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Considering that the behavior of farmers regarding the use of smart climate 
agricultural technologies is influenced by the socio-economic conditions of their 
locality, this study identified the constituent components of optimal agricultural 
water consumption management in Pakdasht city, Iran. To analyze the data, 
structural equation modeling (SEM) was employed using AMOS20 to investigate the 
linear relationships between latent and explicit variables. The results showed that 
the hidden variables of educational and economic, technical and economic, and 
cultural and economic dimensions have a significant relationship with each other. 
Variables such as financial support from official institutions to greenhouse owners 
for the preparation and installation of new irrigation systems, financial facilities 
provided by Agriculture Bank for greenhouse development, financial support for 
research and development in optimal water management, and financial support 
packages for adopters of smart technologies impact the economic dimension 
of water consumption management among greenhouse owners. Additionally, 
the ability to attract support from local leaders for optimal water management, 
capacity building, and the empowerment of local communities—particularly 
youth—in this area, as well as the formation of cooperative groups among users 
of new irrigation methods, facilitate interactions between greenhouse owners.
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1 Introduction

Today, climate change is one of the most significant environmental challenges of the 21st 
century, with various consequences. Agriculture is one of the sectors most affected by climate 
change. Studies have shown that communities are responding to these impacts by regulating 
economic activities, improving resource management, changing land use practices, and 
altering infrastructure design and implementation (Adger et  al., 2011). The set of these 
responses is called adaptation. Adaptation to climate change may be spontaneous or the result 
of management processes (Dehghanpour et  al., 2020). The World Food Program has 
introduced a model called smart climate agriculture as a resilient and productive agricultural 
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system for better resource management in the face of climate change. 
The model envisions three principles: building resilience and 
adaptation to climate change, sustainably increasing productivity and 
income in the agricultural sector, and reducing or eliminating 
greenhouse gas emissions where possible (Jomegi et  al., 2024). 
Currently, optimal management of agricultural water consumption 
through modern irrigation systems is considered a smart climate 
agriculture strategy. However, the use of such systems, while saving 
water, has created challenges related to increased energy consumption 
and greenhouse gas emissions. Although some recent studies have 
provided valuable analyses of the relationship between water and 
energy in agricultural irrigation systems, smart climate agriculture 
necessitates simultaneous attention to productivity, adaptation, and 
reduction of environmental impacts in optimizing the cropping 
pattern of an agricultural system, which has been less addressed.

Drought and water scarcity in Iran are climatic realities, and due 
to the growing need for water in various sectors (drinking, industrial, 
agriculture, energy production, etc.), this problem will become more 
acute in the coming years. The impact of climate change on 
agricultural production and the livelihoods of rural households in 
Tehran province has been significant. While the average annual 
rainfall in this province is 70 percent lower than the global average, 
more than 151 million cubic meters per year have been over-extracted 
from groundwater resources in Tehran province during recent 
droughts. Reports from the National Drought Monitoring and 
Warning Center also show that about 42.3 percent of the area of this 
province is affected by moderate drought, and 35.6 percent is affected 
by severe drought, with only 0.9 percent of the total area of Tehran 
Province experiencing wet conditions (Dargahi Maraghe et al., 2025).

Therefore, enhancing farmers’ resilience to current and future 
droughts is imperative. Implementing smart climate agriculture 
practices can help (Khakifirouz et al., 2022). In such cases, optimal use 
and savings in water consumption are among the effective and 
practical solutions (Arbués et al., 2016). Meanwhile, managing water 
consumption in the agricultural sector, which accounts for a 
significant part of water use in Iran and the world, can be highly 
effective and path-breaking. Achieving this requires identifying the 
main indicators of water consumption management and determining 
these indicators through appropriate methods. In this regard, 
improving irrigation efficiency and water use efficiency in agriculture, 
reducing the amount of water used in the agricultural sector, and 
promoting the sustainable development of new irrigation methods are 
among the most important aspects that should be included in macro 
planning related to supply, allocation, and principled consumption 
(Beddington et al., 2012; Niknami et al., 2014).

Several studies have examined the relationships between the 
management of agricultural water consumption optimization 
constructs based on smart climate agriculture.

Li et al. (2025) showed that under optimized water (196–157–
123 mm) and nitrogen (207–236-84 kg/ha) conditions, water and 
carbon footprints decreased by 2.25–5.46% and 3.37–13.82%, 
respectively, compared to local practices. Economic benefits and 
overall quality improved by 8.27–21.06% and 4.06–7.63%, respectively. 
Han et  al. (2024) emphasized the necessity of implementing an 
all-encompassing water management strategy that incorporates the 
ecological, financial, and societal dimensions as essential constituents 
of effective water utilization. Zhang et  al. (2024) stated that the 
sustainability of the water industry management model is crucial for 

achieving sustainable utilization of water resources. This study found 
that the overall competitiveness indicator in the sustainable water 
industry management model and the sub-dimensional 
competitiveness indicators in resource support, development base, 
and environmental impact of the water industry of France are superior 
to those in China. Conversely, China is more competitive in social 
inclusion, technological innovation, and sustainability of the water 
industry. Omotayo and Omotoso (2025) noted that adopting smart 
climate agricultural technology enhances water availability, crop yield, 
food nutrition, and water security. Therefore, policies focused on 
investing in capacity-building initiatives to enhance farmers’ 
knowledge and skills in smart climate agricultural technology 
adoption and water resource management, particularly targeting 
marginalized communities and women farmers, would contribute to 
the increased implementation of smart climate agricultural 
technology, thus resulting in improved food nutrition and water 
security in South Africa. Li et al. (2024) found that smart climate 
irrigation strategies adapted to diverse climatic conditions largely 
mitigate agricultural water consumption while maximizing crop 
productivity and water use efficiency, which are essential for achieving 
precision irrigation and sustainable water management under a 
changing climate. Mabhaudhi et al. (2025) highlighted that distinct 
linkages exist between Weather and Climate Information Services 
(WCIS) and various Climate Smart Agriculture (CSA) categories. The 
study argues that increasing access to WCIS can facilitate the adoption 
and scaling of CSA practices. Adimassu et al. (2025) indicated that 
various CSA practices enhanced soil organic matter and carbon 
stocks. Water management practices, especially drip and deficit 
irrigation, demonstrated significantly higher water productivity than 
traditional flood irrigation, with an effect size of up to 2.6. This water 
use efficiency suggests that these methods could free up substantial 
water resources for irrigating additional land, thus boosting crop 
production in water-scarce areas. However, the analysis revealed a 
negative effect size of up to −0.74 for income derived from drip 
irrigation, primarily due to the high costs of the necessary equipment. 
This highlights the need for reforms in duty and tax exemptions to 
improve farmers’ profitability from drip irrigation systems. Overall, 
this meta-analysis assesses the impact of various CSA practices on key 
performance indicators, productivity, adaptation, and mitigation, 
providing insights that can guide the packaging and implementation 
of the most effective CSA strategies across Ethiopia’s agroecological 
zones. Various empirical studies have measured the economic effects 
of climate change on agriculture. One of the effective parameters on 
the consumption pattern and management of water demand is pricing 
and determining appropriate water tariffs. In Iran, the current state of 
the water pricing system is primarily influenced by socio-political 
considerations, while financial and economic performance is less 
important (Arslan et al., 2015). How to manage water is an issue that 
has been considered as fundamental to all climate change adaptation 
strategies (Campbell et al., 2014). This is especially true in rural areas 
and agriculture, where water plays a vital role in crop and livestock 
production as well as ecosystem management (forests, pastures, and 
agricultural lands). In addition, there is a role for water resource 
management in climate control measures (Berrang-Ford et al., 2021). 
The first effect of climate change on water in agriculture is due to 
increased rainfall fluctuations, rising temperatures, and extreme 
events (such as droughts and floods). Climate change generally affects 
water resources in the long term and reduces their reliability, especially 
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in areas of the world that are already facing water scarcity. Climate 
change is expected to increase the pressure on currently pressurized 
systems. Smart climate agriculture has been proposed as a strategy to 
increase food productivity, build resilience to climate change, and 
reduce carbon emissions. Despite technical advances, research on 
smart climate agriculture has neglected social and political processes, 
which continue to exert pressure on vulnerable groups such as 
smallholder farmers (Chandra et al., 2017). Tavassoti et al. (2021) 
found the results of the structural equation modeling approach 
indicated the effect of abstract norms on behavioral intention and the 
effect of this variable on the behavior of optimal management of 
agricultural water consumption in Pakdasht city. An examination of 
the results of the research conducted indicates that each study focused 
on a specific dimension of the components of optimal agricultural 
water use management, while this study analyzed the relationships of 
all dimensions based on the climate smart agriculture approach. 
Accordingly, the aim of the present study was to analyze the 
interrelationships of the components of optimal agricultural water use 
management based on smart climate agriculture.

2 Methods

The study area is Pakdasht County, one of the counties in Tehran 
Province. This county is located south of Tehran, with its center in 
Pakdasht city. According to the 2016 Census of the Statistical Center 
of Iran, there are 103,542 households and 410,609 residents in this 
county. The area of this county is 610 square kilometers, situated at an 
altitude of 1,013 meters above sea level. It has two central districts, 
Sharifabad, three cities—Pakdasht, Sharifabad, Faroonabad—and six 
rural districts: Filistan, Faroonabad, Hesar Amir, Jamalabad, 
Sharifabad, and Karimabad. Agriculture in this county is thriving, 
leading to its reputation as the capital of flowers and plants in Iran due 
to the extensive cultivation of vegetables, flowers, and ornamental 
plants. Irrigation of agricultural lands is accomplished through deep 
and semi-deep wells and the Jajrud River.

The present study is cross-sectional regarding its applied purpose, 
the control of non-experimental variables, and the survey method 
used for data collection. The statistical population of this study 
comprises greenhouse owners in Pakdasht County, totaling 322 
individuals. The sample size was determined using the Cochran 
formula, resulting in 51 participants. Individuals were selected 
through simple random sampling using a random number table. The 
field study was conducted via face-to-face interviews. Data collection 
occurred in two stages, namely, a library study and review of the 
research background through database searches and the field stage. In 
the field stage, a questionnaire was used as the primary research tool 
based on the five-level Likert scale. The prepared questionnaire was 
reviewed by several experts, and necessary amendments were made 
based on their feedback. Consequently, the face and content validity 
of the questionnaire was confirmed. Next, a pre-test study was 
conducted outside the study area. The response rate to the 
questionnaire was 93%. Finally, the collected data were analyzed after 
coding using SPSS and AMOS software with the structural equation 
model (SEM). Structural equation modeling is a communication 
model that illustrates the relationships among a set of studied 
variables. Researchers typically discuss structural equation models 
using images called path diagrams. In general, structural equation 

modeling uses various modeling methods to achieve a definitive 
model and configure the factors affecting the selection of research and 
statistical methods by established standards. Therefore, to combine 
causal information with statistical data and provide a quantitative 
assessment of the relationships between the study variables, a 
structural equation model is proposed. This method is used to 
simultaneously test the relationships between independent and 
multiple dependent variables and estimate the model parameters 
while calculating the error size of latent variables. In this study, it is 
applied to evaluate the communication network between hidden and 
explicit variables (Teklewold et al., 2017).

The first step in structural equation modeling is to conceptualize 
the model, which involves hidden variables and uses theoretically 
based cognitive mapping and hypotheses (as a guide) to link latent 
variables to each other. Input and output variables are identified. 
Hidden variables in the structural equation model are derived from 
the causal results of the map analysis and through path analysis. The 
second step is to structure the measurement model. This involves 
creating a path diagram that presents real assumptions and 
measurement schemes, according to a measurement model that 
includes observed indices used as measurement tools for latent 
variables. Before testing the hypotheses of relationships between latent 
variables, the validity of the measurement model must be established. 
If not, the model must be  modified to ensure all indicators can 
confirm the latent variable. The researcher can evaluate a reliable 
measurement model in two ways: first, by testing the latent variable 
separately, and second, by testing all the measures together. In 
addition, the identification of explicit variables occurs in two steps: in 
the first step, a set of indicators is used to measure a latent variable, 
and in the second step, the reliability and validity of these 
measurements are assessed. In the third step, model fit evaluation is 
performed. For this purpose, the validity of the initial parameters is 
calculated, and then, using software, an implicit covariance matrix 
appropriate to the observations is obtained. In addition, significance 
tests are conducted to determine that the obtained parameters are 
significantly different from zero. When the implicit covariance matrix 
equals the covariance matrix of the observed data as determined by 
the model, the model is considered appropriate. The general steps in 
structural equation modeling analysis are outlined in Table 1.

2.1 Fitness indicators

Model fit refers to how well the model represents the original 
theory with the data in question. However, there is no complete 
consensus on this fit. Despite the abundance of available indicators, 
many differences exist among researchers in this field. Therefore, the 
most important stage of evaluation in structural equation modeling is 
determining whether a specific model fits the data. For this purpose, 
design indicators are created and classified into different types, mainly 
divided into absolute, relative, and adjusted indicators. Absolute 
indicators address how well the proposed theory aligns with the data. 
These indices measure the model to assess if the unexplained variance 
is significant after fitting the model. Model fitting is done without 
comparison to another model. These indicators include RMSEA, GFI, 
AGFI, RMR, SRMR, and χ2. Relative indicators aim to answer how 
well a model performs compared to other possible models in 
explaining a set of observed data. These indicators include NFI, IFI, 
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DELTA2, TLI, and CFI. Modified indicators address how the model 
combines fit and economy or brevity, which includes PGFI and PNFI.

3 Results

Preliminary results show that most people are in the age range of 
41–50, with only 9.804% of respondents under 20 or over 60 years old. 
The level of education of individuals is another piece of information 
questioned in the questionnaire. As it turns out, most respondents have 
an undergraduate degree (56.86%), while only 1.96% hold a bachelor’s 
degree (master’s and doctorate). Another important factor in compiling 
the questionnaire was the number of years of work experience. In the 
first part of this questionnaire, the factors affecting the economic, 
social, technical, policymaking, extension educational, and cultural 
dimensions (of which the six hidden variables of this part of the 

research are qualitatively discrete and measured by a sequential scale, 
the Likert scale) are examined. For this purpose, we consider 38 explicit 
variables (indicators) in the form of 6 hidden variables (factors). It 
should be noted that in these calculations, for each hidden variable, 
we have considered one of the path parameters as a fixed number of 1. 
This parameter is related to the path that (a) has the largest share in 
measuring the hidden variable and (b) is equal to the hidden variable. 
Therefore, considering this parameter as a constant, it is clear that there 
is no standard deviation and p-value for this case. In the following, 
we first introduce the effect of hidden variables on the explicit variable 
related to its category and then examine the relationships in general.

3.1 Economic dimension

In this section, the economic dimension with a constant coefficient 
of 1 is assigned to the variable “Concluding an insurance contract for 
greenhouse products.” According to the results of the SEM analysis, 
the variable “budget allocation and subsidies for intelligent irrigation 
systems “has no effect on the economic dimension and can be ignored. 
The variables that significantly affect the economic dimension at the 
significance level of 0.001 are 1. Financial support of official 
institutions to greenhouse owners for the preparation and installation 
of new irrigation systems (0.70698). 2. Providing financial facilities by 
the Agricultural Bank for the development of greenhouses (0.60403). 
3. Financial support for research and development on optimal water 
management (0.53648). The variable “Providing financial support 
packages to the adopters of intelligent technologies for optimal water 
consumption management for greenhouse owners (0.24785)” will also 
be effective at the level of 0.05. Table 2 shows the path coefficient, 
standard deviation, and p-value related to the effect of each of the 
obvious variables.

3.2 Social dimension

In the analysis related to this section, we have assigned the variable 
“Strengthening local participation of greenhouse owners and creating 
local organizations for them to use smart climate agriculture” a 
constant coefficient of 1. The results of the SEM show that “indigenous 

TABLE 2 Obvious variables affecting the economic dimension.

Next, examine the direction of the route Coefficient St. Err p-value

Economic dimension

Official financial support for greenhouse owners for the preparation and installation of new irrigation 

systems (Eq5)
0.70698 0.12977 ***

Providing financial facilities by the Agricultural Bank for the development of greenhouses (due to the 

high water performance of greenhouses compared to open spaces) (Eq6)
0.60403 0.15413 ***

Financial support for research and development on optimal water management (Eq4) 0.53648 0.12912 ***

Providing financial packages to adopters of intelligent technologies for optimal water consumption 

management for greenhouse owners (intelligent feeding and irrigation modules) (Eq3)
0.24785 0.11908 *

Allocation of budget and subsidies for intelligent irrigation systems (drip irrigation, laser land leveling, 

etc.) (Eq2)
0.10250 0.10388 NS

Concluding an insurance contract for greenhouse products (Eq1) 1

***: Significance of path coefficient at level 0.001, **: significance of path coefficient at level 0.01, *: significance of path coefficient at the level of 0.05, NS: not significant.

TABLE 1 General steps of structural equation modeling.

Steps Type of activity Description

1 Model design

At this stage, the conceptual model and 

relationships between latent variables and 

markers must be designed.

2 Data collection

At this stage, data should be collected, and 

the status of the data should be assessed 

according to the assumptions of the model 

and tests.

3 Model estimation

Estimation of community parameters in 

the structural equation model of green 

marketing behavior.

4 Model evaluation

In this stage, the model is evaluated based 

on the significance of the parameters, and 

the overall model is assessed.

5 Modify the model

Replacing the main model in research with 

a model that has a better fit in some 

respects and estimates parameters that are 

statistically significant and theoretically 

meaningful.
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technical knowledge” does not affect this dimension. The variables 
that significantly affect this dimension at the level of 0.001 are, in order 
of priority: 1. Ability to attract support from local leaders in optimal 
water consumption management (0.89160). 2. Capacity building and 
empowerment of local communities, especially young people, in 
optimal management of water consumption (0.83396). It should 
be noted that the variable “formation of cooperative groups consisting 
of users of modern irrigation methods to facilitate interactions 
between greenhouse owners (0.72416)” is significant at the level of 
0.01, and the variable “cooperative cultivation for optimal management 
of water consumption (0.51180)” is significant at the level of 0.05. The 
path coefficient, standard deviation, and p-value related to the effect 
of each of the obvious variables in this section are shown in Table 3.

3.3 Policymaking dimension

In this section, we have considered the variable “Allocation of land 
for the development of greenhouse sites by the government and 
responsible organizations” with a constant coefficient of 1. If the 
significance level is 0.05, the following variables are effective in order 
of priority: 1. Development of strategic executive and operational 
plans for greenhouse cultivation based on smart climate agriculture 
(2.41826). 2. Development of a strategic plan for greenhouse 

cultivation based on smart climate agriculture (2.35078). 3. 
Development and implementation of regulations for greenhouse 
cultivation based on smart climate agriculture (1.90269). 4. 
Modification of cultivation pattern policy (development of greenhouse 
crop cultivation) based on smart climate agriculture (1.20055). 5. 
Development of protection laws for applicants seeking to develop 
greenhouses with intelligent water management features (1.05506). 
The results of SEM indicate that the variable “macro-policies for the 
development of knowledge-based businesses related to the goal of 
increasing water and energy efficiency” has no significant effect. 
Table 4 presents these results.

3.4 Technical dimension

In this section, we have considered the path related to the variable 
“Providing meteorological information about smart agriculture” with 
a coefficient of 1. The results show that at a significance level of 0.001, 
the variable “monitoring and obligation to implement international 
standards for greenhouse production” is known to be effective. At the 
significance level of 0.01, the effective variables in order of priority are: 
1. Design and management of infrastructure for the sustainable 
development of water resources such as watershed management 
projects and pressurized irrigation systems (1.15946). 2. Development 

TABLE 3 Obvious variables affecting the social dimension.

Next, examine the direction of the route Coefficient St. Err p-value

Social dimension

Ability to enlist the support of local leaders in the field of optimal water management (So2) 0.89160 0.18399 ***

Capacity building and empowerment of local communities, especially young people, in optimal water 

consumption management (So3)
0.83396 0.19781 ***

Forming cooperative groups consisting of users of modern irrigation methods to facilitate interactions 

between greenhouse owners (So6)
0.72416 0.24988 **

Cooperative cultivation for optimal water management (So4) 0.51180 0.20508 *

Indigenous technical knowledge (So5) 0.28700 0.25105 NS

Strengthen the local participation of greenhouse owners and create local organizations for them to use smart 

climate agriculture (So1)
1

***: Significance of path coefficient at level 0.001, **: significance of path coefficient at level 0.01, *: significance of path coefficient at the level of 0.05, NS: not significant.

TABLE 4 Obvious variables affecting the policymaking dimension.

Next, examine the direction of the route Coefficient St. Err p-value

Policymaking dimension

Development of strategic executive and operational plans for greenhouse cultivation based on smart climate 

agriculture (Pol4)
2.41826 1.06372 *

Development of a strategic plan for greenhouse cultivation based on smart climate agriculture (Pol3) 2.35078 0.97307 *

Development and implementation of regulations for greenhouse cultivation based on smart climate agriculture 

(Pol5)
1.90269 0.91508 *

Modification of cultivation model policy in areas based on agricultural climate (Pol6) 1.20055 0.54053 *

Develop support laws for applicants seeking to develop greenhouses with intelligent water management features 

(Pol1)
1.05506 0.51711 *

Macro-policies for the development of knowledge-based businesses aimed at increasing water and energy 

efficiency (Pol2)
1.23416 0.65204 NS

***: Significance of path coefficient at level 0.001, **: significance of path coefficient at level 0.01, *: significance of path coefficient at the level of 0.05, NS: not significant.
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of research greenhouses for the study and localization of smart 
greenhouses suited to the native conditions of each region (1.00970). 
3. Use of nanotechnologies in greenhouses (1.00015). 4. Use of 
appropriate technologies for smart climate agriculture (0.93227). 5. 
Implementation of successful projects aimed at optimal water 
consumption in greenhouses, such as hydroponic cultivation (0.86619). 
Table 5 presents the effects of each of the above obvious variables.

3.5 Extension educational dimension

All obvious variables related to this section are significantly 
effective. Except for the variable “Attracting pain experts related to 
the development of smart greenhouses for consulting applicants by 
Agriculture ministry,” which we have considered with a constant 
coefficient of 1, the effective variables in order of priority are as 
follows: 1. Holding training workshops for greenhouse owners on 
the use of smart technologies related to optimal water management 
(0.99078). 2. Development of educational greenhouses to educate 
greenhouse owners regarding the optimal management of water 
consumption with an emphasis on smart technologies (0.98170). 3. 
Compilation of extension educational content regarding the optimal 

management of water resources with an emphasis on the use of 
intelligent greenhouse technologies (0.94985). 4. Providing 
extension training on how to optimally manage water resources 
(0.85986). 5. Comparative evaluation of successful smart 
greenhouses in other countries and presenting a native model for 
Iran (0.78505). Table  6 shows the path coefficient, standard 
deviation, and p-value related to the effect of each of the 
obvious variables.

3.6 Cultural dimension

Considering the coefficient related to the variable path of “creating 
belief among greenhouse owners in optimal water management with 
emphasis on smart climate agriculture,” the following variables are 
effective at the level of 0.001 in order of priority: 1. Development of 
recreational and entertainment greenhouses to create a culture of 
optimal water management with an emphasis on smart technologies 
(1.15391). 2. Cultivation through mass media to promote new 
irrigation patterns among greenhouse owners (0.91762). 3. Cultivating 
a culture among producers to encourage the development of 
greenhouse crops based on smart climate agriculture (0.83291). 4. 

TABLE 5 Obvious variables affecting the technical dimension.

Next, examine the direction of the route Coefficient St. Err P-value

Technical dimension

Supervise and enforce the implementation of international standards for production of greenhouse products 

(Te7)
1.38998 0.40755 ***

Design and management of infrastructure for the sustainable development of water resources, such as watershed 

management projects and pressurized irrigation systems (Te3)
1.15946 0.36669 **

Development of research greenhouses for the study and localization of smart greenhouses suited to the native 

conditions of each region (Te5)
1.00970 0.34976 **

Use of nanotechnologies in greenhouses (Te4) 1.00015 0.36636 **

Use of appropriate technologies for smart climate agriculture (Te6) 0.93227 0.28465 **

Implement successful projects aimed at optimal water consumption in greenhouses, such as hydroponic 

cultivation (Te2)
0.86619 0.29356 **

***: Significance of path coefficient at level 0.001, **: significance of path coefficient at level 0.01, *: significance of path coefficient at the level of 0.05, NS: not significant.

TABLE 6 Obvious variables affecting the extension educational dimension.

Next, examine the direction of the route Coefficient St. Err P-value

Extension educational dimension

Holding training workshops for greenhouse owners on the use of smart technologies related to optimal water 

management (Ed4)
0.99078 0.26230 ***

Development of educational greenhouses to educate greenhouse owners about the optimal management of 

water consumption with an emphasis on smart technologies (Ed6)
0.98170 0.24046 ***

Compiling extension educational content regarding the optimal management of water resources with an 

emphasis on the use of smart greenhouse technologies (Ed3)
0.94985 0.23779 ***

Providing extension training on how to optimally manage water resources (Ed2) 0.85986 0.19243 ***

Comparative evaluation of successful smart greenhouses in other countries and presenting a native model for 

Iran (Ed5)
0.78505 0.21309 ***

Attracting pain experts regarding the development of smart greenhouses for consulting applicants by the 

Agriculture Ministry (Ed1)
1

***: Significance of path coefficient at level 0.001, **: significance of path coefficient at level 0.01, *: significance of path coefficient at the level of 0.05, NS: not significant.
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Development of programs through mass media to create a culture of 
optimal water management with an emphasis on smart technologies 
(0.73667). The variable “Positive attitude of officials towards the 
establishment of smart greenhouses for optimal water management 
(0.82947)” will also have a significant effect at the level of 0.01. More 
information is provided in Table 7.

3.7 Relationship between hidden variables 
with each other

In structural analysis, each of the latent variables may be related to 
one another, which is called unexplained correlation. In other words, in 
this type of correlation, the nature and direction of the relationships are 
unclear, resulting in a two-way relationship. In this study, we  also 
hypothesized that the latent variables were interrelated and subsequently 
tested this hypothesis. The test results indicate that, at a significance level 

of 0.001, the hidden variables of educational and economic, technical and 
economic, and cultural and economic have significant relationships with 
each other. Additionally, the hidden variables of social and economic, 
cultural and educational, cultural and technical dimensions, as well as 
cultural and social dimensions, demonstrate significant relationships at 
a significance level of 0.01. Table 8 provides a detailed overview of the 
covariance between the hidden variables.

Figure  1 shows the relationship between hidden and explicit 
variables in this section.

3.8 Indicators of fitting model

In the previous section, we established a structure for reviewing 
the research and estimating its parameters. Now, we will assess the 
suitability of the model using appropriate criteria. To this end, we have 
calculated several key indicators for evaluating the appropriateness of 

TABLE 7 Obvious variables affecting the cultural dimension.

Next, examine the direction of the route Coefficient St. Err P-value

Cultural dimension

Development of recreational and entertainment greenhouses to create a culture of optimal water management 

with an emphasis on smart technologies (Cu2)
1.15391 0.24060 ***

Cultivation through mass media to promote new irrigation patterns among greenhouse owners (Cu4) 0.91762 0.21130 ***

Cultivating a culture among producers to encourage the development of greenhouse crops based on smart 

climate agriculture (Cu6)
0.83291 0.18799 ***

The positive attitude of officials toward establishing smart greenhouses for optimal water management (Cu5) 0.82947 0.25754 ***

Development of programs through mass media to create a culture of optimal water management with an 

emphasis on smart technologies (Cu3)
0.73667 0.21649 ***

Creating belief among greenhouse owners in optimal water management with an emphasis on smart climate 

agriculture (Cu1)
1

***: Significance of path coefficient at level 0.001, **: significance of path coefficient at level 0.01, *: significance of path coefficient at the level of 0.05, NS: not significant.

TABLE 8 Variance between hidden variables.

Components Coefficient St. Err P-value

Economic⇔ policy 0.35260 0.15081 *

Economic⇔ education 0.62293 0.17019 ***

Policy⇔ training 0.22600 0.11837 NS

Socio-economic 0.51635 0.16339 **

Technical ⇔ economic 0.60521 0.18190 ***

Cultural ⇔ economic 0.66890 0.15228 ***

Cultural ⇔ educational 0.59764 0.20013 **

Cultural ⇔ policymaking 0.24809 0.12382 *

Cultural ⇔ technical 0.45595 0.17672 **

Cultural ⇔ social 0.48127 0.17062 **

Technical ⇔ social 0.34570 0.15295 *

Technical ⇔ policymaking 0.20780 0.11286 NS

Social⇔ policy 0.21436 0.11298 NS

Educational ⇔ social 0.42883 0.16897 *

Educational ⇔ technical 0.46621 0.18841 *

***: Significance of path coefficient at level 0.001, **: significance of path coefficient at level 0.01, *: significance of path coefficient at the level of 0.05, NS: not significant.
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the model. Tables 9, 10 present these indicators and their acceptable 
ranges according to Hurlimann and Dolnicar (2018).

Akaike information criteria and average mutual validity are also 
among the items used to examine the appropriateness of the model. 
To apply these indicators, it is necessary to compare the model under 
examination with two independent and saturated models and select 
the most suitable model among the three. It is important to note that 

the independent model refers to a model in which there is no 
relationship between variables. The saturation model refers to a model 
that has no constraints on its structure, allowing for any possible path. 
Table 10 presents the results of comparing the model investigated in 
this study with the independent and saturation models. It should 
be noted that, based on these two criteria, a model with a smaller 
observed value is deemed more appropriate.

FIGURE 1

Relationship between hidden and explicit variables.
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Based on the values obtained in Tables 9, 10, the suitability of the 
model used in this study is confirmed. It should be noted that the 
sample size at the 0.05 level according to the HOELTER test is equal 
to 52, which aligns with the sample we are reviewing.

4 Discussion and conclusion

The results showed that economic components significantly affect 
the optimal management of agricultural water consumption based on 
smart climate. The increasing population and government views in Iran 
regarding the expansion of cultivated land and production have led to a 
sharp rise in the demand for water resources, while water supply has 
been limited in recent years due to decreased rainfall and its uneven 
distribution. It is predicted that this supply limitation will worsen due to 
climate change. One effective solution to create a balance between water 
supply and demand is to focus on economic factors based on the smart 
climate agriculture approach. Since water is an economic commodity 
and a large portion of water resources is used for agricultural production, 
policymaking based on water consumption is important in the economic 
system. Strategies for improving economic components include 
maximizing imports and minimizing exports of virtual water, allocating 
water to crops with the highest economic water productivity, providing 
financial support from official institutions for greenhouse owners to 
prepare and establish new irrigation systems, offering financial facilities 
from the Agricultural Bank for greenhouse development, supporting 
research and development on optimal water management, and providing 
financial packages to adopters of smart technologies for optimal water 
management for greenhouse owners.

Social components significantly impact the optimal 
management of agricultural water consumption based on smart 
climate. Farmers’ lives, livelihoods, and productive activities depend 
on water. One strategy for optimal water use management is to 
involve local participation. Therefore, participatory irrigation 
management is a social action that is realized through the 

engagement of water users’ organizations to involve farmers in 
efficient water use. Strengthening local participation among 
greenhouse owners and creating local organizations for using smart 
climate agriculture, attracting support from local leaders for optimal 
water management, building capacity, and empowering local 
communities, especially young people, in optimal water 
consumption management, as well as forming cooperative groups 
among users of modern irrigation methods to facilitate interactions 
between greenhouse owners, are among the strategies that can 
be used.

Technical-environmental components significantly influence the 
optimal management of agricultural water consumption based on 
smart climate. We concluded that these components have a substantial 
impact on optimal agricultural water management (Kpadonou et al., 
2017). Paying attention to environmentally friendly technical 
components is an effective solution for optimal water consumption. 
Technical solutions include both constructive and non-constructive 
measures. Proper distribution of water at the right time and place 
according to plant needs, water recycling, effective re-use of 
wastewater, improving agricultural water efficiency indicators, 
implementing the national document on optimal agricultural water 
consumption models for volumetric water delivery, preparing and 
enacting comprehensive agricultural water laws that consider 
environmental needs, equipping water delivery points with 
appropriate measuring instruments, constructing water regulation 
and storage pools, integrating and renovating water catchment areas 
of modern and traditional networks, developing and improving parts 
and equipment of pressurized irrigation systems to meet global 
standards, and ensuring the presence of specialized companies 
committed to their responsibilities before and after implementation 
to encourage farmers to adopt these systems can all lead to optimal 
management of agricultural water use.

Cultural components significantly impact the optimal 
management of agricultural water consumption based on smart 
climate. Unfortunately, in Iran, optimal water consumption has not 
yet become a cultural norm. One reason for the water crisis is the 
lack of sufficient and necessary literacy regarding water management 
and consumption. Water literacy involves understanding where and 
how to obtain the required water and how to use it effectively. 
Therefore, water literacy is considered a fundamental cultural aspect 
of optimal water management and consumption. Additionally, 
cultural components significantly influence the optimal 
management of agricultural water consumption based on smart 
climate. Fostering belief among greenhouse owners in optimal 
water management with an emphasis on smart climate agriculture, 
developing recreational greenhouses to promote optimal water 
management using smart technologies, creating a culture through 
mass media to encourage new irrigation patterns among greenhouse 
owners, promoting the development of greenhouse crops based on 
smart climate agriculture among producers, and developing 
programs through mass media to cultivate optimal water 
management with a focus on smart technologies are essential. A 
positive attitude from officials toward establishing smart 
greenhouses for optimal water management is also important.

Policy components significantly impact the optimal management of 
agricultural water consumption based on smart climate. The growth of 
the country’s population in recent decades, along with improved 
economic and welfare indicators, has led to increased water consumption 

TABLE 9 Indicators of model fit.

Index Acceptable range Observed value

2χ 0.05 < p-value 0.17575

χ
2

df
<3 1.05200

RMSEA <0.07 0.04234

GFI 0.05 < p-value 0.53128

TLI 0.96< 0.91894

TABLE 10 AIC and ECVI indicators.

Criteria Model under review Observed value

AIC

Model studied in the research 877.17468

Saturation model 1,482

Independent model 1229.96869

ECVI

Model studied in the research 30.24740

Saturation model 51.10345

Independent model 42.41271
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in various sectors, including agriculture, drinking, and industry. Given 
the continued increase in population in the coming years, an increase in 
water consumption will be  inevitable. Structural problems in the 
agricultural sector (smallholder systems, low literacy levels among 
farmers, insufficient productive gross fixed capital, and ongoing drought 
conditions) exacerbate the challenges posed by population growth and 
increased food consumption, particularly affecting the country’s 
groundwater resources. The self-sufficiency coefficient, especially for 
crops like grains and oilseeds, is concerning. Policy components 
significantly affect the optimal management of agricultural water 
consumption based on smart climate. Strategies include allocating land 
for the development of greenhouses by the government and responsible 
organizations, developing strategic and operational plans for the 
development of greenhouses based on smart climate agriculture, 
enacting regulations for greenhouses aligned with smart climate 
agriculture, adjusting cultivation model policies to promote greenhouse 
crop cultivation in agricultural areas based on smart climate, and 
developing protection laws for applicants seeking to establish 
greenhouses with intelligent water management (Romanello et al., 2022).

Given the growing need for food in developing countries and 
increasing agricultural production, it is expected that greenhouse gas 
emissions will rise due to the expansion of animal husbandry, increased 
use of fertilizers and chemical pesticides, and land use changes in 
climate change continues. Ignoring strategies to reduce greenhouse gas 
emissions will pose a serious crisis for the agricultural sector in 
developing countries, threatening the livelihoods of farming households 
in rural areas. This concern is particularly relevant for countries like 
Iran, which currently face drought and water crises. A review of 
historical meteorological data and studies on climate conditions in Iran 
indicates that climate change has occurred in recent decades and will 
likely continue in the future (Lipper et al., 2014). Various strategies have 
been proposed for adapting agricultural units to climate change, 
including utilizing technical solutions to address climate risks, 
developing early warning systems, expanding agricultural product 
insurance, protecting soil and water, and diversifying crops. Mitigation 
strategies to combat the effects of climate change in the agricultural 
sector involve increasing carbon stocks in the soil, reducing direct 
emissions of greenhouse gases, including carbon dioxide, methane, and 
nitrogen oxides, as well as preventing deforestation and ecosystem 
degradation. However, the separation of adaptation strategies from 
climate change mitigation can pose significant challenges to the 
development of smart climate agriculture (Martin et al., 2016).

In structural analysis, each latent variable may relate to others, 
leading to unexplained correlations. In other words, in this type of 
correlation, the nature and direction of the relationships are unclear, 
resulting in a two-way relationship. In this study, we hypothesized that 
the latent variables were interconnected and then tested this 
hypothesis. The test results indicate that at a significance level of 0.001, 
the hidden variables of educational and economic, technical and 
economic, and cultural and economic are significantly related. The 
hidden variables of social and economic, cultural and educational, 
cultural and technical dimensions, and cultural and social dimensions 
also show significant relationships at a significance level of 0.01.

The results of the hypothesis test indicated that the six 
components significantly relate to optimal water use management. 
Simultaneous attention to these components leads to effective water 
management based on smart climate agriculture. Pakdasht County, 

as a region in Tehran Province, is situated in an arid and semi-arid 
climate, necessitating careful management of optimal water use and 
adaptation to climatic conditions. Implementing operations related 
to the six components can enhance water productivity and establish 
smart climate agriculture at the regional level. These operations refer 
to methods that increase agricultural productivity, boost income, 
and ensure food security. The second dimension focuses on 
improving adaptation and resilience to climate change. The third 
dimension encompasses operations and methods to reduce 
greenhouse gas emissions and enhance carbon deposition. One 
limitation of the present study is the lack of similar research 
analyzing the interrelationships of the components of optimal 
agricultural water use management based on smart climate 
agriculture, the use of questionnaires as a research tool, the potential 
for respondent errors when answering questions, cross-sectional 
research limitations, and the inability to control all unwanted 
variables, as well as the non-generalizability of the results to other 
areas. Further studies could identify barriers to adopting smart 
climate agriculture-based water management technologies and 
determine barriers to farmer participation in such initiatives.
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