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Synthetic biology approaches to 
negative emissions technologies: 
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This article explores the impact that synthetic biology approaches may have on 
Negative Emissions Technologies (NETs). Synthetic biology has both altered and 
created biological pathways inspired by nature to develop new NETs that sequester 
greenhouse gases into industrially useful chemicals, such as biomass and calcium 
carbonate. However, synthetic biology continues to encounter difficulties when 
implementing and scaling up production due to a combination of hard limits 
(within biology) and ‘soft’ limits (of social and economic costs). Additionally, NETs, 
along with Ecosystem Technologies in general, operate as climate technofixes, 
wherein insufficient thought is given to the ethical quandaries arising from releasing 
designed organisms into the environment, even under controlled conditions. In 
this paper, we provide a technological and ethical appraisal of synthetic biology 
approaches to NETs, in the context of climate change mitigation through Ecosystem 
Technology.
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Introduction

In 2009, 2 weeks before the 15th conference of the United Nations Framework Convention 
on Climate Change (UNFCCC), Secretary-General Ban Ki-moon declared to the World 
Climate Conference that “our foot is stuck on the accelerator and we are heading towards an 
abyss” (Ban, 2009). 13 years later, at the opening of the 27th UNFCCC conference, Secretary-
General António Guterres reprised this analogy, declaring to the audience that “we are on a 
highway to climate hell with our foot still on the accelerator” (Guterres, 2022). Evidently, it 
ceased to be sufficient, long ago, to merely take one’s foot off the accelerator as that merely 
slows down the movement towards an abyss. Namely, what is required is to actually put the 
brake on.

The question then posed by this article then, is: what does putting the brake on entail for 
synthetic biology? We argue that using synthetic biology to substitute fossil fuels for biofuels 
amounts to merely taking our foot off the accelerator. Whereas, putting the brake on requires 
sequestering existing carbon dioxide (CO2) pollution from the atmosphere and hydrosphere, 
through Negative Emissions Technologies (NETs). In turn, this article offers a technological 
and ethical appraisal of synthetic biology approaches to NETs, in the context of climate change 
mitigation through Ecosystem Technology.

We first provide an overview of central issues in exploiting natural systems and devising 
systems that are new-to-nature through synthetic biology. We then address the potential 
viabilities of NETs, to outline the hard limits posed by the immediate constraints of any 
biological system, such as scaling up production, before concluding with a discussion of 
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so-called ‘soft’ limits, being the social and ethical issues raised by such 
radical and risky technoscientific interventions in the climate crisis.

Synthetic biology is a multi-disciplinary field of research for 
engineering biology, which regards complex interconnected biological 
systems as predictable abstracted engineerable parts that operate 
within systems similar to logic gates and electrical systems (Kitney 
and Freemont, 2012). Synthetic biology applies novel technologies 
such as DNA synthesis, whole cell analysis techniques (genomics, 
proteomic, metabolomics), genetic assembly and editing tools 
(CRISPR, Gibson Assembly, Golden Gate Assembly), standardized 
parts, predictability, and new Public-Private partnership models 
inspired by the Information Technology Boom (Kitney and Freemont, 
2012; Liu et al., 2013; Agapakis, 2014; Carbonell et al., 2016; Si and 
Zhao, 2016; Lv et al., 2022).

Synthetic biology has only recently been recognized as a potential 
climate change technoscientific intervention with the IPCC and the 
US government beginning policy research towards synthetic biology 
approaches (Symons et al., 2024). Most climate mitigation research in 
the field is largely premised on replacing broad petrochemical-based 
industries with biological-based industries, though this amounts to 
taking one’s foot off the accelerator, rather than putting on the brakes, 
to reprise Ban and Guterres’ analogy.

In contrast, this article addresses a growing section of the field, 
which is researching the functional equivalent to ‘putting on the 
brakes’ as it addresses direct carbon sequestration. Nevertheless, both 
endeavors utilize the same advantage of using biology as a replacement 
industry, which is that natural evolutionary processes can, under the 
right conditions, allow beneficial mutations to accumulate in a host 
organism to fix bottlenecks in a particular engineered process which 
cannot be  rationally designed for under the Design-Build-Test-
Learn cycle.

Capturing carbon using biology

Some microorganisms naturally capture CO2 as part of their 
lifecycle, primarily through photosynthesis. Within bacteria, complex 
Carbon Capture (CC) pathways have been described which utilize 
either CO2 or bicarbonate ions as a carbon source to create more 
complex molecules which are crucial for the cell lifecycle. There are 
six canonical pathways known but additional biological mechanisms 
have been described and continue to be discovered (Buchanan and 
Arnon, 1990; Hügler and Fuchs, 2005; Hügler et al., 2005; Huber et al., 
2008; Zarzycki et al., 2009; Poehlein et al., 2012; Biel and Fomina, 

2015; Gong et al., 2016; Loder et al., 2016; Santos Correa et al., 2023). 
These canonical pathways are summarized in Table 1. While all these 
processes are superficially similar, they take different pathways and 
chemical intermediaries to get to their end product. Comparing CC 
pathways to one another is not straightforward due to the diverse 
chemical intermediaries and energy requirements, as seen in Table 1.

Within a cell, the metabolic flux—the turnover of molecules—is 
a zero-sum game (Solomon and Prather, 2011). Cellular energy is 
finite and intensive biological processes redirect energy away from 
essential cell growth pathways, creating a hard biological limit to 
productive capacity. While these pathways exist and are abundant in 
nature, transferring and optimizing them for a more familiar bacterial 
host is essential as most research and industrial systems are optimized 
for a handful of species, such as Escherichia coli. However, E. coli is not 
optimized to use CO2 as a primary ingredient in its diet.

To overcome this constraint, recent work modified E. coli to 
directly utilize CO2 as a novel method towards CC. Initial attempts at 
CO2 utilization in E. coli involved giving them CC enzymes from other 
species and allowing the cells to evolve in the presence of CO2, by 
linking CO2 to the cell’s survival and growth (Antonovsky et al., 2016). 
These E. coli were able to synthesize various sugar compounds from 
CO2 as their source. However, the CO2 used was only a small part of 
the cell’s larger carbon diet.

More expansive work later modified E. coli to add new proteins 
within the CC pathways while also removing native proteins utilizing 
alternative carbon sources, forcing E. coli to subsist on CO2 (Gleizer 
et al., 2019; Nissan et al., 2024). While successfully utilizing CO2 for 
growth, the resulting bacteria was incredibly unhealthy; E. coli 
populations normally double in 30 min, whereas this strain took 18 h.

Synthetic biology also creates unnatural metabolic pathways. 
These are pathways where individual enzymes are chosen from 
databases for their unique activities, combined, and then go on to 
create chemicals and pathways not seen in nature (Lin et al., 2019). In 
the two key unnatural pathways designed for CC metabolism, multiple 
enzymes with defined functions were taken, optimized, and combined 
to transform CO2 into intermediaries, such as propionyl-CoA, relevant 
for cell growth through unique and more efficient pathways 
(Schwander et al., 2016; McLean et al., 2023).

Unlike research using natural CC pathways, these are computer 
designed pathways which can overcome production bottlenecks 
through unique enzyme choices divorced from biological constraints, 
i.e., not being limited to the same genus or kingdom (Bernhardsgrütter 
et al., 2021). This dramatically increases the rate of CO2 sequestration. 
For example, the CETCH cycle fixes 1.5–5 times more CO2 while 

TABLE 1 Summary of canonical carbon fixation pathways.

Pathway Energy Source Energy consumption 
(ATP molecules 

consumed per CO2 
molecule fixed)

Light photons 
required per 

CO2 molecule 
fixed

Oxygen 
requirements

Number of 
reactions

Calvin-Benson-Bassham Light 3 13.9 Aerobic 11

3-hydroxypropionate/4-hydroxybutyrate Hydrogen ions, oxygen 2 – Aerobic 17

Dicarboxylate/4-hydroxybutyrate Hydrogen ions, sulfur 1.5 – Anaerobic 14

3-hydroxypropionate bicycle Light, sulfur 1.67 15.3 Anaerobic 11

Reductive tricarboxylic acid Light, sulfur 1 11.0 Anaerobic 12

Wood-Ljungdahl Hydrogen ions 0.5 – Anaerobic 8
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requiring 20% less energy inputs than the globally dominant Calvin-
Benson-Bassham cycle responsible for photosynthesis (Osmanoglu 
et al., 2021; Diehl et al., 2023).

While most CC metabolic engineering transfers these pathways into 
more industrially useful organisms, CETCH and HOPAC are examples 
of in vitro expression, where the purification of key enzymes and the 
chemical reactions themselves occur within a separate non-biological 
receptacle. In vitro expression has key advantages over in  vivo 
(biological) expression, such as separating cell growth from designed 
functions, as engineered enzymes can have toxic effects on cell survival.

However, in  vitro expression removes the key advantage of 
biological systems: adaptive evolution, which can help optimize a 
designed metabolic pathway by linking pathway function to cell 
survival. Unlocking these unnatural pathways has been made possible 
by the vast enzymatic databases that are elemental to synthetic biology 
design processes.

Hard limits: the challenges of scale in 
biology

While both natural and unnatural metabolic pathways have 
shown new ways of removing CO2 from the environment, all 
biotechnologies contend with the hard limit of our ability to grow 
cells. That is: to generate biomass. This hard limit presents the major 
challenge for mitigating climate change through synthetic biology.

To be  efficacious, any biotechnology requires the large-scale 
production of pure biomass to have enough material for the intended 
purposes. In the case of synthetic biology approaches to NETs, it is 
not only titer (product per volume) that is crucial, but also the rate 
and yield of the process, as that defines the economic cost and 
usefulness of any microbial cell factory (Konzock and Nielsen, 2024). 
Any synthetic biology innovations first occur in laboratory scale 
liquid media volumes of <1 L. However, at this scale the metabolic 
dynamics of growing cells are extremely different from those at 
2–2,000 L, with, for instance, E. coli growing up to 20% less biomass 
at a higher culture volume compared to a lab-scale system (Hewitt 
and Nienow, 2007).

There are many challenges in scaling up cell production, especially 
on a commercially viable level. The first major shift is transitioning 
from lab-scale volumes to bioreactors, which are crucial for growing 
the required biomass. As a result, the cost scale increase is 
disproportionate to the corresponding volume scale-up (Mahdinia 
et al., 2019). Laboratory experiments use higher quality chemicals and 
substrates, but these are cost prohibitive for large scale cultivations, 
requiring lower purity industrial grade materials further altering the 
cellular growth dynamics (Cardoso et al., 2020).

To optimize biomass manufacturing, any scale-up must go 
through a series of established steps. These steps require small 
bioreactors (2–20 L), a pilot scale (50–10,000 L), and a plant scale 
(>10,000 L) as the kinetics and performance of cells are different at 
each volume and the result of each step informs the following step 
(Mahdinia et al., 2019). While these industrial approaches are still 
immature, driving biomass production purely through CO2 utilization 
could provide a useful carbon sink mechanism which would interact 
well with existing Biomass Carbon Removal and Storage (BiCRS) 
protocols, especially with the growing research into bacterial hydrogen 
production processes (King et al., 2022; Rosa and Mazzotti, 2022).

When growing cells long term, the evolutionary adaptation process 
key to CC pathway design optimization, can be a risk to engineered 
functions. Since non-native processes interrupt the streamlined growth 
of an organism by diverting metabolic flux, DNA mutations which 
remove engineering interventions provide the mutated organism with 
a growth advantage, such that they will eventually dominate the 
population (Sleight et al., 2011; Nikolados et al., 2019). As a result, any 
engineered microbes are turned back to a more wild-type version.

Many unnatural metabolic pathways, like CETCH and HOPAC, 
are designed around cell-free protein reactions. Such reactions can 
be fed proteins through two main methods, direct protein purification 
or secretion from cell-free protein synthesis, with both requiring large 
biomass sources (Gregorio et al., 2019; Garenne et al., 2021). While 
cell-free protein synthesis has some key advantages over purification 
as protein production is separated from cell survival, cell-free 
production yields are relatively low, production values are hard to 
predict, and industrial scale-up is still an immature technology 
(Borkowski et al., 2020; Garenne et al., 2021). Such challenges majorly 
undermine the efficacy of methods such as CETCH and HOPAC.

While most synthetic biology approaches to CC are still at the 
laboratory stage, there are some extant bioindustrial approaches to 
mitigating climate change. The exemplary approach to date is by 
LanzaTech (USA/NZ), who use autotrophic bacteria to carry out gas 
fermentation from waste gases, in order to produce industrial relevant 
chemicals where CO2 is a carbon source via the native Wood-Ljundahl 
pathway (Liew et al., 2016). It should be noted that Lanzatech utilizes 
carbon instead of removing carbon from polluting industrial 
processes, however, they remain a useful touchstone for bacterial gas 
fermentation processes utilizing pollution. While companies such as 
LanzaTech are successful, two of the major synthetic biology 
companies—Amyris and Gingko Bioworks—recently either declared 
bankruptcy or conducted mass layoffs due to issues translating their 
products into profit growth (Babu, 2023; Reporter, 2024).

All of these outlined issues are all downstream from another 
monumental complexity to overcome, which is the physical removal 
of carbon dioxide from the atmosphere. Currently most bacterial 
processes requiring CO2 as a source involve enriching the growth 
conditions with concentrated CO2 due to the efficient uptake of CO2 
into the cell and the relative inefficiency of carboxylase enzymes. This 
obviously would severely limit the application of synthetic biology 
NETs in environmental use. However, approaches to overcoming this 
issue have begun through a process known as Carbon Concentration 
Mechanisms (CCM) where transport enzymes concentrate CO2 near 
carbon utilization enzymes allowing bacteria to utilize atmospheric 
CO2 concentrations (Flamholz et al., 2020; Flamholz et al., 2022).

‘Soft’ limits: social and ethical issues in 
synthetic biology approaches to NETs

The commercial imperatives of such companies highlight just how 
entrenched normative responses to climate change mitigation are. 
According to such normative responses, technoscientific interventions 
in the climate crisis, such as NETs, must operate according to 
prevailing market conditions. Wherein, attempts to mitigate climate 
change are considered within the prevailing economic framework of 
cost-competitiveness, rather than the actual context in question: an 
existential challenge of incomparable imminence, urgency and 
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consequence. To recognize the context as such would entail that the 
planet is a global commons (where humans hold no exceptional status 
over any other lifeform), wherein, ameliorating the negative effects of 
human industrial activity constitutes a ‘public good’, which should 
then no longer be assessed through a restrictive economic lens.

Social and ethical issues in synthetic biology approaches to NETs 
are further compounded by how NETs constitute climate technofixes 
(Fulvi and Wodak, 2024a,b). Namely—NETs seek to ameliorate 
climate change consequences, while, admittedly not seeking to address 
the causes (such as capitalism and consumerism). This is not a 
criticism of technofixes per se, which literally denote ‘technological 
fixes.’ Nor is it a criticism of climate technofixes, as it has now become 
physically impossible to avert runaway climate change without the 
implementation of NETs, at scale, and in time (Fulvi and Wodak, 
2024a,b). Hence the analogy Ban and Guterres’ make to ineffable 
notions of ‘putting on the brake’, and the seemingly intractable 
difficulties that confront attempts to find, let alone activate this ‘brake.’

By applying this analogy to the case of synthetic biology, this 
article has outlined scientists’ attempts to circumvent the hard limits 
toward activating this ‘brake.’ However, it is important to note that 
there is a growing corpus that is outrightly dismissive of the ability of 
any NETs to be sufficiently efficacious, and deployed at scale, and in 
time. This is exemplified in a response from climatologist Kevin 
Anderson, a delegate at the 2015 UNFCCC conference in Paris.

Following the conference, Anderson penned a commentary in 
Nature, lamenting how the Paris Agreement “rests on the assumption 
that the world will successfully suck the carbon pollution it produces 
back from the atmosphere in the longer term” via NETs. While such 
“exotic Dr. Strangelove options were discussed only as last-ditch 
contingencies” until just a few years ago, now, he decried, “they are 
Plan A.” As a result, Anderson surmised that “the world has just 
gambled its future on the appearance in a puff of smoke of a carbon-
sucking fairy godmother” (Anderson, 2015).

Anderson’s observation surmises what normative responses to 
climate change mitigation have become. On the one hand, climate 
technofixes are no longer fringe (and admonished) ideas. Even the 
Intergovernmental Panel on Climate Change recently deemed NETs 
to be “unavoidable” in climate change mitigation (IPCC, 2014). On 
the other hand, critique from the humanities and social sciences, as 
well as scientists such as Anderson, inveigh against the hubris of such 
climate technofixes (Friedmann, 2019). After all, what is at stake is 
planetary scale climatic change through bioengineering the microbial 
world. While it is beyond the scope of this article to further outline the 
social and ethical issues in synthetic biology approaches to NETs, 
we  note that a growing corpus of humanities and social sciences 
research is exploring these issues (Preston, 2018).

Discussion and conclusion

Arguably, one of the major constraints to mitigating climate 
change persists due to conflating hard and soft limits. For instance—
the second law of thermodynamics is a hard limit, wherein any human 
attempts to modify, let alone circumvent, this law, will be impeded by 
the specific properties of applicable limits. In contrast, the social and 
ethical constraints to mitigating climate change are, in principal, soft 
limits, with their attendant temporal and spatial scales, which do not 
‘map’ on to the time and spatial efficiencies of the corresponding ‘hard’ 

limits. For instance—the audiences that Ban and Guterres addressed 
in their respective United Nations conferences of 2009 and 2022 
would have included numerous politicians, diplomats, policy makers, 
business executives and investors. In these forums, the soft limits of, 
for instance, social and economic policies, confront the hard limits of 
climate tipping points.

Wherein, constraints to reducing GHG emissions through policies 
such as carbon taxation are ‘soft’ limits. Namely: limits arise through 
phenomena such as the social license or political mandate to make 
GHG emissions so prohibitively expensive, as to facilitate the update 
of renewable energies. These limits are ‘soft’, in that their intrinsic 
limits are that which is deemed socially acceptable.

The efficacy and uptake of so-called climate technofixes, such as 
Ecosystem Technology and NETs, could be  facilitated by 
disambiguating between soft and hard limits. Rather than treat such 
(regrettably) necessary climate technofixes as having to operate 
according to conventional economic frameworks, such as cost-
competitiveness, such technologies could, and should, be regarded as 
a risky, uncertain and nevertheless essential subject of research and 
development. Currently, scientists using synthetic biology for NETs 
must not only contend with the applicable hard limits, but they are 
also tasked with inventing and implementing means of removing CO2 
according to normative soft limits. The latter limits only serve to 
compound the seemingly intractable limits of the former.

For instance, one of the first scientific articles to outline how synthetic 
biology could be used for climate change mitigation stated that a decade 
of fundamental scientific research would be required, to comprehensively 
know the efficacy of such mitigation (DeLisi, 2019). Given the seismic 
scientific breakthroughs that would be  required to develop the 
commensurate efficacy, such as those we have outlined in this article, such 
research is undermined when it is compelled to function in an analogous 
manner to incomparable issues that face contemporary society.

While we  argue against the largely unsubstantiated hype and 
promissory rhetoric that all too frequently dominates these fields of 
technoscience, the potential efficacy of synthetic biology approaches 
to NETs will continue to be  undermined, if said approaches are 
considered in overwhelmingly market-driven frameworks. As the 
saying goes: there is no business to be done on a dead planet. The real 
‘business’ then, amounts to exploring all remaining options, including 
morally abhorrent climate technofixes, without conflating hard limits 
with soft limits. The functional equivalent to ‘putting on the brakes’ 
will require interdisciplinary research, across both the natural sciences 
and the human sciences, amidst their respective hard and soft limits. 
Failure to do so merely hastens the hard limit of the “abyss” that “we 
are heading towards.”
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