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Introduction: Climate predictability across timescales in a changing climate 
presents a unique opportunity and challenges for state-of-the-art climate 
models. The use of regional climate models (RCMs) forced with interactively 
coupled Earth System Models (ESMs) for the sub-seasonal, seasonal, and 
decadal predictions is an actively growing research area.

Methods: The study explores a stretched-grid RCM constrained with an ESM 
which integrates a climate change signature. Spectral relaxation paradigm 
is applied to limit the climate drift within the range of the multi-model sea-
surface temperature (SST) and sea-ice concentration (SIC) variability. The model 
retroactive ensemble simulations for November initialization are evaluated on 
the seasonal migration of the ITCZ during El-Niño and La-Niña phases, exploring 
both the spatial and zonal positions. The model is also evaluated on the ITCZ 
process’ characteristics that include the Hadley cell (HC), stream function and 
the subtropical jet stream (STJ) using quantitative methods.

Results: The RCM and the driving ESM demonstrate skillful performance in 
identifying the seasonal trajectory of both the spatial and zonal migration of the 
ITCZ during El-Niño and La-Niña. Moreover, the RCM also demonstrates a good skill 
in determining both the descending edge of the HC and the STJ with the highest 
mean percentage error of 16.3 and 7.5% for the HC and STJ latitudes, respectively.

Conclusions: The November initialization of the RCM skillfully simulates the 
seasonal migration of the ITCZ (and related characteristics) aligned to the 
observations and reanalysis datasets. Notwithstanding, the RCM manifests a 
tendency of more dynamic error growth relative to its driving ESM as the lead 
time increases. Furthermore, the RCM is also out of phase with a southerly shift 
of the stream function compared to the 500 hPa reanalysis stream function. The 
modeling framework offers process oriented and teleconnection studies. It also 
provides great potential for climate applications with suitable bias corrections 
techniques, albeit the source and mechanism of its dynamic error growth deserve 
further investigation.
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1 Introduction

Climate variability in a changing climate heavily affects the 
economics and livelihoods in Africa and other parts of the world. The 
growing interest in scientific, operational and application communities 
for skillful predictions on sub-seasonal to interdecadal timescales 
presents unique opportunities and challenges for state-of-the-art 
climate models (Merryfield et al., 2020). On the seasonal time scale, 
climate prediction provides invaluable information and foreknowledge 
regarding the anomalous shifts of various meteorological fields and 
extreme events at several months lead time. These shifts depend on 
the various interactions between the atmosphere, slow variations of 
the oceans, and land surface which can be  captured through the 
coupled earth system model (ESM) simulations (Engelbrecht et al., 
2011). However, there has been a notable need for fully coupled 
regional ESM as mentioned by Giorgi (2019) alluding that one of the 
main challenges of running the coupled regional ESM is the 
computational cost even though it leads to advances in our 
understanding of the effects of climate change on the regional scale, 
amongst other benefits. But, applying the stretched grid on the global 
ESM provides a relatively low computational cost of running the 
regional ESM (Weber et al., 2023) with the benefit of having the high 
spatial resolution model outputs over the chosen grid stretching area 
whilst maintaining coarse spatial resolution elsewhere. Furthermore, 
this stretched grid provides advantageous consistency between the 
global and regional grids (Fox-Rabinovitz et al., 2006), enhancing 
their interactions without any need for lateral boundary conditions 
like is commonly done with the nested regional models.

The use of ESMs in southern Africa for seasonal prediction 
(specifically in operational environment) is limited, to date, due to 
their enormous computational cost and complexity. Notwithstanding, 
this computationally expensive numerical study becomes possible 
with the exponential expansion of the Centre for High Performance 
Computing (CHPC) computational facility in South  Africa. In 
addition, the study is motivated by the recent development and 
numerous improvements of the Commonwealth Scientific and 
Industrial Research Organization (CSIRO) Earth System Model 
(hereafter CSIRO ESM). The CSIRO ESM interactively couples the 
atmosphere (McGregor and Dix, 2008), biosphere (Kowalczyk et al., 
2013), ocean (Thatcher et al., 2015), and cryosphere (Gordon et al., 
2002; O’Farrell, 1998) models with the knowledge of anthropogenic 
and aerosol forcings, and a spectral nudging and stretching technique 
(Thatcher and McGregor, 2010). The latter also enables the model to 
act as a stretched-grid regional climate model (hereafter CRCM) 
constrained with numerically consistent CSIRO ESM integrations 
albeit limiting CRCM’s capability to the models of the atmosphere and 
biosphere when a variable resolution is employed. The aim of the 
study is, therefore, to perform process-oriented evaluation and 
comparison of the CRCM’s 8 km resolution over continental Africa 
simulations against observations (reanalysis) and its driving CSIRO 
ESM’s 50 km resolution global quasi-uniform integrations treated here 
as baseline skills, respectively. The extended climate simulations 
(140 yrs) of the CSIRO ESM with various forcing strategies in the 
context of Antarctic sea-ice and Southern Ocean surface temperature 
trends were reported in a separate study (Beraki et al., 2020). The 
typical dynamical downscaling, using limited area models for seasonal 
climate predictions, was first attempted locally by Kgatuke et al. (2008) 
and more recently by Ratnam et al. (2016).

One of the key drivers of seasonal climate predictability is the 
El-Niño Southern Oscillation (ENSO) which has an influence on the 
global climate anomalies (Ma et  al., 2017; Yin et  al., 2022). The 
predictability of the ENSO on a 6–12-month lead time directly 
translates to the predictability of rainfall over most parts of West 
Africa, Southern Africa (Goddard et al., 2001; Mpheshea et al., 2025), 
and East Africa (Camberlin and Philippon, 2002; MacLeod et al., 
2021) where the ENSO signal is strongly correlated with rainfall. The 
predictability of the ENSO and its interaction with the Hadley cell 
(HC) presents an opportunity for rigorous process model evaluation 
and benchmarking studies at both climate change and seasonal 
prediction time scales (Mahlobo et al., 2024). In particular, it allows 
for a test of how models simulate the temporal evolution of force 
fluxes as well as the models’ ability to respond to atmospheric forcings 
such as the ENSO and feedback from the ocean to the atmosphere 
(Alexander, 1992). The skill and reliability of model experiments, on 
specific meteorological processes, could be assessed based on how the 
model performs in representing the process and its related 
characteristics along with its response to the ENSO signal.

Furthermore, the study extends the process evaluation by 
emphasizing the ITCZ’s associated features and their linkages. The 
ITCZ is known to be the area of tropical surface wind convergence 
that coincides with the intense precipitation (Byrne et al., 2018; Chen 
et al., 2008; Jafari and Lashkari, 2023; Kang et al., 2018; Krishnamurti 
et al., 2013; Liu et al., 2015; Scott, 2013; Zhang et al., 2021). It has been 
the subject of investigation over the years in which various studies 
have applied different methods such as precipitation (Adam et al., 
2016b; Byrne and Schneider, 2016b; Schneider, 2014; Sultan and 
Janicot, 2000; Xian and Miller, 2008), net energy input (Byrne and 
Schneider, 2016a; Frierson and Hwang, 2012; Keshtgar et al., 2020; 
Schneider, 2014), moist static energy (Byrne and Schneider, 2016b; 
Magnusdottir and Wang, 2008), wind convergence (Philander et al., 
1996), low-level relative vorticity (Magnusdottir and Wang, 2008), 
cloud cover (Lashkari and Jafari, 2021b), and the out-going long-wave 
radiation (Byrne et al., 2018; Gu and Zhang, 2002) method to identify 
its location. According to Lashkari and Jafari (2021a) and Scott (2013), 
any index that reflects the uniqueness, seasonal shift to summer 
hemisphere, linkages with other related phenomena and existence of 
a continuous line can be used to identify the position of the ITCZ.

The ITCZ process is chosen for this regional modeling study 
because its positioning, together with its north/south migration, form 
part of the most important processes to study and analyze for 
improvements in the climate modeling research (Chen et al., 2008; 
Russotto and Ackerman, 2017). The HC and the subtropical jet stream 
(STJ) are critical characteristics of the ITCZ which are used to study 
its strength, width and area (Byrne et al., 2018; Byrne and Schneider, 
2016a, 2016b; Ceppi et al., 2013). Furthermore, the zonally averaged 
Hadley circulation is known to be interlinked with the position of the 
ITCZ through the atmospheric energy balance between the Northern 
and Southern hemispheres (Moreno-Chamarro et  al., 2020). 
Therefore, investigations of the relationship between the ITCZ, HC 
and STJ, in relation to ENSO, are significant components of regional 
and global weather and climate studies (Manney et  al., 2021), 
especially considering the future impacts of climate on the strength, 
width and area of the ITCZ. Furthermore, the representation of the 
spatio-temporal evolution of the ITCZ translates to the model 
performance in simulating precipitation (Nicholson, 2009). In 
Southern Africa, the ITCZ’s position is linked to Southern Africa’s 
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rainfall variability (Quagraine et  al., 2019; Vindel et  al., 2020). 
Specifically, the recent study by Randriatsara et al. (2022) uncovered 
that the onset and ending of the Southern African’s seasonal rainfall 
are affected by the position of the ITCZ. The north/south migration 
boundaries of the ITCZ typically varies between 20°N and 8°S over 
the Indian ocean (65°E–95°E) and its adjacent land masses, like 
Africa, and is very well linked to the South Asian monsoon (Schneider, 
2014) amongst other regional teleconnections.

This work also reflects the developments in seasonal prediction, 
from using the statistical and General Circulation Models (GCMs), in 
southern African seasonal precipitation (see Landman et al. (2001) 
and Bartman et  al. (2003) for more details) to the exploration of 
possible seasonal forecast skill improvement from the multi-model 
perspective (Landman and Beraki, 2012), followed by the coupling of 
the ocean and atmosphere general circulation models (Beraki et al., 
2014; Landman et al., 2012), and lastly, the exploration of the fully 
coupled ESM with multiple climate forcing (Beraki et  al., 2020). 
We are herein building on the latter with a modeling paradigm that 
also involves a variable resolution of the coupled ESM forcing for 
seasonal prediction.

The remainder of the paper is organized as follows: section 2 
provides details about the data and methodology; covering the model 
description and set-up, the observational/reanalysis datasets used for 
evaluation and the metrics used for model performance. Section 3 
presents the results and their discussion while section 4 concludes the 
findings of this study.

2 Data and methodology

2.1 Model description and set-up

The CSIRO ESM interactively couples the Conformal-Cubic 
Atmospheric Model (CCAM; McGregor and Dix, 2008), dynamic 
ocean model (Thatcher et al., 2015), sea-ice model (Gordon et al., 
2002; O’Farrell, 1998) and sophisticated new generation land-surface 
model referred to as the CSIRO Atmosphere Biosphere Land 
Exchange (CABLE; Kowalczyk et al., 2013). The model employs a 
common reversibly staggered grid (McGregor, 2005), eliminating the 
coupling overhead associated with message passing among model 
components. This approach makes the simulations computationally 
economical since it negates the need for interpolation in every model 
time step commonly applied in other coupled models to reconcile grid 
type and resolution differences. In addition, the CSIRO ESM includes 
a prognostic aerosol scheme due to Mitchell et al. (1995), applied 
consistently with the emission inventories and radiative forcing 
specifications of the latest Coupled Model Intercomparison Project 
(CMIP; Taylor et al., 2012). It also integrates a dynamic river routing 
scheme of Arora and Harrison (2007) which feeds fresh water to the 
ocean and surface water. The model furthermore incorporates 
biogeochemical knowledge and elements of the terrestrial 
carbon cycle.

The study uses 15 yrs. (2000–2014) retroactive ensemble 
simulations built as a function of atmospheric states and ocean 
nudging; each integration runs for 6 months in length. This model 
configuration offers a better description of uncertainties that may arise 
from the initial and boundary forcings. In this regard, the CSIRO ESM 
is nudged, at its surface, to the Multi-Model Ensemble (MME) mean 

and variablity amplitude of the SSTs using spectral nudging (Thatcher 
and McGregor, 2009, 2010) to minimize the potential climate drift 
(large and unrealistic departures between the RCM and its driving 
model/s’ fields) (Omrani et  al., 2012). This is a necessary step, to 
contain CSIRO ESM’s generated SSTs drift which will affect the RCM 
outputs. The MME SST forcing is obtained from North America 
(NMME) through the IRI data library, University of Pretoria Statistical 
Model (Landman et al., 2014), and SINTEX-F2v. of Japan Agency for 
Marine-Earth Science and Technology (JAMSTEC; Doi et al., 2016). 
The 18 CRCM ensemble members for hindcasts are created from the 
six scaled time-lagged initial conditions (ICs) in conjunction with the 
three SST states. The atmospheric ICs are acquired from the NCEP 
(National Centers for Environmental Prediction), Department of 
Energy (DOE) Atmospheric Model Intercomparison Project (AMIP) 
II Reanalysis (R2) data set (Kanamitsu et al., 2002). Each of these 
time-lagged perturbations are prescribed with the time varying CO2 
and Ozone boundary conditions.

In this experiment, the CSIRO ESM is run at C192 quasi-uniform 
(approximately about 50 km) global horizontal resolution and 25 
vertical sigma layers. With a self-constraining stretched-grid 
paradigm, the CSIRO ESM runs, further, constrain the C192 variable 
spatial resolution of the same model by applying a Schmidt factor of 
0.1523, centered over southern Africa (28°S, 25°E). This yields about 
8 km finer horizontal resolution (CRCM) over continental Africa 
whilst maintaining coarse resolution elsewhere. The use of high-
resolution (50 km) coupled forcing is found to be essential to maintain 
numerical stability and achieve balanced simulations of CRCM 
consistent with the driving CSIRO ESM. More description of CSIRO 
ESM can be  found in Beraki et  al. (2020) which elucidated the 
atmosphere–ocean-sea-ice interactions in response to different 
climate forcings and how these interactions affect the Southern 
Hemisphere’s circulation variability. Furthermore, CRCM is currently 
being experimentally used for seasonal prediction and its applications 
in renewable energy and precision Agriculture in South Africa. This 
study is the first effort to cover the process approach evaluation of this 
model set-up for seasonal timescales. Noteworthy, we are not aware of 
other initiatives that use similar modeling paradigm reported here for 
seasonal prediction over the African continent which has revealed a 
great potential for climate applications in an operational environment.

The evaluation is done on several months lead time hindcasts, 
generated from the November initialization. To minimize the loss of 
skill with the lead time (Brum and Schwanenberg, 2022), the seasons 
under consideration consist of the rolling 3 months seasons beginning 
with November. November was chosen for initialization because the 
main Southern Africa’s rainy season starts in November and ends in 
February, with a tendency of extending up to April (Macron et al., 
2014; Pohl et al., 2009, 2018; Ullah et al., 2023; Vigaud et al., 2012). 
Madagascar, for example, experiences the wettest period between 
November and April (Randriatsara et al., 2022). Over Southern Africa, 
March to May (autumn) and September to November (spring) are the 
transitional seasons (Wang et al., 2021) that are not used in this study. 
November initialization is, furthermore, explored because it is aligned 
to Mamalakis et al. (2021) study of the ITCZ using a suite of Coupled 
Model Intercomparison Project, version 6 (CMIP6) global models 
(Eyring et al., 2016). The extreme North/South position of the ITCZ 
corresponds to peak austral winter/summer seasons (Zhang et al., 
2021) respectively. These extreme positions provide the necessary 
seasonal boundary positions of the ITCZ over the African tropics and 
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forms part of the reasons why summer (November) initialization is 
evaluated to identify the extreme southern position of the 
ITCZ. Figure 1 provides the schematic summary of the CSIRO ESM 
and CRCM model set-up configuration and interactions as applied in 
this research.

2.2 Gridded observation and reanalysis 
datasets

The standard evaluation procedure is applied; the gridded 
observational/reanalysis datasets and model (CSIRO ESM and 
CRCM) hindcasts, for the period 2000–2014, were used to identify the 
seasonal ITCZ position and statistically compared the resulting 
positions. According to MacLachlan et al. (2015), a 14 years hindcasts 
is long enough to develop model climatology. A precipitation-based 
centroid method by Adam et al. (2016a) was used to identify the ITCZ 
position during El-Niño and La-Niña events. This method has recently 
been applied by Mischell and Lee (2022) to study the relationship 
between zonal ITCZ position and meridional temperature contrast. 
The maximum precipitation method was used to identify the ITCZ’s 
climatological position by identifying the latitude of maximum 
precipitation along each longitude as applied by Liu et al. (2020).

The observational datasets used include the gridded (0.5° × 0.5° 
grid) Climate Research Unit gridded Time Series version 4 (CRU TS 
v4; Harris et al., 2020) rainfall data and the Climate Hazards Group 
Infrared Precipitation with Stations version 2 (CHIRPS2.0) data at 
(0.05° × 0.05°) grid resolution (Funk et al., 2015). The (0.25° × 0.25°) 
European Centre for Medium-Range Weather Forecasts (ECMWF) 
fifth generation reanalysis (ERA5; Hersbach et al., 2020) dataset was 
also used.

CHIRPS, CRU and ERA5 datasets were used due to their value in 
model evaluation and interoperability as reflected by the past studies 
(Endris et al., 2021; Hassler and Lauer, 2021; Yimer et al., 2022). Li 
et al. (2021), for instance, applied them in their study on the ability of 
the CMIP6 models to simulate temperature and precipitation 
extremes. Furthermore, ERA5 dataset strongly correlates with 
CHIRPS & CRU (Gleixner et  al., 2020) and it is also the best 
performing re-analysis data for statistical downscaling using analogue 
methods for meteorological variables (Horton, 2022). CHIRPS dataset 
has been proven by Burton et al. (2018) to be the best performing 
dataset for tropical Africa related studies. For fair comparability, 
we re-sampled higher resolution CHIRPS, ERA5, and Model datasets 
to similar (and coarser) resolution as CRU (0.5° × 0.5°) by applying 
the “samplegrid” operator from the Climate Data Operators (CDOs) 
(Schulzweida, 2023). The application of this operator does not require 
any interpolation schemes.

2.3 Model skill and reliability assessment

The study evaluates the model’s skill and reliability on its 
seasonal ITCZ simulation, including how the model performs in 
representing characteristics of the ITCZ such as the edge of the HC, 
the STJ and the stream function. To this effect, probabilistic and 
deterministic skill assessment metrics (Table 1) were used to assess 
the difference between forecasts and the reference precipitation data 
over the period (2000–2014). We assume that a forecast by each of 
the 18 ensemble members of CRCM is equally probable. A 
conversion of the ensemble forecast to probabilistic forecast allows 
use of the probabilistic validation measures such as the relative 
operating characteristics (ROC) curve and the Spread-error Ratio 

FIGURE 1

Schematic figure of the CSIRO ESM and CRCM model configurations.
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(SPR). ROC is applied to assess CRCM’s ability to discriminate 
amongst the above normal (AN), near normal (NN), and below 
normal (BN) seasonal precipitation forecasting categories. In this 
case AN and BN represent the upper and lower-tercile forecasts, 
respectively. It portrays the degree of correct probabilistic forecast 
discrimination (Jolliffe and Stephenson, 2011; Mason and Graham, 
2002). Correct discrimination is quantified by the metric even if the 
forecast has a bias or calibration problems. The reliability diagram, 
on the other hand, evaluates the CRCM’s skill. It is used to reflect 
how well the forecast probabilities correspond to observation’s 
relative frequencies (Hagedorn et al., 2005) which is indicative of 
whether CRCM has over-confidence, under-confidence, conditional 
bias, or perfect reliability. Both the reliability diagram and ROC 
curves were calculated based on the CRCM’s grid-point predictions. 
The SPR metric is specifically chosen because it allows an 
assessment of variability among ensemble members and the forecast 
error (Wheatcroft, 2019). The benefits of SPR include its sensitivity 
to the reliability of a forecast without applying the event categories 
(Christensen et al., 2015) applied in ROC metric.

Deterministic performance metrics are also applied to quantify 
the correspondence between forecasts and reference data anomalies. 
The deterministic metrics used for evaluation include: the anomaly 
correlation coefficient (ACC), also known as a measure of association 
(Calì Quaglia et al., 2022; Liemohn et al., 2021; Ostermöller et al., 
2021); the mean bias (MB, Chang et al., 2018; Liemohn et al., 2021); 
the root mean square error (RMSE) (Ayugi et al., 2021; Yimer et al., 
2022). The Kling Gupta efficiency (KGE) introduced by Gupta et al. 
(2009) and later modified by Kling et al. (2012) allows an assessment 
of correlations between simulated and observed values, the prediction 
bias degree, and the variability in the modeled outputs. For example, 
it has been used to assess model performance in representing temporal 
dynamics of dry and wet bias, and dispersion (Abebe et al., 2020). The 
KGE values range from −0.4 to a maximum of unity (perfect skill) 
which reflects the model’s predictive skill in comparison to climatology 
(Abebe et al., 2020; Kling et al., 2012; Knoben et al., 2019). These KGE 
characteristics are a fit for purpose measure on whether the model can 

be used to explore the teleconnections between the seasonal ITCZ 
position and other rain bearing systems over southern Africa.

Further to the evaluation metrics explored, we have also tested 
CRCM’s performance on some of the main characteristics of the 
ITCZ. The evaluated characteristics include the edge of the HC, the 
multi-level (1,000 hPa to 100 hPa) stream function (Ψ) and the 
STJ. The identification of the HC, Ψ, and STJ was done following the 
python-based tropical width diagnostics software (PyTropD) as 
described in Adam et al. (2018), which can be consulted for further 
details on the relevant equations used and estimations made in 
identifying the edge of the HC, the STJ and mass-stream function. 
PyTropD has recently and successfully been applied by Menzel et al. 
(2024) in their study of the disconnect between the HC and STJ, and 
Gibson et al. (2024) for their study involving the winter precipitation 
change and how it relates to the shifts of the HC and the eddy driven 
jet. The mean absolute percentage error (MAPE) and symmetric mean 
absolute percentage error (SMAPE) between ERA5 reanalysis dataset 
and the CRCM’s outputs were calculated following Zhao et al. (2023) 
and Chen et al. (2017) respectively. MAPE is used here because it is 
part of the minimum standard metrics of the benchmarking 
framework as detailed by Isphording et al. (2024).

2.4 Selection of ENSO years

The seasonal Oceanic Niño Index (ONI) was used to identify the 
El-Niño and La-Niña phases. The ONI is based on 3 months running 
mean of SST anomalies in the Niño 3.4 Ocean region as obtained from 
the Extended Reconstructed SST version5 (ERSSTv5) (Huang et al., 
2017). The El-Niño/La-Niña year as applied in this research, covers 
from November of the current calendar year (y0) to April of the 
following calendar year (y0 + 1). Therefore, NDJ (November–January) 
season consists of November and December from y0 and January from 
y0 + 1. DJF (December–February) consists of December from y0 with 
January and February from y0 + 1. JFM (January–March) and FMA 
(February–April) are from year y0 + 1. Furthermore, a year is 
confirmed to be an El-Niño/La-Niña year provided the phase remains 
active in three of the four (NDJ, DJF, JFM, and FMA) rolling seasons. 
CSIRO ESM & CRCM are initialized in November and run for 
6 months, which means November runs from y0 provide predictions 
until April in y0 + 1. Therefore, the active El-Niño years between 2000 
and 2014 are 2002/03, 2004/05, 2009/10, and 2014/15 while the active 
La-Niña years are 2000/01, 2005/06, 2007/08, 2008/09, 2010/11, and 
2011/12.

3 Results and discussion

According to WMO (2018), following definitions in Murphy 
(1993), a good forecast is the one that reflects consistency, quality and 
value. Therefore, KGE and its components address the consistency and 
skill of performance by CRCM while quality and reliability of the 
forecasts generated is addressed through the SPR. SPR is used to test 
the reliability (Monhart et al., 2019) of the forecasts issued over and 
above the reliability diagram. The model’s ability to discriminate 
between distinct categories of seasonal forecasts is done, through the 
ROC curve in combination with the KGE score, to provide a robust 
evaluation of the model’s skill.

TABLE 1 Summary of the evaluation metrics.

Metrics Measures Reference/s

ACC Level of association Calì Quaglia et al. (2022), 

Liemohn et al. (2021) and 

Ostermöller et al. (2021)

KGE Predictive skill Abebe et al. (2020)

MAPE Benchmarking Zhao et al. (2023)

Reliability Diagram Model skill Hagedorn et al. (2005)

RMSE Error magnitude Ayugi et al. (2021) and 

Yimer et al. (2022)

ROC Ability to discriminate 

categories

Jolliffe and Stephenson 

(2011) and Mason and 

Graham (2002)

SMAPE Absolute percentage 

error

Chen et al. (2017)

SPR Variability amongst 

ensemble members & 

forecast error

Christensen et al. (2015)
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Due to the differences in how the models (and ERA5) treat 
complex topography, CSIRO ESM and CRCM are evaluated for their 
performance only over the 10°E–40°E zonal area. This is because of 
multiple reasons including; the simplified topography in models, 
CHIRPS and CRU are land based (Funk et al., 2015; Harris et al., 2020), 
and very limited observational data is available over the mountainous 
topography for assimilation into CHIRPS (Arregocés et  al., 2023; 
López-Bermeo et al., 2022) and CRU, resulting in poor performance 
over coastal and mountainous regions. The 10°E–40°E area avoids the 
oceanic area to the west (east) of 10°E (40°E) and the complex 
mountainous region with limited observations to the east of 40°E.

The ITCZ position to the west of 10°E (for both CHIRPS and 
CRU) aligns to the coastline because precipitation is higher over the 
coast and decreases going inland and into the ocean (Curtis, 2019; 

Ogino et al., 2016). This alignment to the coast is also because both 
CHIRPS and CRU datasets used in this work are land-based 
observations (no ocean observations) so the maximum precipitation 
will occur over the coastal area. This is the case whether maximum 
precipitation (Figure 2b) method or centroid method (Figures 3a–d) 
is used to identify the position of the ITCZ. The ITCZ position to the 
east of 40°E, on the other hand, reflects the precipitation enhanced by 
the complex topography interacting with the Arabian subtropical high 
pressure (ASHP) leading to the ITCZ refraction (Jafari and Lashkari, 
2023; Lashkari and Jafari, 2021b, 2021a).

To quantify the benefits of CRCM dynamical downscaling from 
the CSIRO ESM, we first do a comparison of the CSIRO ESM and 
CRCM performance against the observations/reanalysis dataset for 
benchmarking and assessment of value addition by CRCM. The 

FIGURE 2

The zonal and spatial position of the ITCZ for: NDJ, DJF, JFM, and FMA represented by panels (a,b) respectively. CRCM’s ROC curve and reliability 
diagram over 10°–40°E and 20°N/S tropical area is presented by panels (c,d). The Taylor diagram for CRCM comparability with the different 
observational and reanalysis datasets, normalized by ERA5, is presented by panel (e).
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expectation is that CRCM should at least perform as best as CSIRO 
ESM (Isphording et  al., 2024) with a provision of more regional 
details. The comparison between CSIRO ESM and CRCM is done 
through sections 3.1 and 3.2. In section 3.3, CRCM is independently 
evaluated on its performance on the ITCZ process’s characteristics. 
The benchmarking presentations style in Figures 2a,b, and Figures 3a–f 
are similar style to Figure 3 in Isphording et al. (2024).

3.1 Climatology performance

The figures and discussions in this section address CSIRO ESM and 
CRCM climatological performance on the zonal and spatial position of 

the ITCZ over 10–40°E longitudes using the maximum precipitation 
method and the question about CRCM’s ability to discriminate between 
above-normal (AN); near-normal (NN); and below-normal (BN) 
seasonal forecasting categories. The ability of CRCM to discriminate 
amongst the three categories is hereafter used as the basic proof of its 
capability to identify the ITCZ position through precipitation-based 
methods. The level of reliability of CRCM outputs is also discussed. All 
these are done for CRCM’s full climatology period (2000–2014), during 
the El-Niño, and La-Niña events between 2000 and 2014.

From Figures 2a,b, the CSIRO ESM and CRCM track the seasonally 
migrating climatological position of the ITCZ in line with both the 
observations (Figures 4a,b for spatial migration) and reanalysis data 
albeit CRCM reflecting a better performance than the CSIRO ESM. The 

FIGURE 3 (Continued)
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FIGURE 3

The representation of the spatial seasonal position of the ITCZ during El-Niño and La-Niña for NDJ, DJF, JFM, FMA seasons (a–d, respectively). The 
model skill and reliability (using KGE and SPR respectively) on the zonal (10°–40°E) position of the ITCZ during El-Niño/La-Niña seasons are presented 
by panels (e,f). The Taylor diagram in panel (g) shows how the model compares with the observations/reanalysis datasets for NDJ, DJF, JFM, and FMA 
seasons during El-Niño/La-Niña. Finally, panel (h) is a presentation of the added value (in percentage) by CRCM.

FIGURE 4

Climatological position of the seasonal ITCZ (NDJ, DJF, JFM, and FMA) based on the models (CSIRO ESM and CRCM) and CHIRPS (a), CRU (b) together 
with the JFM ROC curve (c) and Reliability diagram (d) CSIRO ESM.
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spatial spearman correlations (at 99% significance level) between 
CRCM and the observation/reanalysis dataset varied from 0.66 
(between CRCM and CHIRPS during JFM) to 0.91 (between CRCM 
and ERA5 during JFM), clearly reflected in Figure 2e as well. Figure 2a 
shows the zonal performance of the CSIRO ESM and CRCM against 
CHIRPS, CRU and ERA5 datasets for the period from November to 
April. CSIRO ESM and CRCM simulations can track the zonal 
climatological seasonal pattern of the ITCZ relative to the three test 
datasets (CHIRPS, CRU and ERA5). This performance is aligned to the 
expectation of consistency in grid-points interactions (Fox-Rabinovitz 
et al., 2006) between the global and regional resolutions wherein more 
regional details can be extracted without performance deterioration. 
CRCM has a northerly bias against CHIRPS and CRU while CSIRO 
ESM has a northerly bias against all the compared datasets (CHIRPS, 
CRU, ERA5 and CRCM). CRCM specifically tracks better, both zonally 
and spatially, with the ERA5 data than with CRU and CHIRPS possibly 
because ERA5 data inherently applies the same primitive equations as 
the weather and climate models beyond the actual observations 
acquired through data assimilation. For the zonal seasonal flow pattern, 
the southern-most latitudinal position of the ITCZ occurs during the 
DJF season. This seasonal shift is similarly suggested by Lauer et al. 
(2018), albeit for a different region.

The CRCM skill, assessed using the ROC curve against the 
CHIRPS dataset, found to be  reasonable due to its comparable 
resolution to the CRCM, is shown in Figures 2, 4c. ROC is part of the 
metrics for evaluating climate model performance and it contributes 
toward the probability distribution metrics on benchmarking 
framework (Baker and Taylor, 2016). Figures 2, 4c shows the area 
under the curve (AUC) of between a minimum of 0.86 and a 
maximum 0.96 corresponding to JFM BN during La-Niña and DJF 
AN during El-Niño, respectively. These values indicate that CRCM 
can skillfully discriminate the AN and BN categories better than the 
NN (for which AUC ranges from 0.44 to 0.52) category. Furthermore, 
the seasonal forecast issued by CRCM is exceptionally reliable for the 
AN and BN categories while not reliable for the NN prediction 
(Figures 2, 4d). Considering that ITCZ is a high (intense) precipitation 
area and CRCM is skillfully reliable in high precipitation forecasting, 
it follows that CRCM is suitable for precipitation-based methods of 
identifying the ITCZ position. This capability to accurately represent 
high intensity precipitation events is an added value (Corney et al., 
2013; Lindstedt et al., 2015) of running an ESM at a high resolution, 
an approach that is slightly modified by applying the stretched grid in 
this research. Furthermore, the reliability and ROC results imply that 
we  can rely on the forecast for AN (even during El-Niño) or BN 
(during La-Niña) seasonal precipitation forecast for southern Africa 
which is known to experience mostly BN precipitation during El-Niño 
and AN precipitation during La-Niña (Guimarães Nobre et al., 2019; 
Lenssen et al., 2020).

A Taylor diagram compares several pairs of patterns: 
observations and model comparisons and tracking changes (in lead 
times) in model performance (Taylor, 2001). ERA5 was used as the 
reference dataset because of its resolution being between that of 
CHIRPS and CRU datasets and it has also been used to normalize 
CHIRPS, CRU, and CRCM standard deviations. Based on the Taylor 
diagram presented in Figure 2e, we note how strongly correlated 
ERA5, and CRCM predictions are (correlation coefficients that range 
from 0.89 to 0.91 at 99% confidence level); showing even similar 
standard deviations and root-mean square error values. On the other 

hand, slightly weaker correlations, higher standard deviations and 
higher root-mean square error values are observed for CHIRPS and 
CRU against CRCM predictions. In general, the Taylor diagram 
shows the weakening correlations between the observations/
reanalysis with lead time and a high (between 1.0 and 1.6) but 
comparable normalized standard deviations amongst the datasets 
(CHIRPS, CRU, ERA5, and CRCM). The climatological error 
between CRCM and ERA5 is generally lower than 0.5° while it 
ranges from 0.75 to 1.2 between CRCM and CHIRPS/CRU. This 
indicates that CRCM is more aligned to ERA5  in both pattern 
recognition and the amplitude of variation.

In terms of the observations/reanalysis datasets correlations, 
CHIRPS and CRU have a much higher correlation (>0.96) than 
CHIRPS correlated to ERA5, and CRU correlated to ERA5 (0.47–0.81 
and 0.48–0.79 correlations, respectively), detailed correlations that 
cover both the El-Niño and La-Niña based correlations between 
CRCM (CSIRO ESM) and observations/reanalysis datasets are found 
in Table  2. Furthermore, this is reflected in the Taylor diagram 
(Figure 2e) where CHIRPS and CRU are packed together and separated 
from ERA5 datasets. These correlations are comparable to the CHIRPS 
correlated to CRU results found by Steinkopf and Engelbrecht (2022) 
for DJF when correlating CHIRPS, CRU, and ERA5 over the tropical 
(between 20°S and 20°N) Africa. The climatological normalized 
standard deviations amongst the observations/reanalysis and CRCM 
are all comparable throughout the seasons (maximum difference of 
<0.6) while the RMSE varies between 0.4 and 1.25°.

3.2 El-Niño and La-Niña performance

The analysis of the CSIRO ESM and CRCM performance over 
different rolling seasons (NDJ, DJF, JFM, and FMA) during the 
positive and negative phases of ENSO is shown in Figure  3. The 
centroid method was used for the identification of the spatial and 
zonal positions of the ITCZ.

CSIRO ESM and CRCM consistently track the seasonally 
migrating spatial position of the ITCZ in line with both the 
observations and reanalysis data during the El-Niño/La-Niña ENSO 
phases (Figures 3a–d). This tracking and CRCM’s performance on 
precipitation prediction (Figures 2, 4c,d) agrees with Nicholson (2009) 
on the consistency in model performance on precipitation and ITCZ 
position’s prediction. However, CRCM reflects a tendency of dynamic 
error growth relative to CSIRO ESM as the lead time increases 
(Figures 3c,d). This dynamic error growth could possibly be enhanced 
by the resolution at which CRCM is downscaled because it coincides 
with the grey zone (Lindstedt et  al., 2015) for resolving deep 
convection like commonly happens along the ITCZ. The spatial 
spearman correlations between CRCM (CSIRO ESM) and individual 
observation/reanalysis dataset range from 0.39 (0.37) between CRCM 
(CSIRO ESM) and CHIRPS/CRU (CHIRPS) during FMA to 0.89 
(0.92) between CRCM (CSIRO ESM) and ERA5 during JFM (JFM 
and FMA). These results (detailed in Table 2) show a marginally better 
spatial correlation between CSIRO ESM and CRU/ERA5 while 
comparable correlations exist between CRCM/CSIRO ESM and 
CHIRPS observations. This implies that CSIRO ESM performs better 
than CRCM against the low-resolution verifying datasets while both 
CSIRO ESM and CRCM perform equally well against the high-
resolution observational verifying datasets.
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CRCM (CSIRO ESM) skill (as measured by KGE and presented 
by Figure 3e) in predicting the seasonally changing position of the 
ITCZ during El-Niño varies between 0.05 for CHIRPS during FMA 
for both CSIRO ESM and CRCM and 0.72 (0.78) for ERA5 during 
DJF. On the other hand, the CRCM’s (CSIRO ESM) skill (KGE) in 
predicting the seasonally changing position of the ITCZ during 
La-Niña varies between a minimum of −0.07 (−0.07) for CHIRPS 
during FMA and a maximum of 0.86 (0.89) for ERA5 during 
NDJ. These values indicate that using CRCM (CSIRO ESM) to predict 
the spatial ITCZ position during El-Niño/La-Niña is, on average at 
0.38 (0.39), which is greater than −0.4 and therefore implies that it is 
a far better performance than relying on the climatological response 
of the ITCZ position to the ENSO phases. This consistency of skill 
between CSIRO ESM and CRCM is aligned to the expectation in 
terms of the general performance between the RCM and its driving 
ESM as stated by Fox-Rabinovitz et al. (2006). Once again CSIRO 
ESM is skillfully better than CRCM against the low-resolution 
verifying datasets while they are equally skillful against high-
resolution verifying datasets.

CRCM (CSIRO ESM) skill is with the level of reliability, measured 
by SPR and presented by Figure 3f, that varies between 0.89 (1.36) for 
ERA5 during FMA to 2.23 (2.50) for CRU (CHIRPS) during NDJ 
under the positive phase of ENSO while it varies between 0.80 (1.32) 
for ERA5 (ERA5/CRU) during FMA to 2.57 (3.01) for ERA5 during 
NDJ under the negative phase of ENSO. This indicates that, on 
average, CRCM (CSIRO ESM) gives a slightly better performance 
during La-Niña than it does during El-Niño even with an element of 
overconfidence (under dispersion) by CRCM. CRCM overconfidence 
also exists on the climatological seasonal position of the ITCZ 
(Figure 2d), especially for forecast probabilities of 40–90% for BN 
precipitation during the DJF and JFM.

Multiple studies, from as far back as the early 2000s (Landman 
et al., 2009) to as recent as the past 5 years (Scaife et al., 2019; Tapiador 
et al., 2020), have shown an interest in identifying the value added by 
the RCMs from the global circulation models (GCMs) and earth 
system models on the seasonal climate prediction scale. Some of these 
studies highlighted a need for the means to measure the added value, 
on the GCM/ESM, by the RCM. One such method used to assess the 
added value, as recommended by Gnitou et al. (2021), is by calculating 
the distance between the driving GCM/ESM and the corresponding 
RCM using any statistic. This method has also been used by Tamoffo 
et al. (2020) for process-based analysis of the added value making it 
suitable for application on the ITCZ process. Following Gnitou et al. 

(2021), we have chosen the KGE, a measure of the model skill, to 
assess the added value (AV) by CRCM (AV = KGECSIRO ESM minus 
KGECRCM) in identifying the position of the ITCZ. The added value by 
CRCM remains positive for all the seasons and up to as high as 4% 
(during La-Niña NDJ) and 6% (during El-Niño DJF) (Figure 3h). This 
shows a positive addition of value of up to 6% by CRCM from CSIRO 
ESM, indicating a great progress in African seasonal climate prediction 
using a dynamically downscaled ESM. This is even though some 
authors (Gnitou et al., 2021) would rather prefer a 10% and higher 
added value.

The Taylor diagram (Figure 3g) compares CHIRPS, CRU and 
ERA5 datasets to the CRCM predictions over the four rolling seasons 
(NDJ, DJF, JFM, FMA) to analyze the model performance. The ERA5 
dataset was used as the reference dataset and normalizes the standard 
deviations of CHIRPS, CRU, and CRCM. The model’s fair track of the 
spatial ITCZ position is confirmed by the correlation coefficients that 
range from 0.39 to 0.89 at 99% confidence level. Furthermore, the 
Taylor diagram shows the weakening correlations between the 
observations/reanalysis with lead time except for CRCM against 
ERA5 where the correlation weakens into DJF but strengthens again 
in JFM and FMA. The standard deviations are comparable with 
Observation datasets showing lower standard deviations than CRCM 
in NDJ and DJF while ERA5 reanalysis shows lower standard 
deviation for all seasons except FMA (during El-Niño and La-Niña) 
wherein CRCM shows a lower standard deviation than ERA5 
reanalysis. The RMSE is lower than 1.5° for all seasons and verifying 
datasets with the lowest RMSE occurring in FMA (CRCM during 
El-Niño and La-Niña) and JFM (CRCM during El-Niño) where it is 
less than 0.5°. These values, in comparison to Figure 2e, show that 
CRCM has a consistent performance between climatology and the 
ENSO phases. This CRCM performance on the ITCZ position reflects 
a very significant progress in regional dynamical climate modeling 
over southern Africa in terms of the onset and offset of seasonal 
precipitation which is linked to the position of the ITCZ (Randriatsara 
et al., 2022).

The observations/reanalysis datasets correlations during 
El-Niño show reasonably better association between CHIRPS and 
CRU (r ≥ 0.96) than CHIRPS-ERA5 & CRU-ERA5 correlations 
(0.47–0.81 and 0.48–0.79 respectively). These correlations are 
comparable to the CHIRPS-CRU and CRU-ERA5 correlations 
found by Steinkopf and Engelbrecht (2022) for DJF when 
correlating CHIRPS, CRU, and ERA5 over the tropical (between 
20°S and 20°N) Africa.

TABLE 2 Correlations between CRCM (CSIRO ESM) and the observations/reanalysis datasets.

Model and datasets correlations during El-Niño and La-Niña

CRCM (CSIRO ESM) Vs. CRU CRCM (CSIRO ESM) Vs. CHIRPS CRCM (CSIRO ESM) Vs. ERA5

El-Niño La-Niña El-Niño La-Niña El-Niño La-Niña

NDJ 0.48 (0.58) 0.51 (0.59) 0.54 (0.52) 0.51 (0.50) 0.80 (0.87) 0.87 (0.91)

DJF 0.44 (0.54) 0.50 (0.55) 0.46 (0.47) 0.48 (0.46) 0.82 (0.90) 0.85 (0.91)

JFM 0.39 (0.44) 0.42 (0.45) 0.40 (0.39) 0.41 (0.39) 0.89 (0.92) 0.85 (0.92)

FMA 0.39 (0.40) 0.39 (0.41) 0.39 (0.37) 0.40 (0.37) 0.88 (0.91) 0.88 (0.92)

Mean 0.43 (0.49) 0.46 (0.50) 0.45 (0.44) 0.45 (0.43) 0.85 (0.90) 0.86 (0.92)

Min 0.39 (0.40) 0.39 (0.41) 0.39 (0.37) 0.40 (0.37) 0.80 (0.87) 0.85 (0.91)

Max 0.48 (0.58) 0.51 (0.59) 0.54 (0.52) 0.51 (0.50) 0.89 (0.92) 0.88 (0.92)
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The spatial spearman correlations between CRCM and individual 
observation/reanalysis dataset range between the lowest of 0.39 
(CRCM and CRU during FMA) and highest of 0.88 (CRCM and 
ERA5 during FMA). CRCM diverges more than CSIRO ESM, with 
the lead time, from the observations/reanalysis (Figures 3a–d). This 
indicates the faster error growth by CRCM, in identifying the spatial 
ITCZ position, than CSIRO ESM further from the initialization time. 
With more focus on the flow pattern between CSIRO ESM/CRCM 
and observations/reanalysis datasets, it is evident that both CSIRO 
ESM and CRCM perform equally well in tracking the spatial ITCZ 
(Figures 3a–d) as also evidenced in the comparable correlations from 
Table 2. This agrees with the findings of Tapiador et al. (2020): it is 
now possible to run an ESM with a higher resolution and attain the 
same results as the RCM with an added advantage of avoiding most 
issues common with the RCMs.

3.3 HC, STJ, and stream function 
performance

This section presents the analysis of CRCM performance in 
detecting the regional edge of the HC, the regional STJ, and multi-
level streamfunction at different lead times and ENSO phases. These 
characteristics form part of the teleconnections between the ITCZ 
(ascending edge of the HC, Faulk et al., 2017; Schwendike et al., 2014), 
descending edge of the HC and the STJ. Therefore, it is important to 
evaluate CRCM performance on these as part of the larger exploratory 
metrics (Pendergrass et  al., 2020), especially considering the 
consistency of performance between the CSIRO ESM and CRCM as 
well as the skill and reliability of the CRCM on the position of 
the ITCZ.

The evaluation of CRCM was done with a focus on 10°E–40°E, 
covering the African tropics (between 20° North and South). This 
process-based model evaluation seeks to assess the predictive skill and 
explanatory values which provide a chance to improve process 
representation by the model (Steyn and Galmarini, 2008).

The differences on the descending edge of the HC latitude between 
ERA5 and CRCM vary from the highest of 24.3% (NDJ season during 
La-Niña) to the lowest of 3.5% (FMA season during La-Niña) 
(Figure 3f). The differences in the STJ latitude between ERA5 and 
CRCM vary between the highest of 7.5% (JFM season during La-Niña) 
and the lowest of 0.1% (DJF season during La-Niña). These MAPE 
values are within the error margin for a highly accurate to a good 
forecasting model (Montaño Moreno et al., 2013; Zhao et al., 2023). 
This means CRCM is performing well enough to study the width and 
area of the ITCZ.

SMAPE was used for the mean meridional zonal wind to 
eliminate the sensitivity of the results to outliers resulting from the 
high variability of the differences between the ERA5 reanalysis and 
CRCM winds prediction over Africa. The response of the model to 
lead time is visible between 740 hPa and 590 hPa (marked by purple 
dotted lines in Figure 5h) while no clear response is seen throughout 
all other levels. The model performance through these other levels 
is almost similar over all seasons. The CRCM reflects the consistently 
lower SMAPE from 300 hPa upwards and this result is aligned to the 
performance of the model in identifying the STJ latitude (Figure 5g), 
showing a maximum MAPE of 7.5% during JFM season. The 
changes (less than 3°) in the latitude position of the STJ as 

investigated here are aligned to the previous findings by Manney 
et  al. (2021) that the STJ latitude changes relating to ENSO are 
within the 3°, over the southern hemisphere. Furthermore, we found 
that the STJ latitude shifts poleward during El-Niño while it shifts 
equatorward during La-Niña over the southern hemisphere and 
Africa. In comparison, the model performs better in identifying the 
STJ latitude (Figure 5g) than it does in identifying the edge of the 
HC (Figure 5f).

The performance of the CRCM’s 500 hPa stream function was 
found to be out of phase with the ERA5’s 500 hPa stream function and 
mainly shifted southward even though it can correctly pick the pattern 
with minimal magnitude differences. The phase corrected presentation 
(Figure 5e) of the climatological 500 hPa stream function by CRCM 
(dash dotted lines) against the climatological 500 hPa stream function 
by ERA5 (solid lines) indicates similar pattern, with different 
magnitudes, and a minor southward shift. In consideration of this, it 
follows that CRCM can be  used to study the strength of the 
ITCZ. There is a loss of skill, with lead time, by CRCM for both wind 
patterns and stream function (Figures 5a–d).

The descending edge of the HC is found to shift to the north of 
its climatological position during El-Niño while it shifts to the 
south of its climatological position during La-Niña (Figures 5a–
d,f). This applies to both the ERA5 dataset and CRCM output. This 
HC shift is aligned to the shift of the zonal position of the ITCZ 
during the same phases of ENSO, especially from CHIRPS, CRU 
and ERA5 datasets. On the contrary, the latitude of the STJ has been 
found to shift to the south of its climatological position during 
El-Niño (for both ERA5 and CRCM output) while it shifts to the 
north of its climatological position in response to La-Niña (for 
CRCM while this is only the case for NDJ and JFM seasons for 
ERA5 dataset), Figures  5a–d,g. The descending edge of the HC 
(−32.8° by CRCM and −36.5° by ERA5) during DJF season is 
comparable to that from Mahlobo et al. (2018) (−36°) even though 
they used the ERA-Interim dataset. The response of the local HC to 
ENSO has previously been reported by Schwendike et al. (2014) 
who concluded that local Hadley circulation response to ENSO is 
much stronger than the local Walker circulation response to 
ENSO. According to Wolf et al. (2021), the ITCZ is a narrow band 
in which the northerly and southerly trade winds of Hadley 
circulation converge. This existing association between the HC 
structure and the ITCZ (Faulk et al., 2017) explains the intertwined 
shifting relationship between the edge of the HC and ITCZ in 
response to the ENSO phases.

Calculation of the mean ITCZ position, from different 
observations and reanalysis datasets, makes it possible to compare the 
ascending/descending edge from CRCM to the overall mean latitude 
for the ascending/descending edge of the HC over Africa, from 
various observation/reanalysis datasets. Table  3, summary of 
Figures  5a–d,f, indicates that the southernmost latitude for the 
ascending edge of the HC is found around 10.1°S (9.9°S) and descends 
around 36.5°S (32.8°S) during DJF, according to the mean ITCZ 
(CRCM). Similarly, the northernmost latitude for the ascending edge 
of the HC is found around 6.8°S (5.6°S) and descends around 32.3°S 
(29.7°S) during FMA as per the mean ITCZ (CRCM). The ITCZ 
position is also found within latitudes over which ERA5, and CRCM 
stream function differences are minimal (Figures 5a–d), making it 
possible to identify the ITCZ position using CRCM stream function 
(Figures 6, 7).
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FIGURE 5

The climatological differences between the zonal wind from ERA5 and CRCM (ERA5 minus CRCM) as the color background (calculations based on 
wind measured in ms−1), the stream function differences (ERA5 minus CRCM) as the contours (calculations based on stream function measured in 

(Continued)
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FIGURE 6

The climatological differences (prior to phase correction) between ERA5 and CRCM (ERA5-CRCM) stream function (Ψ) as the color background and 
the climatological stream function by ERA5 as the contours (in *1010 Kgs(−1)) for NDJ - FMA seasons (a-d). Superimposed onto this color background 
and the contours are the climatological Latitude (in brackets) of the descending edge of the HC (HC-Edge), STJ, and ITCZ by CRCM (HC_CRCM, STJ_
CRCM, and CRCM_ITCZ respectively) and by ERA5 (HC_ERA5, STJ_ERA5, and ERA5_ITCZ respectively) as well as ITCZ by CHIRPS (CHIRPS_ITCZ) and 
CRU (CRU_ITCZ).

*1010 Kgs−1). Superimposed onto this color background and the contours are the climatological positions of the descending edge of the HC, ITCZ 
(ascending edge of the HC) and STJ as represented by ERA5 dataset and the model output (a–d) with their latitude positions in brackets. The 500 hPa 
climatological stream function (in *1010 Kgs−1) using ERA5 dataset and CRCM outputs are presented by panel (e). The latitude for the descending edge 
of the HC and STJ, with their percentage difference, are presented by panels (f,g), respectively. Lastly, panel (h) presents the meridional SMAPE of the 
zonal wind per level with 740 hPa and 590 hPa lines (dotted purple lines).

FIGURE 5 (Continued)

TABLE 3 The mean ITCZ position and descending edge of the HC from the observations and reanalysis datasets as well as CRCM outputs.

Season ITCZ (°N) Descending edge of the HC (°N)

Mean ITCZ (CRCM) ERA5 (CRCM) HC

NDJ −7.8 (−7.8) −37.1 (−31.0)

DJF −10.1 (−9.9) −36.5 (−32.8)

JFM −9.8 (−9.4) −36.3 (−32.5)

FMA −6.8 (−5.6) −32.3 (−29.7)

The mean ITCZ position is determined by adding CHIRPS, CRU, and ERA5 positions and dividing by 3 (i.e., Mean ITCZ = (CHIRPS + CRU + ERA5)/3).
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4 Conclusion

The study aimed to evaluate the performance of CRCM 
constructed through grid-stretching of the driving CSIRO ESM on 
its ability to discriminate amongst the three seasonal forecasting 
categories during El-Niño/La-Niña and hence its applicability on 
identifying the ITCZ process, using the precipitation-based methods, 
and its characteristics. Two precipitation-based methods (maximum 
precipitation and centroid methods) were used to identify the ITCZ 
seasonal position. Application of the maximum precipitation and 
centroid method on both the observations/reanalysis (CHIRPS, CRU 
and ERA5) and model (CSIRO ESM and CRCM) tracks the pattern 
of the seasonally changing position of the ITCZ. However, the ITCZ 
position identified using maximum precipitation method is found to 
be south (by more than 1°) of the ITCZ position identified by the 
centroid method. The climatological skill and reliability of CRCM is 
comparable to the skill and reliability of the driving CSIRO 
ESM. However, the skill of CRCM seems to decay faster than the 
driving CSIRO ESM as the lead time increases presumably due to 

dynamic error growth tendency. The model uses a spectral relaxation 
method to minimize a climate drift problem commonly witnessed in 
interactively coupled models. The variable grid resolution integrations 
may also inherit errors from the CRCM forcings at the time of 
animalization. Nonetheless, the source and mechanism of dynamic 
error growth is apparently complex and is deferred for future work.

The overall (NDJ to FMA mean) seasonal and climatological zonal 
average positions of the ITCZ determined from the maximum 
precipitation are found slightly south of the positions determined 
from the centroid method. Furthermore, it has been found that the 
position of the ITCZ during El-Niño occurs north of the position 
during La-Niña. CSIRO ESM and CRCM can identify and track the 
seasonally changing position of the ITCZ in line with the CHIRPS, 
CRU, and ERA5 datasets through the different ENSO phases. 
However, CRCM seems to have the opposite response of the ITCZ to 
the ENSO signal as its dynamical error grows.

CRCM is also proven skillful and reliable in isolating the AN and 
BN seasonal precipitation categories during El-Niño and La-Niña, 
respectively. This is a very important capability for seasonal forecasting 

FIGURE 7

The climatological differences (post phase correction) between ERA5 and CRCM (ERA5-CRCM) stream function (Ψ) as the color background and the 
climatological stream function by ERA5 as the contours (in *1010 Kgs(-1)) for NDJ - FMA seasons (a-d). Superimposed onto this color background and 
the contours are the climatological Latitude (in brackets) of the descending edge of the HC (HC-Edge), STJ, and ITCZ by CRCM (HC_CRCM, STJ_
CRCM, and CRCM_ITCZ respectively) and ERA5 (HC_ERA5, STJ_ERA5, and ERA5_ITCZ respectively) as well as ITCZ by CHIRPS (CHIRPS_ITCZ) and 
CRU (CRU_ITCZ).
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over southern Africa where El-Niño is generally associated with BN 
precipitation while La-Niña is generally associated with AN 
precipitation. Furthermore, this makes CRCM most suitable for 
studying the ITCZ, an intense precipitation process, in totality.

Evaluating CRCM on the characteristics of the ITCZ process, it 
has been found that the model can track the shift of descending edge 
of the HC in response to the ENSO phases during the austral summer 
seasons. Furthermore, CRCM is aligned to ERA5 regarding the 
intertwined relationship between the HC and the ITCZ position. The 
position of the ITCZ is found within the latitudes in which ERA5 and 
CRCM stream function differences are minimal. This implies that it 
is possible to use CRCM to identify the ITCZ position using the 
stream function even against it being found to be out of phase with 
ERA5 stream function. Based on the MAPE and SMAPE, CRCM 
shows a better performance in tracking the STJ than it does in 
tracking the edge of the HC. The southernmost (northernmost) 
ascending edge of the HC occurs during DJF (FMA), according to the 
mean of observation/reanalysis datasets and CRCM outputs. The 
southernmost (northernmost) descending edge of the HC occurs 
during NDJ (FMA) as per ERA5 dataset while it occurs during DJF 
(FMA) according to CRCM outputs.

These results show that the application of the stretched grid on the 
ESM does, mostly, maintain the performance skill of the driving ESM 
while providing more regional details as reflected in other previous 
studies (Yhang et al., 2017) that investigated the specific contribution 
of the dynamical downscaling to regional research. This is more so 
considering that CSIRO ESM was previously proven to be skillful in 
seasonal and short-range timescales forecasting by Engelbrecht et al. 
(2011). The results further indicate CRCM’s ability to isolate high 
intensity rainfall areas during the southern hemispheres summer 
season; ITCZ is a high intensity precipitation process. This capability 
to isolate high intensity precipitation associated with the ITCZ has 
also been found to be the case with other models used under CMIP6 
(Li et al., 2021).

Therefore, CRCM can be applied to study the teleconnections that 
exist between spatial or zonal ITCZ and the drivers of climate variability 
over southern Africa. It can also be used to study the width, strength 
and area of the ITCZ over the African continent. However, it is 
recommended, for the future studies beyond the goals of the current 
research, that the recent developments on a priori bias correction 
(APBC: Risser et al., 2024) and machine learning (Rampal et al., 2024) 
approaches amongst a variety of methods (Xu et  al., 2019) to bias 
correction be explored to bias correct the CRCM outputs.

Finally, comparing the performance of CSIRO ESM and CRCM, 
there is a positive added value of up to 6% by CRCM in identifying 
large scale phenomena (process) like the ITCZ as demonstrated in 
this study. This indicates a valuable progress in improving the 
dynamic downscaling approach to seasonal forecasting over the 
African continent. Based on the comparable performance between 
CSIRO ESM and CRCM and in consideration of the computational 
costs, CSIRO ESM can be applied for operational purposes to save 
computational costs while CRCM should be used for the regional 
research studies which require more finer scale details as suggested 
by Tapiador et al. (2020).

The limitation of the study is the short, for robust El-Niño/
La-Niña events analysis, hindcasts due to the computational costs of 
running this set-up. However, it is important to view this development 
in the context of the earth system modeling over the African 

continent; Africa being composed of mostly least developed countries, 
producing a 15 years hindcasts of a regional earth system model 
symbolizes a significant progress in coupled ESM with 
climate signature.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found at: https://cds.climate.copernicus.eu/datasets. Model 
output data can be requested from CSIR.

Author contributions

TR: Conceptualization, Formal analysis, Investigation, 
Methodology, Visualization, Writing – original draft, Writing – review 
& editing. WL: Investigation, Supervision, Writing – review & editing. 
MM: Investigation, Supervision, Writing  – review & editing. SN: 
Investigation, Supervision, Writing  – review & editing. AB: 
Conceptualization, Investigation, Supervision, Writing – review & 
editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This research was funded 
by the Council for Scientific and Industrial Research (CSIR) through 
the Department of Science and Innovation parliamentary grant 
(P1FCM00) received by the Climate and Air Quality Modelling group 
within the CSIR and the FOCUS-AFRICA project via the funding 
received from the European H2020 Research and Innovation program 
(Grant Agreement 869575).

Conflict of interest

AB was employed by ClimateSynth Solutions Inc.
The remaining authors declare that the research was conducted in 

the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

https://doi.org/10.3389/fclim.2025.1504756
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://cds.climate.copernicus.eu/datasets


Ramotubei et al. 10.3389/fclim.2025.1504756

Frontiers in Climate 16 frontiersin.org

References
Abebe, S. A., Qin, T., Yan, D., Gelaw, E. B., Workneh, H. T., Kun, W., et al. (2020). 

Spatial and temporal evaluation of the latest high-resolution precipitation products over 
the Upper Blue Nile River basin, Ethiopia. Water 12:3072. doi: 10.3390/w12113072

Adam, O., Bischoff, T., and Schneider, T. (2016a). Seasonal and interannual variations 
of the energy flux equator and ITCZ. Part I: zonally averaged ITCZ position. J. Clim. 29, 
3219–3230. doi: 10.1175/JCLI-D-15-0512.1

Adam, O., Bischoff, T., and Schneider, T. (2016b). Seasonal and interannual variations 
of the energy flux equator and ITCZ. Part II: zonally varying shifts of the ITCZ. J. Clim. 
29, 7281–7293. doi: 10.1175/JCLI-D-15-0710.1

Adam, O., Grise, K. M., Staten, P., Simpson, I. R., Davis, S. M., Davis, N. A., et al. 
(2018). The TropD software package (v1): standardized methods for calculating tropical-
width diagnostics. Geosci. Model Dev. 11, 4339–4357. doi: 10.5194/gmd-11-4339-2018

Alexander, M. A. (1992). Midlatitude atmosphere–ocean interaction during El Niño. 
Part II: the northern hemisphere atmosphere. J. Clim. 5, 959–972. doi: 
10.1175/1520-0442(1992)005<0959:MAIDEN>2.0.CO;2

Arora, V. K., and Harrison, S. (2007). Upscaling river networks for use in climate 
models. Geophys. Res. Lett. 34:L21407. doi: 10.1029/2007GL031865

Arregocés, H. A., Rojano, R., and Pérez, J. (2023). Validation of the CHIRPS dataset 
in a coastal region with extensive plains and complex topography. Case Stud. Chem. 
Environ. Eng. 8:100452. doi: 10.1016/j.cscee.2023.100452

Ayugi, B., Zhidong, J., Zhu, H., Ngoma, H., Babaousmail, H., Rizwan, K., et al. (2021). 
Comparison of CMIP6 and CMIP5 models in simulating mean and extreme 
precipitation over East Africa. Int. J. Climatol. 41, 6474–6496. doi: 10.1002/joc.7207

Baker, N. C., and Taylor, P. C. (2016). A framework for evaluating climate model 
performance metrics. J. Clim. 29, 1773–1782. doi: 10.1175/JCLI-D-15-0114.1

Bartman, A. G., Landman, W. A., and Rautenbach, C. J. D. W. (2003). Recalibration 
of general circulation model output to austral summer rainfall over southern Africa. Int. 
J. Climatol. 23, 1407–1419. doi: 10.1002/joc.954

Beraki, A. F., DeWitt, D. G., Landman, W. A., and Olivier, C. (2014). Dynamical 
seasonal climate prediction using an ocean-Atmosphere Coupled Climate Model 
Developed in Partnership between South Africa and the IRI. J. Clim. 27, 1719–1741. doi: 
10.1175/JCLI-D-13-00275.1

Beraki, A. F., Morioka, Y., Engelbrecht, F. A., Nonaka, M., Thatcher, M., Kobo, N., et al. 
(2020). Examining the impact of multiple climate forcings on simulated southern 
hemisphere climate variability. Clim. Dyn. 54, 4775–4792. doi: 
10.1007/s00382-020-05253-y

Brum, M., and Schwanenberg, D. (2022). Long-term evaluation of the sub-seasonal 
to seasonal (S2S) dataset and derived hydrological forecasts at the catchment scale. 
EGUsphere [preprint]. doi: 10.5194/egusphere-2022-419

Burton, C., Rifai, S., and Malhi, Y. (2018). Inter-comparison and assessment of gridded 
climate products over tropical forests during the 2015/2016 El Niño. Philos. Trans. Roy. 
Soc. B Biol. Sci. 373:20170406. doi: 10.1098/rstb.2017.0406

Byrne, M. P., Pendergrass, A. G., Rapp, A. D., and Wodzicki, K. R. (2018). Response 
of the intertropical convergence zone to climate change: location, width, and strength. 
Curr. Clim. Chang. Rep. 4, 355–370. doi: 10.1007/s40641-018-0110-5

Byrne, M. P., and Schneider, T. (2016a). Energetic constraints on the width of the 
intertropical convergence zone. J. Clim. 29, 4709–4721. doi: 10.1175/JCLI-D-15-0767.1

Byrne, M. P., and Schneider, T. (2016b). Narrowing of the ITCZ in a warming 
climate: physical mechanisms. Geophys. Res. Lett. 43, 11–350. doi: 10.1002/ 
2016GL070396

Calì Quaglia, F., Terzago, S., and von Hardenberg, J. (2022). Temperature and 
precipitation seasonal forecasts over the Mediterranean region: added value compared 
to simple forecasting methods. Clim. Dyn. 58, 2167–2191. doi: 
10.1007/s00382-021-05895-6

Camberlin, P., and Philippon, N. (2002). The east African march–may rainy season: 
associated atmospheric dynamics and predictability over the 1968–97 period. J. Clim. 
15, 1002–1019. doi: 10.1175/1520-0442(2002)015<1002:TEAMMR>2.0.CO;2

Ceppi, P., Hwang, Y.-T., Liu, X., Frierson, D. M. W., and Hartmann, D. L. (2013). The 
relationship between the ITCZ and the southern hemispheric eddy-driven jet: ITCZ and 
jet latitude. J. Geophys. Res. Atmos. 118, 5136–5146. doi: 10.1002/jgrd.50461

Chang, L., Duc, H., Scorgie, Y., Trieu, T., Monk, K., and Jiang, N. (2018). Performance 
evaluation of CCAM-CTM regional airshed modelling for the New South Wales greater 
metropolitan region. Atmos. 9:486. doi: 10.3390/atmos9120486

Chen, B., Lin, X., and Bacmeister, J. T. (2008). Frequency distribution of daily ITCZ 
patterns over the Western–Central Pacific. J. Clim. 21, 4207–4222. doi: 
10.1175/2008JCLI1973.1

Chen, C., Twycross, J., and Garibaldi, J. M. (2017). A new accuracy measure based on 
bounded relative error for time series forecasting. PLoS One 12:e0174202. doi: 
10.1371/journal.pone.0174202

Christensen, H. M., Moroz, I. M., and Palmer, T. N. (2015). Evaluation of ensemble 
forecast uncertainty using a new proper score: application to medium-range and 
seasonal forecasts. Q. J. R. Meteorol. Soc. 141, 538–549. doi: 10.1002/qj.2375

Corney, S., Grose, M., Bennett, J. C., White, C., Katzfey, J., McGregor, J., et al. (2013). 
Performance of downscaled regional climate simulations using a variable-resolution 
regional climate model: Tasmania as a test case. J. Geophys. Res. Atmos. 118, 11,936–
11,950. doi: 10.1002/2013JD020087

Curtis, S. (2019). Means and long-term trends of global coastal zone precipitation. Sci. 
Rep. 9:5401. doi: 10.1038/s41598-019-41878-8

Doi, T., Behera, S. K., and Yamagata, T. (2016). Improved seasonal prediction using 
the S INTEX-F2 coupled model. J. Adv. Model. Earth Syst. 8, 1847–1867. doi: 
10.1002/2016MS000744

Endris, H. S., Hirons, L., Segele, Z. T., Gudoshava, M., Woolnough, S., and Artan, G. A. 
(2021). Evaluation of the skill of monthly precipitation forecasts from global prediction 
systems over the greater horn of Africa. Weather Forecast. 36, 1275–1298. doi: 
10.1175/WAF-D-20-0177.1

Engelbrecht, F., Landman, W., Engelbrecht, C., Landman, S., Bopape, M., Roux, B., 
et al. (2011). Multi-scale climate modelling over southern Africa using a variable-
resolution global model. Water SA 37, 647–658. doi: 10.4314/wsa.v37i5.2

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., et al. (2016). 
Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental 
design and organization. Geosci. Model Dev. 9, 1937–1958. doi: 10.5194/gmd-9-1937-2016

Faulk, S., Mitchell, J., and Bordoni, S. (2017). Effects of rotation rate and seasonal 
forcing on the ITCZ extent in planetary atmospheres. J. Atmos. Sci. 74, 665–678. doi: 
10.1175/JAS-D-16-0014.1

Fox-Rabinovitz, M., Côté, J., Dugas, B., Déqué, M., and McGregor, J. L. (2006). 
Variable resolution general circulation models: stretched-grid model intercomparison 
project (SGMIP). J. Geophys. Res. Atmos. 111:2005JD006520. doi: 10.1029/2005JD006520

Frierson, D. M. W., and Hwang, Y.-T. (2012). Extratropical influence on ITCZ shifts 
in slab ocean simulations of global warming. J. Clim. 25, 720–733. doi: 
10.1175/JCLI-D-11-00116.1

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., et al. (2015). 
The climate hazards infrared precipitation with stations—a new environmental record 
for monitoring extremes. Sci. Data 2:150066. doi: 10.1038/sdata.2015.66

Gibson, P. B., Rampal, N., Dean, S. M., and Morgenstern, O. (2024). Storylines for 
future projections of precipitation over New Zealand in CMIP6 models. J. Geophys. Res. 
Atmos. 129:e2023JD039664. doi: 10.1029/2023JD039664

Giorgi, F. (2019). Thirty years of regional climate modeling: where are we and 
where are we going next? J. Geophys. Res. Atmos. 124, 5696–5723. doi: 10.1029/ 
2018JD030094

Gleixner, S., Demissie, T., and Diro, G. T. (2020). Did ERA5 improve temperature and 
precipitation reanalysis over East Africa? Atmos. 11:996. doi: 10.3390/atmos11090996

Gnitou, G. T., Tan, G., Niu, R., and Nooni, I. K. (2021). Assessing past climate biases 
and the added value of CORDEX-CORE precipitation simulations over Africa. Remote 
Sens. 13:2058. doi: 10.3390/rs13112058

Goddard, L., Mason, S. J., Zebiak, S. E., Ropelewski, C. F., Basher, R., and Cane, M. A. 
(2001). Current approaches to seasonal to interannual climate predictions. Int. J. 
Climatol. 21, 1111–1152. doi: 10.1002/joc.636

Gordon, H. B., Rotstayn, L. D., McGregor, J. L., Dix, M. R., Kowalczyk, E. A., 
O’Farrell, S. P., et al. (2002). The CSIRO Mk3 Climate System Model. CSIRO Atmospheric 
Research, Technical paper (60).

Gu, G., and Zhang, C. (2002). Cloud components of the intertropical convergence 
zone: cloud components of the intertropical convergence zone. J. Geophys. Res. Atmos. 
107, ACL 4-1–ACL 4-12. doi: 10.1029/2002JD002089

Guimarães Nobre, G., Muis, S., Veldkamp, T. I. E., and Ward, P. J. (2019). Achieving 
the reduction of disaster risk by better predicting impacts of El Niño and La Niña. Prog. 
Disaster Sci. 2:100022. doi: 10.1016/j.pdisas.2019.100022

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F. (2009). Decomposition 
of the mean squared error and NSE performance criteria: Implications for 
improving hydrological modelling. J. Hydrol. 377, 80–91. doi: 10.1016/j.
jhydrol.2009.08.003

Hagedorn, R., Doblas-Reyes, F. J., and Palmer, T. N. (2005). The rationale behind the 
success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A. 57, 
219–233. doi: 10.1111/j.1600-0870.2005.00103.x

Harris, I., Osborn, T. J., Jones, P., and Lister, D. (2020). Version 4 of the CRU TS 
monthly high-resolution gridded multivariate climate dataset. Sci. Data 7:109. doi: 
10.1038/s41597-020-0453-3

Hassler, B., and Lauer, A. (2021). Comparison of reanalysis and observational 
precipitation datasets including ERA5 and WFDE5. Atmosphere 12:1462. doi: 
10.3390/atmos12111462

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. 
(2020). The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049. doi: 
10.1002/qj.3803

Horton, P. (2022). Analogue methods and ERA5: benefits and pitfalls. Int. J. Climatol. 
42, 4078–4096. doi: 10.1002/joc.7484

https://doi.org/10.3389/fclim.2025.1504756
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://doi.org/10.3390/w12113072
https://doi.org/10.1175/JCLI-D-15-0512.1
https://doi.org/10.1175/JCLI-D-15-0710.1
https://doi.org/10.5194/gmd-11-4339-2018
https://doi.org/10.1175/1520-0442(1992)005<0959:MAIDEN>2.0.CO;2
https://doi.org/10.1029/2007GL031865
https://doi.org/10.1016/j.cscee.2023.100452
https://doi.org/10.1002/joc.7207
https://doi.org/10.1175/JCLI-D-15-0114.1
https://doi.org/10.1002/joc.954
https://doi.org/10.1175/JCLI-D-13-00275.1
https://doi.org/10.1007/s00382-020-05253-y
https://doi.org/10.5194/egusphere-2022-419
https://doi.org/10.1098/rstb.2017.0406
https://doi.org/10.1007/s40641-018-0110-5
https://doi.org/10.1175/JCLI-D-15-0767.1
https://doi.org/10.1002/2016GL070396
https://doi.org/10.1002/2016GL070396
https://doi.org/10.1007/s00382-021-05895-6
https://doi.org/10.1175/1520-0442(2002)015<1002:TEAMMR>2.0.CO;2
https://doi.org/10.1002/jgrd.50461
https://doi.org/10.3390/atmos9120486
https://doi.org/10.1175/2008JCLI1973.1
https://doi.org/10.1371/journal.pone.0174202
https://doi.org/10.1002/qj.2375
https://doi.org/10.1002/2013JD020087
https://doi.org/10.1038/s41598-019-41878-8
https://doi.org/10.1002/2016MS000744
https://doi.org/10.1175/WAF-D-20-0177.1
https://doi.org/10.4314/wsa.v37i5.2
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1175/JAS-D-16-0014.1
https://doi.org/10.1029/2005JD006520
https://doi.org/10.1175/JCLI-D-11-00116.1
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1029/2023JD039664
https://doi.org/10.1029/2018JD030094
https://doi.org/10.1029/2018JD030094
https://doi.org/10.3390/atmos11090996
https://doi.org/10.3390/rs13112058
https://doi.org/10.1002/joc.636
https://doi.org/10.1029/2002JD002089
https://doi.org/10.1016/j.pdisas.2019.100022
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1111/j.1600-0870.2005.00103.x
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.3390/atmos12111462
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/joc.7484


Ramotubei et al. 10.3389/fclim.2025.1504756

Frontiers in Climate 17 frontiersin.org

Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., et al. 
(2017). Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, 
validations, and intercomparisons. J. Clim. 30, 8179–8205. doi: 10.1175/JCLI-D-16-0836.1

Isphording, R. N., Alexander, L. V., Bador, M., Green, D., Evans, J. P., and Wales, S. 
(2024). A standardized benchmarking framework to assess downscaled precipitation 
simulations. J. Clim. 37, 1089–1110. doi: 10.1175/JCLI-D-23-0317.1

Jafari, M., and Lashkari, H. (2023). Effect of Arabian subtropical high-pressure 
intensity on the ITCZ zonal displacement pattern in Northeast Africa. Theor. Appl. 
Climatol. 152, 135–149. doi: 10.1007/s00704-023-04365-9

Jolliffe, I. T., and Stephenson, D. B. (Eds.). (2011). Forecast Verification: A Practitioner’s 
Guide in Atmospheric Science, 2nd edition (2nd ed.). John Wiley & Sons, Ltd.

Kanamitsu, M., Ebisuzaki, W., Yang, S.-K., Hnilo, J. J., Fiorino, M., and Potter, G. L. 
(2002). NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1644. 
doi: 10.1175/BAMS-83-11-1631

Kang, S. M., Shin, Y., and Xie, S.-P. (2018). Extratropical forcing and tropical rainfall 
distribution: energetics framework and ocean Ekman advection. NPJ Clim. Atmos. Sci. 
1:20172. doi: 10.1038/s41612-017-0004-6

Keshtgar, B., Alizadeh-Choobari, O., and Irannejad, P. (2020). Seasonal and 
interannual variations of the intertropical convergence zone over the Indian Ocean 
based on an energetic perspective. Clim. Dyn. 54, 3627–3639. doi: 
10.1007/s00382-020-05195-5

Kgatuke, M. M., Landman, W. A., Beraki, A., and Mbedzi, M. P. (2008). The internal 
variability of the RegCM3 over South  Africa. Int. J. Climatol. 28, 505–520. doi: 
10.1002/joc.1550

Kling, H., Fuchs, M., and Paulin, M. (2012). Runoff conditions in the upper Danube 
basin under an ensemble of climate change scenarios. J. Hydrol. 424-425, 264–277. doi: 
10.1016/j.jhydrol.2012.01.011

Knoben, W. J. M., Freer, J. E., and Woods, R. A. (2019). Technical note: inherent 
benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. 
Hydrol. Earth Syst. Sci. 23, 4323–4331. doi: 10.5194/hess-23-4323-2019

Kowalczyk, E., Stevens, L., Law, R., Dix, M., Wang, Y., Harman, I., et al. (2013). The 
land surface model component of ACCESS: description and impact on the simulated 
surface climatology. Aust. Meteorol. Oceanogr. J. 63, 65–82. doi: 10.22499/2.6301.005

Krishnamurti, T. N., Stefanova, L., and Misra, V. (2013). Tropical Meteorology: An 
Introduction. New York, Heidelberg, Dordrecht, and London: Springer. doi: 
10.1007/978-1-4614-7409-8

Landman, W. A., and Beraki, A. (2012). Multi-model forecast skill for mid-summer 
rainfall over southern Africa. International J. Climatol. 32, 303–314. doi: 10.1002/
joc.2273

Landman, W. A., DeWitt, D., Lee, D.-E., Beraki, A., and Lötter, D. (2012). Seasonal 
rainfall prediction skill over South Africa: One- versus Two-tiered forecasting systems. 
Weather and Forecasting. 27, 489–501. doi: 10.1175/WAF-D-11-00078.1

Landman, W. A., Kgatuke, M.-J., Mbedzi, M., Beraki, A., Bartman, A., and du 
Piesanie, A. (2009). Performance comparison of some dynamical and empirical 
downscaling methods for South Africa from a seasonal climate modelling perspective. 
Int. J. Climatol. 29, 1535–1549. doi: 10.1002/joc.1766

Landman, W. A., Mason, S. J., Tyson, P. D., and Tennant, W. J. (2001). Retro-active 
skill of multi-tiered forecasts of summer rainfall over southern Africa. Int. J. Climatol. 
21, 1–19. doi: 10.1002/joc.592

Landman, W., Beraki, A., DeWitt, D., and Lötter, D. (2014). Sst prediction 
methodologies and verification considerations for dynamical mid-summer rainfall 
forecasts for South Africa. Water SA 40:615. doi: 10.4314/wsa.v40i4.6

Lashkari, H., and Jafari, M. (2021a). Annual displacement and appropriate index to 
determine ITCZ position in East Africa and the Indian Ocean regions. Meteorog. Atmos. 
Phys. 133, 1111–1126. doi: 10.1007/s00703-021-00797-y

Lashkari, H., and Jafari, M. (2021b). The role of spatial displacement of Arabian 
subtropical high pressure in the annual displacement of the ITCZ in East Africa. Theor. 
Appl. Climatol. 143, 1543–1555. doi: 10.1007/s00704-020-03475-y

Lauer, A., Jones, C., Eyring, V., Evaldsson, M., Hagemann, S., Mäkelä, J., et al. (2018). 
Process-level improvements in CMIP5 models and their impact on tropical variability, 
the Southern Ocean, and monsoons. Earth Syst. Dynam. 9, 33–67. doi: 
10.5194/esd-9-33-2018

Lenssen, N. J. L., Goddard, L., and Mason, S. (2020). Seasonal forecast skill of ENSO 
teleconnection maps. Weather and Forecasting. 35, 2387–2406. doi: 10.1175/
WAF-D-19-0235.1

Li, C., Zwiers, F., Zhang, X., Li, G., Sun, Y., and Wehner, M. (2021). Changes in annual 
extremes of daily temperature and precipitation in CMIP6 models. J. Clim. 34, 
3441–3460. doi: 10.1175/JCLI-D-19-1013.1

Liemohn, M. W., Shane, A. D., Azari, A. R., Petersen, A. K., Swiger, B. M., and 
Mukhopadhyay, A. (2021). RMSE is not enough: guidelines to robust data-model 
comparisons for magnetospheric physics. J. Atmos. Sol.-Terr. Phys. 218:105624. doi: 
10.1016/j.jastp.2021.105624

Lindstedt, D., Lind, P., Kjellström, E., and Jones, C. (2015). A new regional climate 
model operating at the meso-gamma scale: performance over Europe. Tellus A Dyn. 
Meteorol. Oceanogr. 67:24138. doi: 10.3402/tellusa.v67.24138

Liu, C., Liao, X., Qiu, J., Yang, Y., Feng, X., Allan, R. P., et al. (2020). Observed 
variability of intertropical convergence zone over 1998—2018. Environ. Res. Lett. 
15:104011. doi: 10.1088/1748-9326/aba033

Liu, Y., Lo, L., Shi, Z., Wei, K.-Y., Chou, C.-J., Chen, Y.-C., et al. (2015). Obliquity 
pacing of the western Pacific intertropical convergence zone over the past 282,000 years. 
Nat. Commun. 6:10018. doi: 10.1038/ncomms10018

López-Bermeo, C., Montoya, R. D., Caro-Lopera, F. J., and Díaz-García, J. A. (2022). 
Validation of the accuracy of the CHIRPS precipitation dataset at representing climate 
variability in a tropical mountainous region of South America. Phys. Chem. Earth Parts 
A B C 127:103184. doi: 10.1016/j.pce.2022.103184

MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife, A. A., 
et al. (2015). Global seasonal forecast system version 5 (GloSea5): a high-resolution 
seasonal forecast system: GloSea5: a high-resolution seasonal forecast system. Q. J. R. 
Meteorol. Soc. 141, 1072–1084. doi: 10.1002/qj.2396

MacLeod, D., Graham, R., O’Reilly, C., Otieno, G., and Todd, M. (2021). Causal 
pathways linking different flavours of ENSO with the greater horn of Africa short rains. 
Atmos. Sci. Lett. 22:e1015. doi: 10.1002/asl.1015

Macron, C., Pohl, B., Richard, Y., and Bessafi, M. (2014). How do tropical temperate 
troughs form and develop over southern Africa? J. Clim. 27, 1633–1647. doi: 
10.1175/JCLI-D-13-00175.1

Magnusdottir, G., and Wang, C.-C. (2008). Intertropical convergence zones during 
the active season in daily data. J. Atmos. Sci. 65, 2425–2436. doi: 10.1175/2007JAS2518.1

Mahlobo, D. D., Ndarana, T., Grab, S., and Engelbrecht, F. (2018). Integrated 
climatology and trends in the subtropical Hadley cell, sunshine duration and cloud cover 
over South Africa. Int. J. Climatol. 39, 1805–1821. doi: 10.1002/joc.5917

Mahlobo, D., Engelbrecht, F., Ndarana, T., Abubakar, H. B., Olabanji, M. F., and 
Ncongwane, K. (2024). Analysis of the Hadley cell, subtropical anticyclones and their 
effect on south African rainfall. Theor. Appl. Climatol. 155, 1035–1054. doi: 
10.1007/s00704-023-04674-z

Ma, J., Xie, S.-P., and Xu, H. (2017). Contributions of the North Pacific meridional 
mode to ensemble spread of ENSO prediction. J. Clim. 30, 9167–9181. doi: 
10.1175/JCLI-D-17-0182.1

Mamalakis, A., Randerson, J. T., Yu, J.-Y., Pritchard, M. S., Magnusdottir, G., Smyth, P., 
et al. (2021). Zonally contrasting shifts of the tropical rain belt in response to climate 
change. Nat. Clim. Chang. 11, 143–151. doi: 10.1038/s41558-020-00963-x

Manney, G. L., Hegglin, M. I., and Lawrence, Z. D. (2021). Seasonal and regional 
signatures of ENSO in upper tropospheric jet characteristics from reanalyses. J. Clim. 
34:1. doi: 10.1175/JCLI-D-20-0947.1

Mason, S. J., and Graham, N. E. (2002). Areas beneath the relative operating 
characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance 
and interpretation. Q. J. R. Meteorol. Soc. 128, 2145–2166. doi: 
10.1256/003590002320603584

McGregor, J. L. (2005). Geostrophic adjustment for reversibly staggered grids. Mon. 
Weather Rev. 133, 1119–1128. doi: 10.1175/MWR2908.1

McGregor, J. L., and Dix, M. R. (2008). “An updated description of the conformal-
cubic atmospheric model,” in High resolution numerical modelling of the atmosphere and 
ocean. eds. K. Hamilton and W. Ohfuchi (New York: Springer), 51–75.

Menzel, M. E., Waugh, D. W., Wu, Z., and Reichler, T. (2024). Replicating the Hadley 
cell edge and subtropical jet latitude disconnect in idealized atmospheric models. 
Weather Clim. Dynam. 5, 251–261. doi: 10.5194/wcd-5-251-2024

Merryfield, W. J., Baehr, J., Batté, L., Becker, E. J., Butler, A. H., Coelho, C. A. S., et al. 
(2020). Current and emerging developments in subseasonal to decadal prediction. Bull. 
Am. Meteorol. Soc. 101, E869–E896. doi: 10.1175/BAMS-D-19-0037.1

Mischell, E., and Lee, J.-E. (2022). Observed zonal variations of the relationship 
between ITCZ position and meridional temperature contrast. Climate 10:30. doi: 
10.3390/cli10030030

Mitchell, J. F. B., Davis, R. A., Ingram, W. J., and Senior, C. A. (1995). On surface 
temperature, greenhouse gases, and aerosols: models and observations. J. Clim. 8, 
2364–2386. doi: 10.1175/1520-0442(1995)008<2364:OSTGGA>2.0.CO;2

Monhart, S., Zappa, M., Spirig, C., Schär, C., and Bogner, K. (2019). Subseasonal 
hydrometeorological ensemble predictions in small-and medium-size mountainous 
catchments: benefits of the NWP approach. Hydrol. Earth Syst. Sci. 23, 493–513. doi: 
10.5194/hess-23-493-2019

Montaño Moreno, J. J., Palmer Pol, A., and Sesé Abad, A. (2013). Using the R-MAPE 
index as a resistant measure of forecast accuracy. Psicothema 25, 500–506. doi: 
10.7334/psicothema2013.23

Moreno-Chamarro, E., Marshall, J., and Delworth, T. L. (2020). Linking ITCZ 
migrations to the AMOC and North Atlantic/Pacific SST decadal variability. J. Clim. 
33:13. doi: 10.1175/JCLI-D-19-0258.1

Mpheshea, L. E., Blamey, R. C., and Reason, C. J. C. (2025). The influence of ENSO-
type on rainfall characteristics over southern Africa during the austral summer. Clim. 
Dyn. 63:161. doi: 10.1007/s00382-024-07489-4

Murphy, A. H. (1993). What is a good forecast? An essay on the nature of goodness in 
weather forecasting. Weather Forecast. 8, 281–293. doi: 10.1175/1520-0434 
(1993)008<0281:WIAGFA>2.0.CO;2

https://doi.org/10.3389/fclim.2025.1504756
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://doi.org/10.1175/JCLI-D-16-0836.1
https://doi.org/10.1175/JCLI-D-23-0317.1
https://doi.org/10.1007/s00704-023-04365-9
https://doi.org/10.1175/BAMS-83-11-1631
https://doi.org/10.1038/s41612-017-0004-6
https://doi.org/10.1007/s00382-020-05195-5
https://doi.org/10.1002/joc.1550
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.5194/hess-23-4323-2019
https://doi.org/10.22499/2.6301.005
https://doi.org/10.1007/978-1-4614-7409-8
https://doi.org/10.1002/joc.2273
https://doi.org/10.1002/joc.2273
https://doi.org/10.1175/WAF-D-11-00078.1
https://doi.org/10.1002/joc.1766
https://doi.org/10.1002/joc.592
https://doi.org/10.4314/wsa.v40i4.6
https://doi.org/10.1007/s00703-021-00797-y
https://doi.org/10.1007/s00704-020-03475-y
https://doi.org/10.5194/esd-9-33-2018
https://doi.org/10.1175/WAF-D-19-0235.1
https://doi.org/10.1175/WAF-D-19-0235.1
https://doi.org/10.1175/JCLI-D-19-1013.1
https://doi.org/10.1016/j.jastp.2021.105624
https://doi.org/10.3402/tellusa.v67.24138
https://doi.org/10.1088/1748-9326/aba033
https://doi.org/10.1038/ncomms10018
https://doi.org/10.1016/j.pce.2022.103184
https://doi.org/10.1002/qj.2396
https://doi.org/10.1002/asl.1015
https://doi.org/10.1175/JCLI-D-13-00175.1
https://doi.org/10.1175/2007JAS2518.1
https://doi.org/10.1002/joc.5917
https://doi.org/10.1007/s00704-023-04674-z
https://doi.org/10.1175/JCLI-D-17-0182.1
https://doi.org/10.1038/s41558-020-00963-x
https://doi.org/10.1175/JCLI-D-20-0947.1
https://doi.org/10.1256/003590002320603584
https://doi.org/10.1175/MWR2908.1
https://doi.org/10.5194/wcd-5-251-2024
https://doi.org/10.1175/BAMS-D-19-0037.1
https://doi.org/10.3390/cli10030030
https://doi.org/10.1175/1520-0442(1995)008<2364:OSTGGA>2.0.CO;2
https://doi.org/10.5194/hess-23-493-2019
https://doi.org/10.7334/psicothema2013.23
https://doi.org/10.1175/JCLI-D-19-0258.1
https://doi.org/10.1007/s00382-024-07489-4
https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2


Ramotubei et al. 10.3389/fclim.2025.1504756

Frontiers in Climate 18 frontiersin.org

Nicholson, S. E. (2009). A revised picture of the structure of the “monsoon” and land 
ITCZ over West Africa. Clim. Dyn. 32, 1155–1171. doi: 10.1007/s00382-008-0514-3

O’Farrell, S. P. (1998). Investigation of the dynamic sea ice component of a coupled 
atmosphere-sea ice general circulation model. J. Geophys. Res. Oceans 103, 15751–15782. 
doi: 10.1029/98JC00815

Ogino, S.-Y., Yamanaka, M. D., Mori, S., and Matsumoto, J. (2016). How much is the 
precipitation amount over the tropical coastal region? J. Clim. 29, 1231–1236. doi: 
10.1175/JCLI-D-15-0484.1

Omrani, H., Drobinski, P., and Dubos, T. (2012). Spectral nudging in regional climate 
modelling: how strongly should we nudge? Q. J. R. Meteorol. Soc. 138, 1808–1813. doi: 
10.1002/qj.1894

Ostermöller, J., Lorenz, P., Fröhlich, K., Kreienkamp, F., and Früh, B. (2021). 
Downscaling and evaluation of seasonal climate data for the European power sector. 
Atmosphere 12:304. doi: 10.3390/atmos12030304

Pendergrass, A. G., Gleckler, P. J., Leung, L. R., and Jakob, C. (2020). Benchmarking 
simulated precipitation in earth system models. Bull. Am. Meteorol. Soc. 101, E814–
E816. doi: 10.1175/BAMS-D-19-0318.1

Philander, S. G. H., Gu, D., Lambert, G., Li, T., Halpern, D., Lau, N.-C., et al. (1996). 
Why the ITCZ is mostly north of the equator.pdf. J. Clim. 9, 2958–2972. doi: 
10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2

Pohl, B., Dieppois, B., Crétat, J., Lawler, D., and Rouault, M. (2018). From synoptic to 
interdecadal variability in southern African rainfall: toward a unified view across time 
scales. J. Clim. 31, 5845–5872. doi: 10.1175/JCLI-D-17-0405.1

Pohl, B., Fauchereau, N., Richard, Y., Rouault, M., and Reason, C. J. C. (2009). 
Interactions between synoptic, intraseasonal and interannual convective variability over 
southern Africa. Clim. Dyn. 33, 1033–1050. doi: 10.1007/s00382-008-0485-4

Quagraine, K. A., Hewitson, B., Jack, C., Pinto, I., and Lennard, C. (2019). A 
methodological approach to assess the co-behavior of climate processes over southern 
Africa. J. Clim. 32, 2483–2495. doi: 10.1175/JCLI-D-18-0689.1

Rampal, N., Hobeichi, S., Gibson, P. B., Baño-Medina, J., Abramowitz, G., Beucler, T., 
et al. (2024). Enhancing regional climate downscaling through advances in machine 
learning. Artif. Intell. Earth Syst. 3:230066. doi: 10.1175/AIES-D-23-0066.1

Randriatsara, H. H.-R. H., Hu, Z., Ayugi, B., Makula, E. K., Vuguziga, F., and 
Nkunzimana, A. (2022). Interannual characteristics of rainfall over Madagascar and its 
relationship with the Indian Ocean Sea surface temperature variation. Theor. Appl. 
Climatol. 148, 349–362. doi: 10.1007/s00704-022-03950-8

Ratnam, J. V., Behera, S. K., Doi, T., Ratna, S. B., and Landman, W. A. (2016). 
Improvements to the WRF seasonal hindcasts over South Africa by bias correcting the 
driving SINTEX-F2v CGCM fields. J. Clim. 29, 2815–2829. doi: 
10.1175/JCLI-D-15-0435.1

Risser, M. D., Rahimi, S., Goldenson, N., Hall, A., Lebo, Z. J., and Feldman, D. R. 
(2024). Is bias correction in dynamical downscaling defensible? Geophys. Res. Lett. 
51:e2023GL105979. doi: 10.1029/2023GL105979

Russotto, R. D., and Ackerman, T. P. (2017). Energy transport, polar amplification, 
and ITCZ shifts in the GeoMIP G1 ensemble. Atmos. Chem. Phys. 18, 2287–2305. doi: 
10.5194/acp-18-2287-2018

Scaife, A. A., Camp, J., Comer, R., Davis, P., Dunstone, N., Gordon, M., et al. (2019). 
Does increased atmospheric resolution improve seasonal climate predictions? Atmos. 
Sci. Lett. 20:e922. doi: 10.1002/asl.922

Schneider, T. (2014). Migrations and dynamics of the intertropical convergence zone. 
Nat. Rev. 513:9. doi: 10.1038/nature13636

Schulzweida, U. (2023). CDO user guide. doi: 10.5281/ZENODO.10020800

Schwendike, J., Govekar, P., Reeder, M. J., Wardle, R., Berry, G. J., and Jakob, C. (2014). 
Local partitioning of the overturning circulation in the tropics and the connection to 
the Hadley and Walker circulations. J. Geophys. Res. Atmos. 119, 1322–1339. doi: 
10.1002/2013JD020742

Scott, A. A. (2013). The intertropical convergence zone over the Middle East and 
North Africa: detection and trends. KAUST Research Repository. doi: 10.25781/
KAUST-34778

Steinkopf, J., and Engelbrecht, F. (2022). Verification of ERA5 and ERA-interim 
precipitation over Africa at intra-annual and interannual timescales. Atmos. Res. 
280:106427. doi: 10.1016/j.atmosres.2022.106427

Steyn, D. G., and Galmarini, S. (2008). Evaluating the predictive and explanatory value 
of atmospheric numerical models: between relativism and objectivism. Open Atmos. Sci. 
J. 2, 38–45. doi: 10.2174/1874282300802010038

Sultan, B., and Janicot, S. (2000). Abrupt shift of the ITCZ over West Africa and intra-
seasonal variability. Geophys. Res. Lett. 27, 3353–3356. doi: 10.1029/1999GL011285

Tamoffo, A. T., Dosio, A., Vondou, D. A., and Sonkoué, D. (2020). Process-based 
analysis of the added value of dynamical downscaling over Central Africa. Geophys. Res. 
Lett. 47:e2020GL089702. doi: 10.1029/2020GL089702

Tapiador, F. J., Navarro, A., Moreno, R., Sánchez, J. L., and García-Ortega, E. (2020). 
Regional climate models: 30 years of dynamical downscaling. Atmos. Res. 235:104785. 
doi: 10.1016/j.atmosres.2019.104785

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single 
diagram. J. Geophys. Res. Atmos. 106, 7183–7192. doi: 10.1029/2000JD900719

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the 
experiment design. Bull. Am. Meteorol. Soc. 93, 485–498. doi: 
10.1175/BAMS-D-11-00094.1

Thatcher, M., McGregor, J., Dix, M., and Katzfey, J. (2015). “A new approach for 
coupled regional climate modeling using more than 10,000 cores,” in Environmental 
software systems. Infrastructures, services and applications. eds. R. Denzer, R. M. 
Argent, G. Schimak and J. Hřebíček (Cham: Springer), 599–607.

Thatcher, M., and McGregor, J. L. (2009). Using a scale-selective filter for dynamical 
downscaling with the conformal cubic atmospheric model. Mon. Weather Rev. 137, 
1742–1752. doi: 10.1175/2008MWR2599.1

Thatcher, M., and McGregor, J. L. (2010). A technique for dynamically downscaling 
daily-averaged GCM datasets using the conformal cubic atmospheric model. Mon. 
Weather Rev. 139, 79–95. doi: 10.1175/2010MWR3351.1

Ullah, A., Pohl, B., Pergaud, J., Dieppois, B., and Rouault, M. (2023). Intraseasonal 
descriptors and extremes in south African rainfall. Part II: summer teleconnections 
across multiple timescales. Int. J. Climatol. 43, 3799–3827. doi: 10.1002/joc.8059

Vigaud, N., Pohl, B., and Crétat, J. (2012). Tropical-temperate interactions over 
southern Africa simulated by a regional climate model. Clim. Dyn. 39, 2895–2916. doi: 
10.1007/s00382-012-1314-3

Vindel, J. M., Valenzuela, R. X., Navarro, A. A., and Polo, J. (2020). Temporal and 
spatial variability analysis of the solar radiation in a region affected by the intertropical 
convergence zone. Meteorol. Appl. 27:e1824. doi: 10.1002/met.1824

Wang, J., Guan, Y., Wu, L., Guan, X., Cai, W., Huang, J., et al. (2021). Changing lengths 
of the four seasons by global warming. Geophys. Res. Lett. 48. doi: 10.1029/2020GL091753

Weber, T., Cabos, W., Sein, D. V., and Jacob, D. (2023). Benefits of simulating 
precipitation characteristics over Africa with a regionally-coupled atmosphere–ocean 
model. Clim. Dyn. 60, 1079–1102. doi: 10.1007/s00382-022-06329-7

Wheatcroft, E. (2019). Interpreting the skill score form of forecast performance 
metrics. Int. J. Forecast. 35, 573–579. doi: 10.1016/j.ijforecast.2018.11.010

WMO (2018). Guidance on Verification of Operational Seasonal Climate Forecasts 
(2018th ed.). Geneva: World Meteorological Organization, 2.

Wolf, F., Voigt, A., and Donner, R. V. (2021). A climate network perspective on the 
intertropical convergence zone. Earth Syst. Dyn. 12, 353–366. doi: 10.5194/
esd-12-353-2021

Xian, P., and Miller, R. L. (2008). Abrupt seasonal migration of the ITCZ into the 
summer hemisphere. J. Atmos. Sci. 65, 1878–1895. doi: 10.1175/2007JAS2367.1

Xu, Z., Han, Y., and Yang, Z. (2019). Dynamical downscaling of regional climate: a 
review of methods and limitations. Sci. China Earth Sci. 62, 365–375. doi: 
10.1007/s11430-018-9261-5

Yhang, Y.-B., Sohn, S.-J., and Jung, I.-W. (2017). Application of dynamical and 
statistical downscaling to east Asian summer precipitation for finely resolved datasets. 
Adv. Meteorol. 2017, 1–9. doi: 10.1155/2017/2956373

Yimer, S. M., Bouanani, A., Kumar, N., Tischbein, B., and Borgemeister, C. (2022). 
Assessment of climate models performance and associated uncertainties in rainfall 
projection from CORDEX over the eastern Nile basin, Ethiopia. Climate 10:95. doi: 
10.3390/cli10070095

Yin, H., Wu, Z., Fowler, H. J., Blenkinsop, S., He, H., and Li, Y. (2022). The combined 
impacts of ENSO and IOD on global seasonal droughts. Atmosphere 13:1673. doi: 
10.3390/atmos13101673

Zhang, H., Ma, X., Zhao, S., and Kong, L. (2021). Advances in research on the ITCZ: 
mean position, model bias, and anthropogenic aerosol influences. J. Meteorol. Res. 35, 
729–742. doi: 10.1007/s13351-021-0203-2

Zhao, S., Fu, R., Anderson, M. L., Chakraborty, S., Jiang, J. H., Su, H., et al. (2023). 
Extended seasonal prediction of spring precipitation over the upper Colorado River 
basin. Clim. Dyn. 60, 1815–1829. doi: 10.1007/s00382-022-06422-x

https://doi.org/10.3389/fclim.2025.1504756
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://doi.org/10.1007/s00382-008-0514-3
https://doi.org/10.1029/98JC00815
https://doi.org/10.1175/JCLI-D-15-0484.1
https://doi.org/10.1002/qj.1894
https://doi.org/10.3390/atmos12030304
https://doi.org/10.1175/BAMS-D-19-0318.1
https://doi.org/10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2
https://doi.org/10.1175/JCLI-D-17-0405.1
https://doi.org/10.1007/s00382-008-0485-4
https://doi.org/10.1175/JCLI-D-18-0689.1
https://doi.org/10.1175/AIES-D-23-0066.1
https://doi.org/10.1007/s00704-022-03950-8
https://doi.org/10.1175/JCLI-D-15-0435.1
https://doi.org/10.1029/2023GL105979
https://doi.org/10.5194/acp-18-2287-2018
https://doi.org/10.1002/asl.922
https://doi.org/10.1038/nature13636
https://doi.org/10.5281/ZENODO.10020800
https://doi.org/10.1002/2013JD020742
https://doi.org/10.25781/KAUST-34778
https://doi.org/10.25781/KAUST-34778
https://doi.org/10.1016/j.atmosres.2022.106427
https://doi.org/10.2174/1874282300802010038
https://doi.org/10.1029/1999GL011285
https://doi.org/10.1029/2020GL089702
https://doi.org/10.1016/j.atmosres.2019.104785
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/2008MWR2599.1
https://doi.org/10.1175/2010MWR3351.1
https://doi.org/10.1002/joc.8059
https://doi.org/10.1007/s00382-012-1314-3
https://doi.org/10.1002/met.1824
https://doi.org/10.1029/2020GL091753
https://doi.org/10.1007/s00382-022-06329-7
https://doi.org/10.1016/j.ijforecast.2018.11.010
https://doi.org/10.5194/esd-12-353-2021
https://doi.org/10.5194/esd-12-353-2021
https://doi.org/10.1175/2007JAS2367.1
https://doi.org/10.1007/s11430-018-9261-5
https://doi.org/10.1155/2017/2956373
https://doi.org/10.3390/cli10070095
https://doi.org/10.3390/atmos13101673
https://doi.org/10.1007/s13351-021-0203-2
https://doi.org/10.1007/s00382-022-06422-x

	Simulation of the African ITCZ during austral summer seasons and ENSO phases: application of an RCM derived from stretched grid ESM
	1 Introduction
	2 Data and methodology
	2.1 Model description and set-up
	2.2 Gridded observation and reanalysis datasets
	2.3 Model skill and reliability assessment
	2.4 Selection of ENSO years

	3 Results and discussion
	3.1 Climatology performance
	3.2 El-Niño and La-Niña performance
	3.3 HC, STJ, and stream function performance

	4 Conclusion

	References

