown based on multiple methods that are detailed here as 

FIGURE 2

Changes in the 250 mm contour line of annual average rainfall in a region of the central southern coast of the Australian continent (A). This contour 
line is shown for the period 1980:2005 (light purple line), as well as for changes in that line corresponding to different global warming levels of +1°C 
(orange line), +2°C (red line) and −1°C (dark blue line). The changes per degree of global warming is using the expanded ensemble results from 
Figure 1. This contour line relates to guidance metrics sometimes considered for agricultural decision making, such as Goyder’s Line in this region. The 
satellite image (B) obtained from Google Maps August 2024 also indicates that this rainfall contour line is broadly similar to where ecosystems change 
from the light brown desert regions in the north to the darker brown and green vegetated regions towards the south in general.
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follows. The temperature projections show little variation depending 
on the emissions pathway and degree of global warming (i.e., 
comparing the panels for Figures 3B–E).

It is useful to confirm this strong consistency in projections 
calculated per degree of warming using these four different methods, 
given that there is some potential for variations in this. For example, 
the global mean surface temperature is largely associated with ocean 
regions, with ocean temperatures warming more slowly than land 
regions (IPCC, 2021). If the land-ocean temperature difference 
changes over time, then land regions potentially could have different 
changes per degree global warming for different time periods. 
However, the land-sea temperature difference scales approximately 
linearly with global warming for different emission pathways such as 
RCP4.5 and RCP8.5 (IPCC, 2021). The linearity in the relationship 
can be  accounted for, such as demonstrated here by dividing the 

projected changes for 1.5°C global warming by 1.5 to convert to 
changes per degree global warming. Consequently, the results 
presented in Figures 3B–E are useful in showing similar magnitude 
changes per degree of global warming when calculated using these 
four different approaches representing different time periods and 
different emissions pathways.

Figure 3 also shows results based on combining the projected 
changes per degree of warming from those 4 different methods for use 
as an expanded ensemble. The mean change based on that expanded 
ensemble is shown (Figure 3H), together with the 10th percentiles 
(Figure 3F) and 90th percentiles (Figure 3G) of the model values from 
the ensemble. Those metrics are calculated individually for each grid 
cell location. A feature of these projections is somewhat larger 
increases for inland regions, particularly towards the west of the 
continent, as compared to near-coastal regions in general. As seen for 

FIGURE 3

Mean daily maximum temperature at the surface shown for a historical period 1980:2005 (A) based on the 16-member model ensemble. The change 
per degree of global warming is also shown for four different climate periods corresponding to an additional 1°C (B) and 1.5°C (C) warming following a 
low emissions pathway (RCP4.5) and 1°C (D) and 1.5°C (E) warming following a high emissions pathway (RCP8.5). To provide an indication of the range 
within the model ensemble members used to calculate the change per degree of warming, the 10th (F) and 90th (G) percentiles of the modelled 
changes are shown together with the mean (H). Results are shown for changes only if statistically significant above 90% confidence level.

https://doi.org/10.3389/fclim.2024.1492228
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Dowdy and King 10.3389/fclim.2024.1492228

Frontiers in Climate 08 frontiersin.org

the rainfall projections (Figure 1), the ensemble range as represented 
by the 10th and 90th percentiles (Figures 3F,G) is broader than the 
differences in results between the four methods used to calculate the 
per degree warming projected changes (i.e., differences between 
results shown in Figures 3B–E). However, the values are all positive in 
sign throughout Australia, including for both the 10th and 90th 
percentiles of the ensemble range, in contrast to the larger degree of 
variation seen for the rainfall range (Figures 1F,G) which had opposite 
signs of change between the 10th and 90th percentiles at all locations.

3.3 Fire weather analyses

Results are presented for daily values of the Forest Fire Danger Index 
(FFDI) in Figure 4. This uses the same methods as used for rainfall and 

temperature in Figures 1, 2, respectively. The average daily FFDI values 
are shown in Figure 4A, showing higher values for inland regions than for 
regions closer to the coast in general, consistent with previous studies such 
as Dowdy (2020). The four methods used for the projected changes, based 
on the two different emission pathways and two different magnitudes of 
global warming (i.e., Figures  4B–E), all show increases throughout 
Australia. This is broadly similar to previous studies that have also shown 
future increases in FFDI based on gridded model projections throughout 
Australia (Dowdy et al., 2019).

Relatively little variation in results between these four methods is 
apparent (Figures 4B–E). It is useful to have confirmed this is the case, 
given potential for some variations as discussed above in relation to 
the temperature results.

Figure 4 also shows results based on combining the projected 
changes per degree of warming from those 4 different methods (as 

FIGURE 4

Mean daily Forest Fire Danger Index (FFDI) shown for a historical period 1980:2005 (A) based on the 16-member model ensemble. The change per 
degree of global warming is also shown for four different climate periods corresponding to an additional 1°C (B) and 1.5°C (C) warming following a low 
emissions pathway (RCP4.5) and 1°C (D) and 1.5°C (E) warming following a high emissions pathway (RCP8.5). To provide an indication of the range 
within the model ensemble members used to calculate the change per degree of warming, the 10th (F) and 90th (G) percentiles of the modelled 
changes are shown together with the mean (H). Results are shown for changes only if statistically significant above 90% confidence level.
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shown in Figures 4B–E) for use as an expanded ensemble. The mean 
change based on that expanded ensemble is shown (Figure  4H), 
together with the 10th percentiles (Figure 4F) and 90th percentiles 
(Figure  4G) of that ensemble. The mean values of the expanded 
ensemble show increases projected through all regions of Australia 
(Figure 4H). There are some locations where reductions are indicated 
based on the 10th percentile of the ensemble range (Figure  4F), 
including for regions in the northwest and nearby inland locations, 
noting that those locations also showed potential for increased rainfall 
(e.g., from Figure  1H). However, the magnitudes of those FFDI 
reductions for the 10th percentile range projections are relatively 
small, including as compared to the ensemble mean increases 
(Figure 4H) and the much larger magnitude increases for the 90th 
percentile of the model ensemble (Figure 4G).

3.4 Extremes analyses

Extremes are examined in this section based on the value that is 
exceeded on average once per year during the historical period 1980 
to 2005 (referred to here as the 1-year return period). These historical 
threshold values are shown for precipitation (Figure  5A), daily 
maximum temperature (Figure 6A) and FFDI (Figure 7A). Projected 
changes are also shown in Figures 5–7, based on how the occurrence 
frequency of exceeding the 1-yr return period changes per degree of 
global warming. Similar to the figures in the previous sections, the 
projected changes are presented individually for the four different 
methods of calculating the changes per degree of global warming: i.e., 
two different emission pathways for each of the two different 
magnitudes of global warming. Expanded ensemble results are also 

FIGURE 5

Extreme values of daily rainfall are shown for the value exceeded on average once per year at each location during the historical period 1980 to 2005 
(A) based on the 16-member model ensemble. Changes in the annual average occurrence frequency of exceeding that threshold at each location are 
also shown. The changes are calculated per degree of global warming for four different climate periods corresponding to an additional 1°C (B) and 
1.5°C (C) warming following a low emissions pathway (RCP4.5) and 1°C (D) and 1.5°C (E) warming following a high emissions pathway (RCP8.5). To 
provide an indication of the range within the model ensemble members used to calculate the change per degree of warming, the 10th (F) and 90th 
(G) percentiles of the modelled changes are shown together with the mean (H). Results are shown for changes only if statistically significant above 
90% confidence level.
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shown similar to the approach used in previous sections, based on 
combining the ensemble results from those four different methods, 
including for the expanded ensemble average values, as well as the 10th 
and 90th percentiles of the expanded ensemble.

The projections for rainfall extremes clearly show increases in 
general throughout Australia (Figures 5B–E). This is very different to 
the projections for mean rainfall that showed decreases through most 
of Australia (e.g., from Figure  1H), noting some similarities to 
previous future projections that have also indicated extreme rain 
increases in Australia in general including in some locations where 
mean rainfall decreases (CSIRO and Bureau of Meteorology, 2015). 
The projected changes are positive in most locations, but with some 
small-scale variations. Those variations include some projected 
decreases shown interspersed closely with regions of projected 

increase, while noting that the locations of projected decreases are not 
very consistent between the different methods shown (Figures 5B–E), 
suggesting relatively low confidence in those regions due to potential 
influences of natural variability to some degree (e.g., from weather and 
chaotic processes (Lorenz, 1965)). The expanded ensemble results 
have less of that small-scale spatial variation, as well as with a larger 
area shown statistically significant results. This highlights the point 
that climate analysis of rainfall extremes could benefit from using 
sample sizes as large as possible, given large variability in rainfall (as 
was also discussed in Section 3.1).

The projected increases in occurrence frequency for these classes 
of extremes such as shown in Figure 5 is a commonly reported finding 
of many other climate change studies. This includes many examples of 
studies that provide physical process understanding behind what is 

FIGURE 6

Extreme values of daily maximum temperature at the surface are shown for the value exceeded on average once per year at each location during the 
historical period 1980 to 2005 (A) based on the 16-member model ensemble. Changes in the annual average occurrence frequency of exceeding that 
threshold at each location are also shown. The changes are calculated per degree of global warming for four different climate periods corresponding 
to an additional 1°C (B) and 1.5°C (C) warming following a low emissions pathway (RCP4.5) and 1°C (D) and 1.5°C (E) warming following a high 
emissions pathway (RCP8.5). To provide an indication of the range within the model ensemble members used to calculate the change per degree of 
warming, the 10th (F) and 90th (G) percentiles of the modelled changes are shown together with the mean (H). Results are shown for changes only if 
statistically significant above 90% confidence level.
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causing the changes in extremes for Australia (CSIRO and Bureau of 
Meteorology, 2015; Perkins-Kirkpatrick et al., 2016, 2022; Dowdy, 
2018; Guerreiro et al., 2018; Clarke and Evans, 2019; Dowdy et al., 
2019; Dey et al., 2019; Gross et al., 2019; Harris and Lucas, 2019; 
Rauniyar and Power, 2020; NESP, 2020; van Oldenborgh et al., 2021). 
A recent example of this is Wasko et al. (2024), presenting a systematic 
review of studies examining the influence of climate change on 
extreme rainfall and flooding in Australia, finding a central estimate 
of 8% increase per degree global warming in the intensity of extreme 
daily rainfall in general throughout Australia.

The projected changes in extremes of daily maximum temperature 
(Figure  6) and FFDI (Figure  7) are positive in sign throughout 
Australia. This is the case for each of the four different approaches 
used to calculate the change per degree of global warming (i.e., two 

different emission pathways for each of the two different magnitudes 
of global warming) as well as for the expanded ensemble results. The 
10th percentiles of the expanded ensemble are also positive in sign for 
daily maximum temperature (Figure 6F), whereas some locations are 
negative in sign for FFDI (Figure 7F) indicating a somewhat larger 
degree of uncertainty.

In addition to the methods described above for analysis of 
extremes, there are also many other useful ways for climate analysis to 
be  presented and communicated, such as when considering the 
detection and attribution of changes. Examples include examining 
time series, such as annual values of a metric representing extremes, 
for analysis of the timing of emergence for human-caused climate 
change influences on extremes (e.g., King et  al. (2015b)). Other 
methods can consider the differences between two time periods or 

FIGURE 7

Extreme values of daily FFDI are shown for the value exceeded on average once per year at each location during the historical period 1980 to 2005 
(A) based on the 16-member model ensemble. Changes in the annual average occurrence frequency of exceeding that threshold at each location are 
also shown. The changes are calculated per degree of global warming for four different climate periods corresponding to an additional 1°C (B) and 
1.5°C (C) warming following a low emissions pathway (RCP4.5) and 1°C (D) and 1.5°C (E) warming following a high emissions pathway (RCP8.5). To 
provide an indication of the range within the model ensemble members used to calculate the change per degree of warming, the 10th (F) and 90th 
(G) percentiles of the modelled changes are shown together with the mean (H). Results are shown for changes only if statistically significant above 
90% confidence level.
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changes per degree warming such as shown in Figure 5, including 
based on metrics such as the fraction of attributable risk (FAR: e.g., 
Allen (2003) and Perkins-Kirkpatrick et al. (2022)). FAR is equal to 
1 – the inverse of the Probability Ratio (PR, also sometimes known as 
the Risk Ratio), where PR may be calculated as Pfact/Pcfact with Pfact the 
probability of an event occurring in a state with more global warming 
than an earlier reference state and Pcfact the probability of an event 
occurring in that reference state (Lewis and Karoly, 2013; Perkins-
Kirkpatrick et al., 2022). For example, Pfact could represent a current 
climate period or a future projected climate period and Pcfact could 
represent a historical climate period.

As an example of time series analysis for extremes, Figure 8 presents 
annual values of FFDI averaged throughout Australia for December. 
This is shown individually for each of the 16 members of the model 
ensemble from 2006 to 2,100, for the low emissions path (RCP4.5) and 
the high emissions path (RCP8.5), as well as for the observations-based 
FFDI data that covers the period back to 1950 (Dowdy, 2020). The Black 
Summer of 2019/2020 had the most severe fire weather on record for 
Australia, including particularly high values (daily FFDI >40) on 
average for Australia in December 2019 as shown in Figure 8. The ESCI 
projections dataset is used here to examine how the occurrence of 
conditions similar to those observed in December 2019 is influence by 
climate change. The results show that values of around that magnitude 
rarely occur in the model-based FFDI data for the current climate 

period, with a much greater occurrence frequency for higher amounts 
of global warming that occur towards the later part of the century for 
these emissions pathways. This is particularly apparent for the high 
emissions path, but also seen to some degree for the low emissions path.

In contrast to average values for the whole of Australia as 
discussed above, Figure 8 also considers more localized extreme fire 
weather events. Analysis is presented based on Black Saturday 7 
February 2009 where the observations-based FFDI value was 136 for 
Melbourne (corresponding to the grid location for 144.9°E and 37.8°S: 
Dowdy (2020) and Pepler et  al. (2018)), noting that 173 people 
tragically lost their lives from the fires on that day (BS Royal 
Commission report to be referenced). The results show how often the 
model data have FFDI ≥136 calculated individually for each of the 16 
members of the model ensemble from 2006 to 2,100. This is presented 
individually for the low and the high emissions paths available for the 
ESCI projections dataset. The model data show that values exceeding 
this threshold are relatively rare around the time of Black Saturday but 
become more frequent in time through this century. A faster rate of 
increase is apparent for the high emissions path, with a more moderate 
rate of increase for the low emissions pathway, further demonstrating 
the influence of greenhouse gas emissions on causing more dangerous 
weather conditions for fires.

This analysis also helps indicate the value of increased sample size 
for enhanced confidence in projections. For example, if considering the 
model data used here from when the period of projections starts until 
now (i.e., the 19-yr period from 2006 to 2024), rare events such as those 
fire weather extremes examined in Figure 6 do not occur in several of 
the individual model ensemble members. However, when using the 
16-member ensemble as shown in each panel of Figure 8, the sample 
size is now effectively 16 times larger for that 19-yr period. These results 
also show that consideration of model data based on both emission 
pathways here can increase the sample size further (i.e., doubling the 
sample size) to help represent rare extremes such as Black Saturday and 
the Black Summer. This is similar in concept to the UNprecedented 
Simulated Extreme Ensemble (UNSEEN) approach, using larger sample 
sizes from models to consider potential for rare events that might have 
been unlikely to have occurred within a limited period of available 
observations (Thompson et al., 2019; Kelder et al., 2020).

A final example of analysis for extremes is presented here in Figure 9. 
This uses the same methods used for Figures 1, 3, 4, but presented for the 
occurrence frequency of days per year with temperature less than 0°C 
(based on daily minimum temperature: tasmin). The results show that 
this occurs very rarely through many midlatitude parts of Australia, 
including not at all in some locations particularly for northern Australia. 
The projected changes based on the 16-member ensemble average are 
broadly similar between the four different methods shown in 
Figures 9B–E: i.e., for the low or high emissions pathways based on the 
timing of 1°C or 1.5°C warming above the historical period 1980 to 2005.

Combining the projected changes per degree of global warming 
from those four methods into an expanded ensemble of 64 members is 
used to show the ensemble mean and the ensemble range. The changes 
are all negative in sign for the mean, with larger magnitude negative 
changes for the 90th percentiles. There are some positive values for the 
10th percentiles in central and western regions, with negative values in 
the east. The potential for global warming to cause an increased 
frequency of extremely cold days in parts of Australia could potentially 
relate to decreased cloudiness leading to colder nights in some cases. 
For example, a strengthening of the subtropical ridge over southern 

FIGURE 8

Changes in extremes of the daily Forest Fire Danger Index (FFDI). 
This is shown for the 16-member model ensemble from 2006 to 
2099 (red “+” symbols) for a low emissions pathway (RCP4.5: left 
panels) and a high emissions pathway (RCP8.5: right panels), as well 
as for data based on observations from 1950 to 2023 (blue “x” 
symbols). Results are shown for the national mean value of FFDI for 
December in each year (upper panels) with the dotted line showing 
the observations-based value for December 2019 during the “Black 
Summer.” Results are also shown for how many days per year have 
FFDI ≥136 for Melbourne (based on the grid location for 144.9°E and 
37.8°S) as occurred on “Black Saturday” 7 February 2009 for the 
observations-based data.
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and central parts of Australia due to climate change (Dittus et al., 2014; 
CSIRO and Bureau of Meteorology, 2015; Pepler et al., 2018) could 
potentially lead to decreased cloudiness. However, further research 
might be  beneficial to explore reasons for the differences between 
eastern Australia with negative values compared to central and western 
regions with positive values in Figure 9H, such as potential orographic 
influences on nocturnal cloudiness in the more mountainous region of 
the Great Dividing Range along eastern Australia.

4 Discussion

Climate analysis was presented here through Australia, with a 
focus on examining new methods and ideas to help provide insight on 
climate change. A key aim of this analysis was to present a broad range 

of different types of information, including based on some novel 
approaches such as expanded ensembles (comprising multiple 
emissions pathways and/or time periods), as well as examining 
extremes in several different ways using an ensemble including bias-
corrected RCM data. The influence of human-caused climate change 
was examined for mean values as well as for extremes for bushfire 
weather conditions, temperatures and rainfall, noting that similar 
results could also be provided using variations on these methods (such 
as different time periods or different metrics for defining extremes). 
Climate analogues were also discussed, based on how conditions are 
changing over time in different regions through Australia, noting 
potential relevance for some climate adaptation applications such as 
based on biogeographical analyses.

The methods and results presented here are intended to 
be  complementary to those of previous studies. This includes 

FIGURE 9

Average annual number of days with daily minimum temperature at the surface less than 0°C, shown for a historical period 1980:2005 (A) based on 
the 16-member model ensemble. The change per degree of global warming is also shown for four different climate periods corresponding to an 
additional 1°C (B) and 1.5°C (C) warming following a low emissions pathway (RCP4.5) and 1°C (D) and 1.5°C (E) warming following a high emissions 
pathway (RCP8.5). To provide an indication of the range within the model ensemble members used to calculate the change per degree of warming, 
the 10th (F) and 90th (G) percentiles of the modelled changes are shown together with the mean (H). Results are shown for changes only if statistically 
significant above 90% confidence level.
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studies based on observations, modelling and physical process 
understanding that have showed human-caused climate changes in 
Australia, such as for increased temperatures and heat extremes 
(CSIRO and Bureau of Meteorology, 2015; Perkins-Kirkpatrick 
et  al., 2016; Gross et  al., 2019), more dangerous fire weather 
conditions (Dowdy, 2018; Clarke and Evans, 2019; Di Virgilio 
et  al., 2022; Dowdy et  al., 2019; Harris and Lucas, 2019; van 
Oldenborgh et al., 2021), as well as changes in rainfall including 
drying in some regions for mean rainfall and increased intensity 
for extreme rainfall (CSIRO and Bureau of Meteorology, 2015; 
Guerreiro et al., 2018; Dey et al., 2019; Rauniyar and Power, 2020) 
noting relevance of this for flooding (Power and Callaghan, 2016; 
Wasko et al., 2024).

Climate analysis such as presented here could potentially also add 
additional variables, time periods, emissions paths, metrics (e.g., 
frequency-based metrics for extremes), as well as regional guidance 
on other hazard-related phenomena of relevance to user groups, 
depending on what is feasible to provide based on user needs (e.g., 
climate information needs for effective decision making). Decisions 
often need to be  made regardless of whether or not the required 
climate analysis is available, such as analysis for a specific location or 
extreme value, noting that this information is not always readily 
available. Climate analysis for a wide range of locations including for 
various measures of extremes could therefore be beneficial to make 
available where feasible, with guidance details and other 
documentation typically being important to provide as part of the 
climate information to help communicate uncertainties and 
intended applications.

Various regional features in the projections for mean values were 
documented for temperature, rainfall and fire weather. Substantial 
changes in occurrence frequency for extremes were also detailed, 
including for temperature, rainfall and fire weather metrics. This 
includes changes that are indicated to have already occurred due to 
human-caused climate change over recent decades, including for 
extremes, noting relevance to climate event attribution. These trends 
in mean and extreme values are projected to continue into the future, 
as shown based on various methods presented here. With the 
magnitude of change being dependent on the rate of anthropogenic 
greenhouse gas emissions. Expanded ensembles of projections 
calculated per degree of global warming, based on combining data for 
multiple emissions pathways and time periods, were found to be a 
useful way to increase sample size. This could be beneficial for some 
analysis in cases where there is a considerable amount of natural 
variability, such as is the case for rainfall in Australia.

It was noted that land-sea temperature differences scale 
approximately linearly with global warming for different emission 
pathways such as RCP4.5 and RCP8.5 (IPCC, 2021). It was shown 
here that this linearity can be  accounted for, such as shown in 
Figures 1, 3–7, 9 by dividing the projected changes for 1.5°C global 
warming by 1.5 to convert to changes per degree global warming. 
Those results showed that the projected changes per degree of global 
warming have relatively small differences when calculated using two 
different emission pathways and different time periods, with smaller 
differences than variations between individual models in the 
ensemble. Using an expanded ensemble such as this approach, based 
on combining data from different emissions pathways and time 
periods, can therefore provide a useful increase in sample size (e.g., 
four times larger sample size in the examples presented here).

Projected changes were also mapped throughout Australia 
showing how some locations may become more like other locations 
in the future, such as presented in Figure  2 for annual rainfall 
thresholds. This was discussed in relation to the concept of ‘climate 
analogues’ as a means of communicating changes, such as described 
in King (2023). This sort of information could be used for various 
applications, including for different types of adaptation activities as 
follows. For example, one type of adaptation could consider how the 
climate at a given location becomes similar to other locations based 
on their historical climate (Type 1); another type of adaptation could 
consider how other locations become similar to a given location based 
on its historical climate (Type 2). Type 1 analogues could potentially 
be useful for climate change adaptation without changing location 
(e.g., considering changes in practices or infrastructure without 
moving locations), while Type 2 analogues could potentially be useful 
for climate change adaptation involving relocation.

Extremes of fire weather were examined using time series analysis, 
including in relation to broad-scale extremes of Black Summer in 
December 2019 for Australia, as well as more localized short-duration 
extremes of Black Saturday 7 February 2009 for Melbourne in 
southeast Australia. The model data showed extremes similar in 
magnitude to those events occurring in this current climate period, 
then becoming more frequent depending on the degree of global 
warming over this century. These findings suggest that extremes such 
as those events are not completely unexpected for the current climate, 
but that we should expect these types of events to occur more often as 
our climate continues to warm in coming decades. The projections 
show examples where the fire weather conditions are more extreme 
than those past events such as Black Summer and Black Saturday, 
while noting that such cases are relatively rare even later in this 
century (e.g., from Figure 8). This indicates that these types of extreme 
conditions are not likely to be the ‘new normal’ anytime soon (e.g., in 
coming decades for the first half of this century), but that climate 
change is ‘loading the dice’ toward an increased chance of their 
occurrence, with larger increases for higher amounts of greenhouse 
gas emissions.

This climate analysis aims to contribute towards an enhanced 
understanding of how climate change can influence weather 
conditions and extremes, with a focus here on using a broad range of 
methods applied for many localized regions and spatial maps 
throughout Australia. These methods and analyses are intended to 
be useful as part of broader knowledge and capabilities relevant to 
climate risk assessment and adaptation. Given the apparent scalability 
of local projections over Australia with per degree global warming, 
there is an opportunity to make better use of available data by 
combining regional ensembles. Such an approach may well work in 
other regions of the world where non-greenhouse gas forcing changes 
in 21st century scenarios are limited, i.e., outside of the South and East 
Asia regions. We would encourage further regional investigations to 
maximize the utility of existing data across scenarios for better 
sampling of extremes.
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