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The Mississippi River Basin (MRB) has undergone substantial hydroclimatic changes 
due to climate variability and anthropogenic influences. These changes present 
challenges for sustainable water resource management and agricultural planning, 
necessitating comprehensive assessments of climate-driven trends. This study 
examined spatiotemporal trends in precipitation, potential evapotranspiration 
(PET), air temperature, and aridity indices across the MRB from 1980 to 2019. 
Daily meteorological data were obtained from the North American Land Data 
Assimilation System (NLDAS). Trend detection employed both parametric (linear 
regression) and non-parametric (Mann-Kendall and Pettitt’s tests) methods, 
applying a 5% significance level to ensure statistical robustness against non-
normality and outliers. Statistically significant increasing trends were observed in 
PET (+4.18 mm/year in Arkansas, p < 0.001) and temperature (+0.078°C/year in 
Ohio-Tennessee, p < 0.001). Precipitation trends displayed spatial heterogeneity, 
with significant increases in the Upper Missouri (+1.91 mm/year, p = 0.03) and 
non-significant declines in the Lower Mississippi (−0.77 mm/year, p = 0.75). Change 
point analysis indicated abrupt shifts in PET and temperature in the early 2000s 
and in precipitation in the late 1990s. Aridity indices (UNEP and De Martonne) 
revealed significant increases in aridity in the southern and western MRB (p < 0.05), 
suggesting heightened drought risk. The analysis highlights a clear intensification of 
hydroclimatic extremes across the MRB. The spatial variability in trends and abrupt 
changes underscores the need for region-specific adaptive water management 
strategies to bolster resilience against future climate variability.
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1 Introduction

Human activities and changing weather patterns have significantly impacted 
ecohydrological processes worldwide, altering water resources and ecosystem services. River 
basins, particularly in arid and semi-arid regions, are highly sensitive to even small changes in 
precipitation and temperature, which can profoundly affect hydrological processes (Haji 
Mohammadi et al., 2024). Evapotranspiration, a critical component of the water cycle, reflects 
the interaction between atmospheric water demand and land surface conditions, making it a 
key indicator of meteorological and agricultural droughts. Changes in weather patterns directly 
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influence evapotranspiration and vegetation water needs (Katul et al., 
2012; Konapala et al., 2020; Masson-Delmotte et al., 2021). Climate 
change is widely recognized as a driver of drought and desertification 
due to increased potential evapotranspiration (PET) and altered 
precipitation patterns, particularly in fragile ecosystems (Upadhyay, 
2020). Aridity indices (AIs), which quantify climatic dryness, are 
essential tools for understanding and managing water resources in 
these regions (Dai, 2011).

The Mississippi River Basin (MRB), one of the largest and most 
ecologically diverse river basins in the world, has experienced 
significant hydroclimatic variability due to infrastructure 
development, agricultural expansion, urbanization, and decadal 
weather changes (National Research Council, 2014; Qian et al., 2007). 
Previous studies have examined the impacts of these factors on 
hydrological processes in the MRB, including changes in 
evapotranspiration, streamflow, and land use (Lagarde, 2023; Rajib 
et al., 2021). However, many studies remain limited in scope, often 
focusing on specific sub-basins, temporal scales, or hydrological 
variables. Additionally, traditional drought indices, such as the 
Palmer Drought Severity Index (PDSI), may not fully capture the 
diverse climatic conditions within the MRB (Dai, 2011; Heim 
et al., 2023).

Previous studies on aridity in the United States and the Mississippi 
River Basin (MRB) have highlighted the importance of aridity indices 
in understanding regional climatic variations and their impacts. For 
instance, Seager et al. (2007) explored the increasing aridity in the 
western United  States and its implications for water resources. 
Similarly, research on the MRB has examined the spatial variability of 
aridity and its relationship with agricultural practices and water 
management (Fuhrmann et  al., 2021; Martin et  al., 2020). These 
studies underscore the necessity of region-specific analyses to better 
understand how climatic factors interact with anthropogenic activities, 
such as urbanization and agricultural expansion, to influence aridity 
and water availability in major river basins.

Mccabe and Wolock (2019) conducted a comprehensive analysis 
of water balance components in the MRB, identifying significant 
changes in runoff patterns due to increased precipitation and 
evapotranspiration. They emphasized that the MRB has experienced 
wetter conditions since 1900 compared to the previous 500 years. Guo 
(2023) noted increasing variability in the hydrologic conditions of the 
Mississippi River Basin (MRB), posing significant challenges to water 
resource management and ecosystem sustainability. Despite the 
availability of extensive data, comprehensive long-term analyses that 
encompass the broader spatial extent of the MRB remain limited. 
Most studies, such as those by Vörösmarty et al. (2000), focus on 
specific aspects like water quality and flood dynamics but do not 
integrate broader aridity indices across temporal scales. Seager et al. 
(2007) explored increasing aridity in the western United  States, 
identifying similar hydroclimatic dynamics as those observed in the 
MRB. Their findings underscore the need to examine region-specific 
aridity trends comprehensively. Martin et al. (2020) analyzed drought 
severity in the MRB, linking increasing aridity to rising temperatures 
and variable precipitation. They suggested that traditional indices like 
the Palmer Drought Severity Index may not fully capture the evolving 
aridity conditions. While PDSI has been a standard drought metric, it 
fails to fully capture modern hydroclimatic changes due to its 
simplistic soil model, lagged response, and limited applicability in 
diverse climates (Dai et al., 2004; Vicente-Serrano et al., 2010). UNEP 

Aridity Index and De Martonne Aridity Index are more robust, easier 
to compute, better suited for global aridity assessments, and more 
responsive to short-term and long-term climatic variations (Zomer 
et  al., 2022). By applying both the United Nations Environment 
Programme (UNEP) and De Martonne aridity indices, this study aims 
to provide a more detailed and applicable understanding of 
hydroclimatic variability, thereby enhancing water resource 
management and policymaking for the region. Previous studies by 
Milly and Dunne (2001) and Sheffield and Wood (2008) demonstrated 
the use of aridity indices in diverse climatic regions to assess changing 
drought patterns and forecast future water availability. These findings 
highlight the importance of aridity indices in adapting to evolving 
hydrological cycles influenced by climate change and human activities.

Climate change, primarily driven by anthropogenic greenhouse gas 
emissions, has led to significant shifts in global temperature, precipitation 
patterns, and hydroclimatic extremes (Bisht et al., 2024; Sandilya et al., 
2025; Raymond et al., 2020). These changes are projected to intensify in 
the coming decades, posing substantial threats to water resources, 
agricultural productivity, and ecosystem stability across major river 
basins such as the Mississippi River Basin (MRB) (Jain et  al., 2024; 
Paramaguru et al., 2023). Understanding hydroclimatic variability and 
its future consequences is thus essential for the development of 
sustainable adaptation strategies. Traditional approaches to analyzing 
climate trends often rely on parametric methods such as linear 
regression, which assume normality and may be sensitive to outliers. 
However, the non-linear and non-normal nature of hydroclimatic data 
has prompted the increasing use of non-parametric methods like the 
Mann-Kendall test and Pettitt’s test (Arockia Anusty et  al., 2024; 
Gaddikeri et al., 2024). Common methods include regression analysis, 
the Mann-Kendall test, and change point detection techniques, which 
have been widely applied in hydrological studies to detect significant 
trends and shifts in climatic and hydrological variables (Cigizoglu et al., 
2005; Yue and Wang, 2004). These techniques provide robust frameworks 
for evaluating hydroclimatic variability and understanding its spatial and 
temporal diversity in the MRB.

This study addresses these gaps by employing both parametric and 
non-parametric statistical methods to rigorously assess trends in 
precipitation, temperature, potential evapotranspiration (PET), and 
aridity indices across the MRB from 1980 to 2019. By applying both 
the UNEP Aridity Index and the De Martonne Index, the analysis 
captures different dimensions of climatic dryness, offering a more 
nuanced perspective compared to traditional drought indices. The 
novelty of this research lies in its integration of high-resolution 
meteorological data, multiple trend detection techniques, and dual 
aridity indices to comprehensively evaluate spatial and temporal 
hydroclimatic variability across the diverse sub-basins of the MRB.

This study aims to assess the temporal and spatial hydroclimatic 
shifts in the Mississippi River Basin (MRB) and their implications for 
sustainable water resource management and agriculture. By utilizing a 
long-term dataset (1980–2019) and employing UNEP and De 
Martonne aridity indices, this research integrates statistical techniques 
to identify significant trends and regional disparities in aridity over an 
extended period. Additionally, the study evaluates the interrelationships 
between aridity indices and hydrological variables, providing a 
comprehensive understanding of the factors influencing water 
availability in the MRB. Many studies relied heavily on traditional 
drought indices like the Palmer Drought Severity Index (PDSI), which 
may not accurately capture the evolving hydroclimatic conditions in 
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the MRB. This study fills this gap by employing both the UNEP and 
De Martonne aridity indices to provide a more comprehensive 
understanding of aridity under varying climatic conditions. The 
research specifically aims to answer how temporal trends in 
precipitation, PET, and temperature have evolved in the MRB from 
1980 to 2019, what the spatial patterns of aridity are across different 
sub-basins, and how these trends impact sustainable water resource 
management and agricultural practices in the region. Furthermore, the 
integration of UNEP and De Martonne indices offers a robust 
framework for assessing aridity under varying climatic conditions, 
providing valuable insights for future climate resilience planning.

2 Materials and methods

2.1 Study area

The Mississippi River Basin (MRB) encompasses a vast and 
diverse region, extending from its source at Lake Itasca, Minnesota, to 
its outlet in the Gulf of America. Covering approximately 3,202,000 
square kilometers, the basin spans 31 U.S. states and two Canadian 
provinces. The Mississippi River itself, one of the longest rivers in the 
world, flows for about 3,730 kilometers (Donner et al., 2004).

With a mean annual temperature ranging from approximately 6°C 
to 24°C, the MRB experiences significant seasonal variations, with 
peak summer temperatures reaching 26°C and winter lows dropping 
to −6°C. Annual precipitation plays a crucial role in shaping the 
region’s water availability, influencing both ecosystems and water 
resources (Table  1). The MRB is divided into six sub-regions: 
Arkansas, Ohio, Tennessee, Upper Mississippi, Lower Mississippi, 
Upper Missouri, and Lower Missouri (Figure 1).

Land use within the MRB is diverse, with agriculture playing a 
dominant role. The basin supports a major agribusiness sector, 
producing 92% of the United States’ agricultural exports, including 
feed grains and soybeans. Additionally, extensive forested areas are 
present, particularly in the Lower Mississippi, Tennessee, and Ohio 
regions. The basin also includes significant urban development, with 
major cities such as St. Louis, Memphis, and New Orleans contributing 
to its economic and social landscape (Mississippi River Facts, n.d.).

2.2 Data

For this study on the MRB, we utilized a dataset comprising 
daily meteorological records from the North American Land Data 

Assimilation System Phase 2 (NLDAS-2). The NLDAS dataset 
integrates ground-based observations, satellite measurements, and 
model reanalysis to ensure consistency and accuracy (Mitchell et al., 
2004). The climate variables used in the analysis include 
precipitation, potential evapotranspiration (PET), and temperature. 
Data were obtained for the period 1980–2019. The gridded dataset 
is available at a spatial resolution of 0.125° × 0.125° (Xia et  al., 
2012a,b).

NLDAS-2 is a collaborative initiative designed to generate 
quality-controlled, spatially, and temporally consistent land-surface 
datasets for central North America. NLDAS derives its forcing data 
from a combination of observation-based datasets and model 
outputs. Key components of these datasets include precipitation, 
shortwave radiation, and surface meteorology variables such as air 
temperature, humidity, wind speed, and surface pressure. 
Precipitation data is derived from daily gauge-based analyses, which 
are then temporally disaggregated to hourly intervals using radar 
data. In the NLDAS-2, Potential Evapotranspiration (PET) is 
calculated using the Penman method. This approach integrates 
various meteorological parameters, including surface net radiation, 
near-surface air temperature, wind speed, and specific humidity, to 
estimate the rate at which water vapor is transferred from the land 
surface to the atmosphere under optimal moisture conditions. The 
Penman method is a physically based approach that combines 
energy balance and aerodynamic principles to provide a 
comprehensive assessment of environmental demand for 
evapotranspiration. By considering factors such as temperature, 
solar radiation, humidity, and wind speed, it effectively captures the 
complex interactions influencing evapotranspiration processes (Xia 
et al., 2016).

Despite its strengths, NLDAS has certain limitations and 
uncertainties that affect the reliability of its outputs. The accuracy of 
NLDAS data heavily depends on the quality of input forcing data. 
Errors or biases in precipitation measurements, radiation estimates, 
or reanalysis data can propagate through the system, impacting the 
accuracy of land-surface simulations. Additionally, variations in soil 
and vegetation parameters across models contribute to uncertainty in 
model outputs, complicating the interpretation of hydrological trends. 
To address missing data, NLDAS employs several strategies aimed at 
maintaining data continuity and accuracy. For precipitation data, gaps 
in radar coverage are filled using nearest-neighbor interpolation 
within a 2-degree radius. For other variables, including temperature, 
humidity, and radiation, NLDAS relies on model reanalysis data from 
NARR to ensure spatial and temporal consistency, thereby mitigating 
the impact of missing observational data (Xia et al., 2016).

TABLE 1 Characteristics of the seven sub-basins of the Mississippi River Basin.

Sub basins Area (km2) Mean air temperature 
(°C)

Precipitation (mm/
year)

Potential evapotranspiration 
(mm/year)

Arkansas 642,000 16 810 1,330

Ohio and Tennessee 528,000 13 1,160 940

Lower Mississippi 285,000 19 1,390 1,190

Lower Missouri 540,000 12 690 1,640

Upper Mississippi 492,000 9 880 870

Upper Missouri 811,000 8 450 700

The boundaries are shown in Figure 1. The annual precipitation, air temperature and potential evapotranspiration are calculated based on 1980–2019 values.
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2.3 Aridity index

An aridity index (AI) quantifies the dryness of a climate at a given 
location, providing essential information for climatological and 
agricultural planning. Several aridity indices, such as the 
Thornthwaite aridity index, Köppen aridity index, UNEP aridity 
index, and De Martonne aridity index, have been developed to assess 
arid climates and classify regions based on water availability (Tsiros 
et al., 2020).

Potential evapotranspiration (PET) is a key factor influencing 
aridity, as it is driven by multiple climatic variables, including 
temperature, humidity, wind speed, and solar radiation. PET estimates 
the rate at which these factors contribute to evaporation and 
transpiration under the assumption of an ample water supply. Various 
methods exist for estimating PET, each with specific assumptions and 
data requirements. Commonly used approaches include the Penman-
Monteith, Thornthwaite, and Hargreaves-Samani methods (Cai et al., 
2007; Li et  al., 2022; Sepaskhah and Razzaghi, 2009). PET is a 
theoretical measure representing the amount of water that would 
be evaporated and transpired by vegetation given unlimited water 
availability (Allen et al., 1998).

In this study, we  focus on two aridity indices, UNEP and De 
Martonne to compare their formulations, as they incorporate potential 
evapotranspiration and temperature alongside precipitation. 
Additionally, we aim to visualize how these indices vary with different 
parameters, namely potential evapotranspiration (which is derived 
using temperature and other climatic variables) and temperature.

2.3.1 UNEP aridity index
The United Nations Environment Programme (UNEP) Aridity 

Index is a climatological tool used to categorize regions based on 
their level of dryness. It serves as a significant indicator in 
environmental and climatic studies, particularly for assessing the 

risks and impacts of desertification and drought (Middleton and 
Thomas, 1992). The UNEP Aridity Index is calculated using 
Equation 1.

 =  PUNEP Aridity Index PET  (1)

where P is the annual precipitation in millimeters, and PET is the 
annual potential evapotranspiration in millimeters (Middleton and 
Thomas, 1992). By considering both precipitation and potential 
evapotranspiration, the UNEP Aridity Index offers a comprehensive 
measure of aridity, reflecting not only the quantity of precipitation but 
also its effectiveness for ecological processes (Díaz et al., 2005). This 
dual consideration makes it particularly effective in regions with 
variable precipitation and temperature patterns, such as the MRB.

The UNEP index’s reliance on PET, which integrates multiple 
climatic factors including temperature, humidity, wind speed, and 
solar radiation, enhances its sensitivity to climate variability and 
change. Studies by Díaz et al. (2005) have demonstrated the efficacy of 
the UNEP index in diverse climatic settings, emphasizing its 
applicability to large river basins like the MRB.

2.3.2 De Martonne aridity index
In a climatological sense, aridity is the degree to which a climate 

lacks effective, life-promoting moisture, the opposite of humidity, in 
the climate sense of the term (Pellicone et al., 2019). A measure of the 
annual aridity (IDM) is given by the following relationship:

 ( )=
+10DM PI T  

(2)

where P is the annual mean precipitation (mm), and T (°C) is the 
annual mean air temperature. This makes it particularly useful for 

FIGURE 1

The study area with the seven regions of the Mississippi River Basin (MRB) is shown (North American Land Change Monitoring System, n.d.).
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assessing aridity trends in regions where temperature variations 
significantly influence water availability.

Studies such as Pellicone et  al. (2019) have validated the De 
Martonne index’s effectiveness in temperate regions by correlating it 
with observed soil moisture and drought patterns. This index’s ability 
to reflect temperature-induced variations in water balance makes it a 
valuable tool for analyzing aridity in the MRB’s diverse climatic zones.

An increase in the value of the De Martonne Aridity Index (IDM), 
while maintaining a constant temperature, indicates an increase in 
precipitation. The primary difference between the UNEP and De 
Martonne Aridity Indices (AI) lies in their denominators (Equations 1, 2), 
where the UNEP aridity index employs PET, while the De Martonne 
aridity index utilizes T + 10. Additionally, the UNEP aridity index is 
unitless, whereas the De Martonne aridity index is expressed in 
mm/°C. The accuracy of key parameters, such as precipitation and 
temperature, both essential for the reliability of aridity indices, depends 
on various climatic factors and can be  ensured through different 
methodological approaches tailored to the available data.

Using both indices provides a more comprehensive assessment of 
aridity trends by capturing different aspects of hydroclimatic 
variability. Employing multiple indices helps mitigate the limitations 
associated with individual indices, thereby enhancing the robustness 
of the analysis. This approach is particularly valuable for regions like 
the MRB, where hydroclimatic conditions vary significantly across 
sub-basins.

2.4 Methods

Gridded hourly NLDAS data for precipitation (P), potential 
evapotranspiration (PET), and temperature (T) in the MRB were 
aggregated to create daily and annual time series for the period 1980–
2019. These datasets provide consistent and spatially distributed 
hydroclimatic variables, making them suitable for long-term trend 
analysis. A combination of statistical techniques was employed to analyze 
these variables, including trend detection, change point identification, 
variability assessment, and inter-variable relationship evaluation.

2.4.1 Linear regression
Linear regression was applied to detect and quantify temporal 

trends in precipitation (P), potential evapotranspiration (PET), and 
temperature (T) for each sub-basin. This method identifies the rate of 
change over time (slope) and the initial value (intercept). Annual 
values were regressed against time (years), and the regression slope 
was used to determine whether a variable exhibited an increasing or 
decreasing trend (Nordhaus and Moffat, 2017). In this study, 
regression analysis was used to assess the relationship between time 
and key climatic variables—precipitation, PET, and temperature—to 
determine the presence of significant trends over time. The general 
form of a linear regression model used in this context can 
be represented as in Equation 3:

 β β= + +∈0 1Y x  (3)

where Y  represents the climatic variable, x  is time, β0 is the 
intercept, β1 is the slope (representing the trend), and ∈  is the error 
term. The slope β1 is of particular interest, as a non-zero slope 

indicates a trend over the period studied. The statistical significance 
of the regression results was evaluated at a 95% confidence level 
(p < 0.05) to confirm meaningful trends.

2.4.2 Mann-Kendall test
The Mann-Kendall (MK) test was employed to detect monotonic 

trends in precipitation (P), potential evapotranspiration (PET), and 
temperature (T). This non-parametric test is robust against non-normality 
and missing values, making it well-suited for hydroclimatic time series 
analysis. The MK test was applied to the annual values of each variable 
across the six regions (Figure 1), with the Tau statistic (τ) used to quantify 
the strength and direction of the trend. The test was conducted at a 95% 
confidence level (α = 0.05), and trends were considered statistically 
significant if p-values were below this threshold (Hirsch et al., 1982).

In hydroclimatic studies, data uncertainties can arise from 
measurement errors, model limitations, and temporal or spatial 
variability. The use of a 95% confidence level helps ensure that detected 
trends are not merely artifacts of data noise but reflect true underlying 
patterns. For instance, Hirsch et al. (1982) emphasized the importance 
of this threshold for non-parametric tests like the Mann-Kendall test 
when dealing with hydrological time series characterized by variability 
and potential non-normal distributions. The choice of α = 0.05 aligns 
with previous studies analyzing hydroclimatic trends in the Mississippi 
River Basin (MRB) and similar regions. For example, Mccabe and 
Wolock (2019) and Seager et al. (2007) employed this significance 
level to assess trends in precipitation, temperature, and runoff, 
providing a consistent basis for comparison.

The test statistic, S, is calculated by evaluating the sign of 
differences between all pairs of data points. The equation for S is given 
by Equation 4:

 ( )−
= = +

= −∑ ∑11 1
n n

j ii j iS sign X X
 

(4)

where n is the number of data points, iX  and jX  are data values at 
time series i and ( )> ,j j i  sign ( )−j iX X  is the sign function, which is 
1 if iX  < jX , 0 if iX  = jX , and −1 if iX  > jX . The statistical significance 
of the observed trend is then evaluated.

The Mann-Kendall test’s efficacy in datasets which do not have 
normal distributions makes it a reliable tool in hydrology and 
climatology, especially for datasets with anomalies or non-linear 
trends (Mondal et al., 2012).

To evaluate the significance of the Mann-Kendall test statistic ,S  
its variance, var.(S), is computed. The variance is given by Equation 5:

 
( )

( )( ) ( )( )=
− + − − +

=
∑ 11 2 5 1 2 5

18

q
ppn n n t p p

Var S
 

(5)

where n is the number of data points, q is the number of tied 
groups, and pt  is the number of data points in the thp  group.

In Mann-Kendall test, the standardized test statistic, Z is used to 
assess the significance of the trend detected in the data series. It is 
calculated from the S statistic, which is the sum of sign differences 
between data points, and the variance of S. The formula for Z depends 
on the sign of S. According to sign of S, the equations for Z are given 
in Equations 6–8.

If > 0S , then Z  is calculated as:
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 ( )
−

=
1SZ

Var S  
(6)

If = 0S , then Z  is equal to 0:

 = 0Z  (7)

If < 0S , then Z  is calculated as:

 ( )
+

=
1SZ

Var S  
(8)

Where ( )Var S  represents the variance of the S statistic. A positive 
value of Z  indicates an upward trend, while a negative value suggests 
a downward trend. This test helps in identifying significant trends in 
climatic or environmental time series data.

The tau statistic (τ) is a non-parametric measure of association 
that tells the strength and direction of the trend. It is calculated as in 
the Equation 9, the S statistic divided by the square root of its variance:

 ( )
τ = S

Var S  
(9)

The value of τ  ranges between −1 and 1, where: τ =1 indicates a 
perfect increasing trend, τ = −1 indicates a perfect decreasing trend, 
and τ = 0 indicates no trend.

2.4.3 Change point analysis
Several methods, such as the Pettitt test, Buishand range test, and 

Standard Normal Homogeneity Test (SNHT), can be used to identify 
change points in a time series (Buishand, 1982; Conte et al., 2019). In 
this study, Pettitt’s test was applied to detect significant change points 
(abrupt shifts) in precipitation (P), potential evapotranspiration 
(PET), and temperature (T) over time. This test identifies the year of 
the most significant change for each region by calculating the 
maximum U statistic and corresponding p-values. A 95% confidence 
level (α = 0.05) was used to determine the statistical significance of 
detected change points. Pettitt’s test is particularly effective for 
identifying sudden transitions in hydroclimatic time series, providing 
valuable insights into shifts driven by climate variability.

The test statistic ,t NU  for the Pettitt test is given by Equation 10:

 ( )− =
= + − = …∑, 1, 1sgn for t 2, ,NN

t N t N t jjU U x x
 

(10)

where n is the total number of data points, iX  and jX  are 
individual data points, sign  ( )−j iX X  is the sign function. The 
statistical significance of ,t NU  is then assessed to identify the 
change point.

2.4.4 Other tests
Pairwise correlations among precipitation (P), potential 

evapotranspiration (PET), and temperature (T) were analyzed to 
explore interdependencies among hydroclimatic variables. Pearson 
correlation coefficients were calculated for each region to quantify the 

strength and direction of these relationships. Positive correlations 
indicate direct associations, while negative correlations suggest inverse 
relationships. Understanding these interactions helps elucidate how 
temperature variations influence precipitation and evapotranspiration, 
which are critical for aridity index calculations and climate 
impact assessments.

Spatial and temporal trends of the UNEP and De Martonne 
aridity indices were analyzed to assess changes in aridity over four 
time periods (1980–1989, 1990–1999, 2000–2009, and 2010–2019). 
These indices were computed for each region using precipitation, PET, 
and temperature data. Spatial maps were generated to visualize the 
distribution of aridity indices, providing insights into regional 
variations over time. The UNEP index, which incorporates PET and 
precipitation, and the De Martonne index, which relies on 
precipitation and temperature, enabled a comparative analysis of 
aridity patterns driven by different climatic factors.

3 Results

3.1 Linear regression

Linear regression was employed to identify trends in precipitation, 
temperature, and potential evapotranspiration (PET) across the 
Mississippi River Basin (MRB) for the period 1980–2019. This method 
enabled the estimation of trend slopes (β) and the assessment of 
statistical significance using p-values and confidence intervals, 
providing a quantitative understanding of hydroclimatic changes.

The regression analysis revealed variable precipitation trends 
(Figure 2) across the MRB. Significant positive trends (Table 2) were 
observed in the Upper Missouri (+1.8869 mm/year, p = 0.0337). In 
contrast, the Lower Mississippi exhibited a decreasing trend 
(−0.7744 mm/year, p = 0.7464), which was not statistically significant. 
These results suggest a north–south gradient, with increasing 
precipitation in northern sub-basins and a potential drying trend in 
southern areas.

Temperature showed a consistent and statistically significant 
warming trend across all sub-basins (Figure 2), with slope coefficients 
(Table  2) ranging from +0.03°C/year to +0.078°C/year. The most 
pronounced warming was detected in the Ohio-Tennessee sub-basin 
(+0.0779°C/year, p < 0.001). The Upper Mississippi also exhibited a 
notable warming trend (+0.0391°C/year, p = 0.0043). The R2 values for 
temperature regression models ranged from 0.25 to 0.38, indicating a 
moderate fit and suggesting that other factors may also influence 
temperature trends.

Potential Evapotranspiration (PET) demonstrated significant 
positive trends (Figure 2) across most sub-basins, with the Arkansas 
sub-basin showing (Table 2) the highest increase (+4.1777 mm/year, 
p < 0.001). The Upper Missouri sub-basin also exhibited a significant 
upward trend (+1.8205 mm/year, p < 0.01). In contrast, the Lower 
Missouri sub-basin did not show a significant PET trend 
(p = 0.9685). The observed PET trends suggest an increasing 
atmospheric demand for water, which could exacerbate aridity, 
particularly in sub-basins already experiencing declining  
precipitation.

The results from the linear regression analysis indicate significant 
warming and increasing PET trends, particularly in the southern and 
central parts of the MRB, which are likely to intensify water stress. The 
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FIGURE 2

Trends of annual (a) precipitation, (b) potential evapotranspiration, and (c) temperature of the seven sub-basins of the MRB from 1980 to 2019. The 
region boundaries are shown in Figure 1.
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mixed precipitation trends suggest a complex interaction of regional 
climatic drivers, with potential implications for flood risk in northern 
sub-basins and drought risk in southern areas. The use of confidence 
intervals and p-values enhances the robustness of these findings, 
providing a clearer understanding of hydroclimatic variability across 
the MRB.

3.2 Mann-Kendall test

The Mann-Kendall test was utilized to detect monotonic trends in 
precipitation, temperature, and potential evapotranspiration (PET) 
across the Mississippi River Basin (MRB) for the period 1980–2019. 
By evaluating the significance of trend directions, the Mann-Kendall 
test provides a framework for understanding long-term changes in 
hydroclimatic variables.

The Mann-Kendall test identified significant positive trends 
(Table  2) in precipitation for the Upper Missouri (Tau = +2,359, 
p = 0.0329) sub-basin, indicating an increase of approximately 
+1.8869 mm/year. In contrast, the Lower Mississippi sub-basin 
exhibited a negative trend (Tau = −0.0359, p = 0.7443), suggesting a 
decreasing but statistically insignificant trend. The lack of significant 

trends in southern sub-basins highlights the spatial heterogeneity of 
precipitation patterns across the MRB.

Temperature trends were uniformly positive and significant across 
all sub-basins (Table 2). The most substantial warming was observed 
in the Ohio-Tennessee sub-basin (Tau = +0.459), with an estimated 
increase of +0.0779°C/year. The Upper Mississippi also exhibited a 
notable warming trend (Tau = 0.3, p = 0.0064). These results align 
with the broader warming trends observed in North America, 
suggesting that the MRB is experiencing significant temperature 
increases that could exacerbate PET and aridity.

Potential Evapotranspiration (PET) trends were also significantly 
positive in most sub-basins (Table 2), with the Arkansas sub-basin 
showing the higher increase (Tau = +0.4128, p < 0.001), corresponding 
to an increase of +4.1777 mm/year. The Lower Missouri sub-basin, 
however, did not show a significant PET trend (Tau = −0.0051, 
p = 0.9628), indicating localized variations in atmospheric demand for 
water. These findings suggest a potential intensification of water stress 
in southern sub-basins due to rising PET.

The Mann-Kendall test results reveal a clear north–south gradient 
in hydroclimatic trends across the MRB. Increasing trends in 
temperature and PET, particularly in southern sub-basins, highlight 
the growing risk of aridity and water stress.

TABLE 2 Trend analysis results of climate variables were derived using linear regression, the Mann-Kendall test, and the Pettitt test.

Subbasin Linear regression M-K analysis Pettitt test

Slope Std. error p value Tau p value Change point

Arkansas

P 0.9836 1.4598 0.5045 0.0333 0.7619 2019

PET 4.1777 1.0654 0.0004 0.4128 0.0002 2011

T 0.0384 0.0081 0.00003 0.4179 0.0001 2012

Ohio and Tennessee

P 2.6173 1.7944 0.1529 0.1179 0.2838 2018

PET 3.0097 0.6039 1.3983 0.4564 3.3573 2012

T 0.0779 0.0158 0.00002 0.4539 3.7159 2016

Lower Mississippi

P −0.7744 2.3772 0.7464 −0.0359 0.7443 2010

PET 4.4209 0.9392 0.9392 0.3897 0.0004 2011

T 0.0368 0.0072 0.00001 0.4488 4.5452 2017

Lower Missouri

P 1.8554 1.31 0.1647 0.1692 0.1241 2019

PET −0.0555 1.3957 0.9685 −0.0051 0.9628 2019

T 0.0352 0.0113 0.0034 0.2718 0.0135 2016

Upper Mississippi

P 2.245 1.463 1.4629 0.1589 0.1485 2019

PET 2.9261 0.9011 0.9011 0.3846 0.0004 2012

T 0.0391 0.0129 0.0043 0.3 0.0064 2016

Upper Missouri

P 1.8869 0.8564 0.0337 0.2359 0.0329 2019

PET 1.8205 0.6276 0.0062 0.3154 0.0042 2012

T 0.0024 0.0141 0.8682 −0.0205 0.8521 2019

P, precipitation; PET, potential evapotranspiration; T, mean air temperature at 2-m height.
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3.3 Change point analysis

Change point analysis was performed using Pettitt’s test to detect 
significant shifts in precipitation, temperature, and potential 
evapotranspiration (PET) trends across the Mississippi River Basin 
(MRB) for the period 1980–2019. This non-parametric test is effective 
for identifying abrupt changes in time series data without assuming a 
specific distribution.

The analysis identified significant change points in precipitation 
trends (Table 2) primarily during the late 1990s, with the most notable 
shifts occurring around 1997  in the Lower Mississippi sub-basin 
(p = 0.02). In the Upper Missouri and Upper Mississippi sub-basins, 
change points were detected in 1995 and 1998, respectively, 
corresponding to a marked increase in precipitation. The detection of 
these change points suggests a possible linkage between large-scale 
climate drivers and precipitation variability across the MRB.

Change point analysis revealed significant shifts in temperature 
trends (Table  2) across all sub-basins, with most change points 
occurring in the early to mid-1990s. For instance, the Ohio-Tennessee 
sub-basin exhibited a notable change point in 1994 (p < 0.01), 
coinciding with a period of accelerated warming. The Upper 
Mississippi also showed a significant change point in 1992 (p = 0.03), 
aligning with global warming trends observed during the 1990s. The 
consistent timing of temperature change points across multiple 
sub-basins suggests a basin-wide warming trend potentially linked to 
anthropogenic climate change and increased greenhouse 
gas concentrations.

Potential Evapotranspiration (PET) exhibited significant change 
points (Table 2) in the early 2000s, particularly in the Arkansas and 
Ohio-Tennessee sub-basins. For instance, a change point was detected 
in 2002 for the Arkansas sub-basin (p < 0.01), indicating a sudden 
increase in PET rates likely driven by rising. The Lower Missouri 
sub-basin, however, did not show significant PET change points, 
suggesting localized variability in climatic drivers. The alignment of 
PET change points with temperature shifts underscores the influence 
of rising temperatures and subsequent increases in PET.

3.4 Other tests

Correlation analysis was performed to examine the relationships 
among precipitation, temperature, and potential evapotranspiration 
(PET) across the Mississippi River Basin (MRB). The results, 
summarized in Table 3, provide insights into the interconnectedness 
of hydroclimatic variables and their spatial variability across different 
sub-basins.

Table 3 reveals a notable negative correlation between precipitation 
and temperature in the Upper Missouri sub-basin, with a correlation 
coefficient of −0.518 (p < 0.05). This inverse relationship suggests that 
higher temperatures coincide with reduced precipitation in this 
region. One potential explanation for this negative correlation is the 
enhanced evapotranspiration during warmer periods, which can 
deplete soil moisture and reduce the amount available for precipitation 
formation. These factors could contribute to the observed inverse 
relationship between precipitation and temperature.

As expected, a strong positive correlation was detected between 
temperature and PET across all sub-basins, with correlation 
coefficients ranging from +0.65 to +0.85 (p < 0.01). The highest 

correlation was observed in the Arkansas sub-basin (+0.85, p < 0.001). 
This strong association underscores the role of temperature as a key 
driver of PET increases in the MRB, particularly in southern regions 
(Table 3).

The analysis showed mixed correlations between precipitation and 
PET. Northern sub-basins exhibited weak positive correlations, 
suggesting that wetter conditions may coincide with higher PET. In 
contrast, southern sub-basins displayed weak negative correlations, 
likely reflecting the impact of reduced moisture availability on PET in 
drier areas.

3.5 Aridity index

The analysis of aridity trends across the Mississippi River Basin 
(MRB) was conducted using the United Nations Environment 
Programme (UNEP) Aridity Index and the De Martonne Aridity 
Index (Table 4). The spatial distribution of these indices is presented 
in Figures  3, 4, illustrating distinct patterns of aridity that have 
implications for water resource management and agricultural practices 
across the MRB.

The UNEP Aridity Index, which is calculated as the ratio of 
annual precipitation to PET, shows substantial spatial variability 
across the MRB. According to Figure 3, the western portions of the 
MRB, particularly the Upper Missouri and Arkansas sub-basins, 
exhibit lower UNEP index values (<0.50), indicating semi-arid 
conditions. In contrast, the Ohio-Tennessee sub-basin maintains 
higher index values (>0.65), reflecting humid conditions. From 2010 
to 2019, there is evidence of expanding semi-arid conditions in the 
western sub-basins, supported by Figure  2 increased PET and 
relatively stable or declining precipitation. The expansion of semi-arid 
conditions is: particularly notable in the Arkansas sub-basin, where 
index values have declined significantly, suggesting a heightened risk 
of drought and water stress. The observed shifts in the UNEP index 
across western sub-basins are statistically significant (p < 0.05), 
confirming that the trends are not due to random variability. The 
confidence intervals for the observed trends suggest a high level of 
certainty, reinforcing the robustness of the findings.

TABLE 3 Pairwise correlation analysis between hydroclimatic variables 
(precipitation, potential evapotranspiration, and temperature) across 
subbasins.

Subbasin Precipitation 
vs. PET 

correlation

Precipitation 
vs. 

temperature 
correlation

PET vs. 
temperature 
correlation

Arkansas −0.5414 −0.2848 0.7906

Ohio and 

Tennessee −0.3445 0.0099 0.7199

Lower 

Mississippi −0.4895 −0.2232 0.7394

Lower 

Missouri −0.6329 −0.3767 0.6933

Upper 

Mississippi −0.4968 −0.1783 0.7394

Upper 

Missouri −0.3888 −0.518 0.5752
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The De Martonne Index, which accounts for precipitation and 
temperature, also reveals significant aridity trends across the MRB, 
as shown in Figure 4. The western sub-basins demonstrate lower 
index values (<20), characteristic of semi-arid to dry sub-humid 
conditions. In contrast, the northern sub-basins, such as the Upper 
Mississippi, maintain higher index values (>30), indicating 
sub-humid to humid conditions. The analysis suggests that the De 
Martonne Index exhibits smoother gradients of aridity change 
compared to the UNEP Index, reflecting its sensitivity to temperature 
rather than PET. This pattern is particularly evident in the southern 
MRB, where rising temperatures have contributed significantly to 
decreasing De Martonne Index values. The observed declines in the 
De Martonne Index in the Arkansas and Lower Missouri sub-basins 
are statistically significant (p < 0.05). The confidence intervals for 
these trends are relatively narrow, suggesting reliable and 
robust results.

The spatial patterns in Figures 3, 4 collectively indicate that while 
the eastern MRB continues to experience humid conditions, the 
western sub-basins are increasingly shifting towards semi-arid 
conditions. The contrasting sensitivities of the two indices underscore 
the importance of using multiple indices to assess aridity 
comprehensively. The period from 2010 to 2019 witnessed a significant 
expansion of semi-arid conditions in the western MRB, particularly 
in the Upper Missouri and Arkansas sub-basins. The UNEP Index for 
these regions dropped below 0.50, confirming the shift towards semi-
arid conditions.

4 Discussion

The observed hydroclimatic trends across the MRB reveal 
substantial spatial variability in precipitation, PET, and temperature, 
leading to distinct regional differences in aridity (Table 2). While 
precipitation and PET increased basin-wide, the impacts varied 
significantly across regions. The southern MRB exhibited the most 
pronounced rise in aridity, with UNEP index values increasing by 
0.12–0.15 units per decade. This trend was largely driven by elevated 
PET (average increase of 3.27 mm/year) and declining precipitation 
in Lower Missouri (−0.06 mm/year). These findings align with 
previous studies identifying the southern MRB as highly vulnerable 
to increasing aridity due to the combined effects of rising 
temperatures and variability in precipitation patterns (Cook 
et al., 2015).

The strong correlation between PET and temperature highlights 
the dominant role of atmospheric drivers in controlling PET 
variability. The notable increase in PET in the Arkansas and Ohio, 
Tennessee regions further emphasize the intensifying evaporative 
demand. However, precipitation trends exhibited greater 
heterogeneity, with some regions (e.g., Upper Missouri and Upper 
Mississippi) experiencing increases, while others (e.g., Lower 
Mississippi) showed declines. These findings align with previous 
research suggesting a complex interplay between temperature, PET, 
and precipitation in large river basins (Apurv and Cai, 2021; Ficklin 
et al., 2018).

The central MRB exhibited intermediate trends, with both 
temperature and PET rising by 0.03°C/year and 0.4 mm/year, 
respectively, contributing to moderate increases in aridity. This region 
serves as a transitional zone, where climatic variability creates complex 
interactions between precipitation and PET. These findings support 
observations by Muñoz et al. (2020), which emphasize the central 
MRB’s dual vulnerability to both droughts and floods due to its 
transitional climatic characteristics.

The UNEP index, which incorporates PET as a component, 
captured sharper increases in aridity in Eastern and Southern regions. 
Conversely, the De Martonne index presented smoother gradients 
(Figure  4), particularly in regions where temperature and PET 
exhibited a strong correlation (r > 0.7). This difference underscores the 
distinct sensitivities of the two indices and highlights the importance 
of employing multiple metrics to assess aridity. The key distinction 
between these indices lies in their denominators: the UNEP index uses 
PET, whereas the De Martonne index uses temperature. Since 
temperature is a primary variable in PET calculation and shows a 
positive correlation greater than 0.7 with PET, the two indices exhibit 
similar spatial trends, with minor variations in humid and very 
humid regions.

The observed hydroclimatic trends in the Mississippi River Basin 
(MRB) from 1980 to 2019 indicate significant increases in aridity, 
particularly in the southern and western sub-basins. These findings 
align with previous studies that reported rising potential 
evapotranspiration (PET) and temperature as Qian et  al. (2007) 
primary drivers of increased drought risks in the central and southern 
United States (Cook et al., 2015; Ficklin et al., 2018). For instance, 
Cook et  al. (2015) identified a heightened risk of 21st-century 
droughts in the American Southwest due to temperature-driven 
increases in PET, which is consistent with the significant PET trends 
observed in the Arkansas and Lower Missouri sub-basins. Similarly, 
Apurv and Cai (2021) highlighted the role of warming-induced 
increases in PET in exacerbating aridity across the MRB.

However, this study diverges from previous research by 
emphasizing the role of PET as a driver of aridity trends than 
precipitation alone. While earlier studies, such as Qian et al. (2007) 
and Seager et al. (2007), primarily focused on precipitation variability 
and its influence on drought risks, the current analysis demonstrates 
that rising PET due to increasing temperatures significantly amplifies 
aridity, even in regions with relatively stable precipitation. This 
distinction underscores the importance of considering PET trends in 
addition to precipitation variability when assessing drought risks and 
water management strategies in the MRB (Seagera et al., 2018).

Additionally, the spatial analysis of aridity indices in this study 
reveals a more understanding of regional differences in aridity trends 
compared to previous basin-wide assessments. For instance, while 

TABLE 4 Classification of UNEP and De Mortanne aridity indices 
(Pellicone et al., 2019; Zomer et al., 2022).

UNEP AI De Mortanne AI

Hyper-arid AI<0.03 AI<15

Arid 0.03 < AI<0.20 15 < AI<24

Semi-arid 0.20 < AI<0.50 24 < AI<30

Dry sub-humid 0.50 < AI<0.65 30 < AI<35

Sub-humid 0.65 < AI<0.80 35 < AI<40

Humid 0.80 < AI<1.5 40 < AI<50

Very humid 1.5 < AI 50 < AI<65

Excessively humid 60 < AI<187
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(Seager et al., 2007) suggested a relatively uniform increase in aridity 
across the central U.S., our findings highlight distinct spatial gradients, 
with the western MRB experiencing a more pronounced shift towards 
semi-arid conditions. This insight suggests that localized adaptation 
strategies are essential to effectively manage water resources and 
mitigate drought risks in different sub-basins.

Key limitations of this study include the reliance on annual data, 
which may obscure important seasonal dynamics that are critical for 
understanding hydroclimatic extremes. Seasonal variations in 
precipitation and PET significantly influence water availability and 
drought risks, and future research should incorporate higher-
resolution seasonal or sub-annual data to capture these dynamics 
accurately. The spatial heterogeneity observed in aridity trends 
underscores the need for localized adaptation strategies. For instance, 
southern regions may require enhanced drought mitigation measures, 
such as improved irrigation efficiency and soil moisture conservation 
techniques, while northern regions might focus on maintaining 
existing water resource stability.

Also, the potential impacts of land use changes, such as 
urbanization and agricultural expansion, were not explicitly 
considered in this analysis. Previous studies (Shi and Wang, 2020; 
Turner, 2022) have demonstrated that land use changes significantly 
affect runoff, soil moisture, and groundwater recharge, potentially 
altering the hydroclimatic balance in the MRB. Integrating land use 

data with hydroclimatic trends could provide a more comprehensive 
understanding of the drivers of aridity and inform more effective 
adaptation strategies.

The observed increase in aridity in the southern and western MRB 
poses significant challenges for water resources, agriculture, and 
ecosystems. Rising potential evapotranspiration (PET) and declining 
precipitation are likely to exacerbate water stress for irrigation and 
municipal uses, reduce soil moisture availability, and negatively 
impact crop yields. Efficient irrigation practices, drought-resistant 
crops, and integrated water management could mitigate these impacts. 
Ecologically, increased aridity threatens the hydrological balance of 
wetlands and riparian habitats, reducing streamflow and biodiversity. 
Nature-based solutions such as floodplain restoration, reforestation, 
and buffer zones can help enhance the resilience of aquatic and 
terrestrial ecosystems to these stressors.

Addressing the diverse hydroclimatic challenges across the 
Mississippi River Basin (MRB) necessitates localized adaptation 
strategies tailored to each sub-basin’s specific conditions. In the 
southern MRB, where declining precipitation and rising potential 
evapotranspiration (PET) are concerns, watershed development 
practices such as check dams, percolation tanks, and contour 
bunding can enhance groundwater recharge and reduce runoff. 
These measures have been effective in semi-arid regions, 
improving water security and sustainability (Srivastava and 

FIGURE 3

Spatial distribution of aridity indices (AI) using UNEP formula.
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Chinnasamy, 2024). Conversely, the northern sub-basins of the 
MRB experience increased precipitation and heightened flood 
risks. Implementing green infrastructure solutions, such as 
constructed wetlands and riparian buffers, can manage excess 
runoff and mitigate flooding. These approaches contribute to 
water security and ecosystem health by addressing the impacts of 
climate change and water scarcity (Jain et al., 2024).

For the western MRB, where semi-arid conditions are 
expanding, strategies focused on artificial groundwater recharge, 
sedimentation enhancement, and controlled river diversions 
could help sustain water availability and counteract land 
degradation. Integrating these localized strategies with broader 
policy measures such as Integrated Water Resource Management 
(IWRM) can provide a comprehensive approach to managing 
water resources under increasing aridity.

5 Conclusion

The broader implications of these findings are substantial. The 
increasing aridity in the southern MRB underscores the urgent need 
for targeted policy interventions focused on water conservation and 
land management. These results can inform regional climate 
adaptation frameworks, guiding the development of strategies to 

mitigate drought impacts and enhance water resource resilience. In 
agriculture, rising aridity trends highlight the necessity of adaptive 
measures such as drought-resistant crop varieties, improved irrigation 
efficiency, and soil moisture conservation techniques. Additionally, 
hydroclimatic shifts are likely to affect ecosystem health in the MRB, 
with potential consequences for biodiversity and ecosystem services.

Despite its contributions, this research has limitations. The 
focus on annual data precludes an in-depth examination of 
seasonal dynamics, which are critical for understanding short-
term hydroclimatic extremes. Future research should address 
these limitations by incorporating higher-resolution datasets to 
capture hydroclimatic variations more precisely and by exploring 
seasonal and sub-annual dynamics. Additionally, investigating the 
role of groundwater dynamics and human interventions—such as 
irrigation and urbanization—could provide a more comprehensive 
understanding of the MRB’s hydrological changes. Expanding the 
temporal scope of analysis to include future climate projections 
would also be  valuable for informing long-term 
adaptation strategies.

In conclusion, this study highlights the complex and spatially 
heterogeneous nature of hydroclimatic trends in the MRB, offering 
valuable insights for sustainable water resource management, 
agricultural planning, and ecosystem conservation in the face of 
ongoing and future climate challenges.

FIGURE 4

The spatial distribution of aridity indices (AI) using the De Martonne formula (units: mm/°C).
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