
Frontiers in Climate 01 frontiersin.org

Reactive transport simulation of 
organic and inorganic carbon 
cycling following carbon dioxide 
sorption onto soil amendments in 
drylands
Stefanie Helmrich 1*, Alexandra J. Ringsby 2 and Kate Maher 1

1 Department of Earth System Science, Stanford University, Stanford, CA, United States, 2 Department 
of Chemical Engineering, Stanford University, Stanford, CA, United States

Terrestrial nature-based climate solutions (NbCS) for carbon dioxide removal (CDR) 
are critical for mitigating climate change. However, the arid climates characteristic 
of drylands (aridity index <0.65) often limit the effectiveness of many NbCS. At 
the same time, drylands cover approximately 45% of the global land area and are 
threatened by soil degradation, necessitating the deployment of CDR methods for 
drylands that also promote soil health. Soil amendments with high CO2 sorption 
capacity, such as biochar, could provide CDR potential and soil health benefits 
in drylands provided they do not negatively impact the large inorganic carbon 
pools typical of dryland soils. The dynamics of soil CO2 are therefore critical for 
assessing the response of dryland systems to sorbing amendments. To assess 
the soil response to CO2 sorption, we developed a 1D reactive transport model 
of unsaturated soils in equilibrium with dissolved inorganic carbon and calcite 
under varying soil respiration rates and soil amendment application conditions. The 
simulations highlight how alteration of soil CO2 due to sorption by biochar affects 
dissolved inorganic carbon, pH, Ca2+, and calcite. The transient conditions that 
emerge, including delayed emissions of respired CO2, also emphasize the need to 
consider response times in monitoring campaigns based on CO2 measurements. In 
scenarios where soil respiration is low, as is typical in drylands, sorption becomes 
increasingly important. Although the CDR potential of CO2 sorption is variable and 
was modest relative to the overall CDR for a biochar deployment, the impacts 
of altered gas dynamics on soil inorganic carbon are important to consider as 
dryland soil amendments are developed.
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1 Introduction

Nature-based climate solutions (NbCS) are considered essential to limit global warming 
as they represent one of the most mature carbon dioxide removal (CDR) methods, 
complementing the need for reductions in fossil fuel emissions (Griscom et al., 2017). NbCS 
rely on sustainable management of ecosystems to remove greenhouse gasses from the 
atmosphere while ideally addressing societal challenges associated with climate change 
(Chausson et  al., 2020; Seddon et  al., 2020). Early estimates suggest that sustainable 
management of forests, agricultural lands, grasslands, and wetlands could deliver over one 
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third of the cost-effective climate mitigation needed to limit global 
warming to below 2°C above pre-industrial levels until 2030 (Griscom 
et al., 2017).

Drylands (aridity index <0.65) (Cherlet et  al., 2018) should 
be important targets for NbCS because they occupy over 45% of the 
global land area (Dregne et al., 1991; Prăvălie, 2016; Berg and McColl, 
2021) and play an important role in controlling atmospheric CO2. Soil 
inorganic carbon (SIC) accumulates in drylands. The SIC is present as 
pedogenic carbonate and forms at depth from Ca2+ derived from a 
mixture of dust inputs and in situ weathering and CO2 in percolating 
water (Chadwick et al., 1999). If Ca2+ is supplied by weathering of 
calcium silicates, this process constitutes a carbon sink (Monger et al., 
2015; Lal et  al., 2021). The SIC stock in the upper 1 m of soil is 
estimated to be around 940 Pg C, which mostly occurs in drylands and 
is larger than the C pool in the biosphere (Lal, 2020; Lal et al., 2021). 
This SIC has turnover rates of several thousand years (Monger and 
Gallegos, 2000). However, climate change could increase carbon 
sequestration via SIC or lead to SIC being a source of carbon (Lal 
et al., 2000; Naorem et al., 2022). Drylands are specifically vulnerable 
to changes in environmental conditions (Lal et al., 2021) and it has 
been estimated that over 57–70% of dryland soil is degraded or prone 
to degradation (Dregne et al., 1991; Lal, 2004; Reynolds et al., 2007). 
Another study estimated that grazing, especially in arid and semi-arid 
regions might account for half of global SOC loss over the last 
12,000 years (Sanderman et al., 2017), which would also affect SIC 
storage. However, soil degradation is still difficult to quantify 
(Verstraete et al., 2011; Prince, 2016; Wang et al., 2022).

Many NbCS have limited applicability in drylands due to water 
requirements. NbCS that are currently considered as highly promising 
for CDR are enhanced weathering (EW), reforestation, and biochar. 
EW requires leaching of alkalinity, which is inefficient in drylands 
(Calabrese et al., 2022; Zhang S. et al., 2022; Lehmann et al., 2023). 
Similarly, net primary productivity is limited by water availability 
(Ferguson and Veizer, 2007) therefore placing limits on restoration of 
organic carbon (C) stocks and discouraging biochar application that 
seeks to enhance primary productivity. Estimates of CDR for the 
aforementioned NbCS often consider only agricultural and forest 
lands (Roe et al., 2021). However, agricultural and forest lands only 
constitute roughly 9 and 23% of the global land area, respectively, and 
thus the development of effective drylands CDR strategies presents an 
important avenue for increasing global CDR capacity.

Another challenge for CDR in drylands is that drylands are 
understudied (Verstraete et  al., 2011) and predictions from other 
climatic conditions might not be  applicable. Eddy-covariance 
measurement, which works well to determine C uptake in forests, has 
been insufficient to identify drylands as source or sink of atmospheric 
CO2 (Schlesinger, 2017). This has been attributed partly to pressure 
pumping and carbonate dissolution in combination with transport to 
groundwater, although these abiotic processes are thought to 
be insufficient to explain discrepancies between analytical methods 
(Schlesinger, 2017). Diurnal soil CO2 flux behavior can be explained 
by diurnal changes in moisture and temperature that drive gas 
dissolution in soil water, however these changes do not constrain long-
term changes in carbon cycling (Sagi et al., 2021). Overall monitoring 
only soil CO2 efflux does not give a complete picture of C cycling in 
dryland soils.

For water-scarce drylands, soil amendments with high CO2 
sorption capacity could provide CDR potential and soil health 

benefits. Carbon-based materials such as biochar, as well as inorganic 
materials such as zeolite, are suitable because of their low cost, 
abundance, benign nature and recalcitrance (Halliday and Hatton, 
2021; Garbowski et  al., 2023). Biochar is highly porous with 
variability in pore volume, pore structure, specific surface area and 
functional groups related to feedstock type and production conditions 
(Francis et al., 2023). It also constitutes an important CDR strategy 
(Lehmann et al., 2021). Minerals such as zeolites are porous materials 
with high sorption capacity, and they are tunable and can 
be  functionalized (Halliday and Hatton, 2021). Both materials 
improve soil health under a range of conditions (Mondal et al., 2021; 
Nepal et al., 2023).

Predicting the soil response to biochar is highly uncertain but 
abiotic processes involving SIC could significantly contribute to the 
variability of soil CO2 fluxes after biochar amendment (Liu et al., 2016; 
Mosa et al., 2023). There are unfortunately relatively few field trials of 
biochar that completely constrain the carbon dynamics. A field study 
conducted in temperate and summer monsoon climate found a 
decrease in SIC, an increase in SOC, and depletion of water-soluble 
Ca2+ and Mg2+ in response to biochar additions (Lu et al., 2021), with 
an accompanying study pointing toward leaching of cations (Zhang 
et al., 2020). A biochar field study that was conducted over a range of 
climatic conditions found an increase in SIC with decreasing 
precipitation, while soil type and hydrological processes were also 
correlated to accumulation of SIC (Zhang et  al., 2020). Studies 
conducted under arid or semi-arid conditions generally found an 
increase in SIC and reasoned that there is precipitation of calcite at 
deeper depths (Wang et al., 2015; Dong et al., 2019). However, studies 
investigating how SIC reacts to biochar addition, especially in 
drylands, are still scarce.

In this paper we investigate CO2 sorption on biochar applied as a 
soil amendment and explore how manipulation of soil CO2 affects C 
cycling in dryland soils. We  will briefly review sorption data and 
present a reactive transport model (RTM) to elucidate the coupling 
between geochemical reactions and gas transport. The RTM simulates 
gas diffusion, dissolved inorganic carbon (DIC) and weathering of 
calcite under different application conditions and soil respiration 
rates. Although the sorption of CO2 is relatively low (around 2%) 
compared to the total C in the simulated biochar, the simulated 
interactions between organic and inorganic C cycling can inform 
application and monitoring of a range of CDR methods that affect soil 
C dynamics. We will discuss the limitations for application and the 
benefits for soil health.

2 Methods

2.1 Sorption isotherm models

The model parameters for CO2 sorption on soil amendments were 
based on sorption isotherms fitted to dry sorption data collected 
under soil-relevant gas conditions without the presence of soil 
(Ringsby et al., 2024) (Figure 1 and Supplementary Table S1). Dry 
sorption experiments with sorbent were chosen because the presence 
of water and soil hinders comparability between studies and makes 
generalization difficult. However, it should be  noted that water 
(Davidson et  al., 2013) and soil (Kwon and Pignatello, 2005) can 
reduce the specific sorption capacity.
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The sorbents were either not pre-treated before the sorption 
experiment (“as received”) or they were outgassed at 150°C before the 
sorption experiment (“outgassed”). This is an important distinction 
because pre-treatment has been identified as a major source of 
uncertainty (Figini-Albisetti et  al., 2010). No outgassing or an 
outgassing temperature that is too low will likely underestimate 
sorption capacity while elevated temperatures applied to temperature-
sensitive materials might irreversibly alter the sorbent behavior 
(Figini-Albisetti et al., 2010). However, the authors also noted that the 
outgassing temperature must be  consistent with final application. 
During the large-scale application process of sorbents as soil 
amendment, elevated temperatures are not expected. Therefore, 
sorption isotherms “as received,” were assumed to be best in line with 
the intended application. The sorbent with the highest “as received” 
sorption capacity was Biochar 3 and was chosen for simulations, while 
the outgassed isotherm for Biochar 3 indicates the upper bounds likely 
for biochar sorbents (Ringsby et al., 2024).

A sorption isotherm model that is often used to describe 
experimental observations such as those above is the Langmuir model 
(Equations 1–3). The single site Langmuir model makes following 
assumptions: (1) there is a limited sorption capacity, (2) all sorption 
sites are equal, (3) one site sorbs one molecule of sorbent, and (4) all 
sites are energetically independent of the number of sorbed molecules 
(Limousin et al., 2007). The assumed reaction is:

 ( ) 2COmq q p q− + ↔  (1)

Where q  is the surface complex, mq  is the maximum sorption 
capacity, mq q−  indicates free sites, and pCO2 is partial pressure of 
CO2. The conditional stability constant can be written as:

 

[ ]
[ ][ ]2m

q
K

q q pCO
=

−  
(2)

Where K  is the Langmuir constant. The equation can 
be rearranged to the typical Langmuir isotherm:

 
2
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=

+  
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In many cases an improved description of experimental data can 
be achieved with a multisite Langmuir model (Equation 4):
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(4)

Where iK  and ,m iq  are Langmuir constant pairs p for multiple 
sorption sites.

For inclusion in the reactive transport model, a multisite 
competitive Langmuir sorption model was adapted (Limousin et al., 
2007). A reaction for a strong and a weak sorption site was 
implemented (Equations 5, 6):

 ( )0 0
strong 2 strong 2S CO g S CO> + ↔ >  (5)

 ( )0 0
weak 2 weak 2S CO g S CO> + ↔ >  (6)

Where >Sstrong
0 refers to a strong sorption site and > Sweak

0 refers to 
a weak sorption site. The Langmuir constants 1K  and 2K  were 
implemented as the equilibrium constants for the two reactions. The 
maximum adsorption capacities ,1mq  and ,2mq  can be directly entered 
in the RTM. Physical properties necessary to simulate the sorbent 
mass were from the same published study (Supplementary Table S2). 
The Biochar 3 sample was obtained from Atlas Olive Oils, which 
produces biochar from olive tree byproducts, including pulp, pits, and 
branches. The chemical properties that were provided by the supplier 
are listed in Supplementary Table S3.

2.2 Reactive transport model

Simulations were conducted with the multi-component reactive 
transport code, CrunchFlow (Steefel et al., 2015). CrunchFlow allows 
simulation of variably saturated conditions at steady state, including gas 
diffusion as well as sorption of gas species. Gas diffusion was simulated 
via Fick’s law assuming a tortuosity correction via Millington (1958). A 
surface complexation model (SCM) capability in CrunchFlow simulates 
sorption. The SCM provides flexibility to simulate sorption mechanisms 
or empirical sorption reactions, e.g., via the Langmuir sorption model. 
Equilibrium between the gas and aqueous phase is governed by Henry’s 
law, and gas concentrations are simulated via the ideal gas law.

2.2.1 Model domain and gas transport
To simulate gas transport and C cycling in dry soil, 

we implemented a 1D model with 200 vertical cells representing a 
2-meter soil profile. We assumed that there was no water flow, and that 
gas was transported only via diffusion with a free phase gas diffusion 
coefficient of 0.16 cm2/s1 (Currie, 1960; Rolston and Moldrup, 2002). 
A Dirichlet boundary condition was specified at the top to ensure gas 
diffusion between air, fixed at atmospheric CO2 levels, and soil. A 
no-flow or Neumann boundary condition was set at the bottom to 

FIGURE 1

Langmuir CO2 sorption isotherms from published data (Ringsby et al., 
2024). Isotherms were fitted to data from dry sorption experiments 
under soil relevant conditions. Langmuir constants can be found in 
SI.
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simulate bedrock. Water saturation Sw was fixed to 0.4 over the whole 
column to simulate the presence of soil water. The value of Sw = 0.4 was 
chosen to simulate relatively dry conditions but above residual water 
saturation conditions (Jia et al., 2021). In the model, an increase of Sw 
caused an increase in pCO2 due to lower air-filled porosity at a given 
CO2 production rate. Pre-simulations showed that the same effect was 
achieved by varying CO2 production. Therefore, only CO2 production 
was varied to simplify interpretation of simulation outcomes.

2.2.2 Reaction network
The simulated reaction network with respect to C is shown in 

Figure 2. In total, eight primary and 14 secondary aqueous species 
were simulated including several major cations and anions that are not 
shown in Figure  2. Calcite was set to be  in equilibrium with the 
aqueous phase due to its role as a pH buffer (Gaillardet et al., 1999; 
Wen et al., 2022; Pfeiffer et al., 2023). To simulate soil respiration a 
zero-order rate law assuming no inhibition or catalysis was chosen 
(Equation 7):

 s sR A k= ⋅  (7)

Where As is the solid component surface area and ks is the intrinsic 
rate constant. The model parameters were set such that the solid 
component did not decrease over the simulation time, resulting in a 
constant production of CO2 over time, which simulates CO2 emissions 
from the soil to the atmosphere. To reproduce observed pCO2 depth 
profiles, the CO2 production rate was simulated to be faster in the 
top 25 cm compared to the remainder of the profile. This idealized 
representation was designed to facilitate examination of the resulting 
dynamics in the inorganic carbon pools.

Model parameterization of aqueous, and solid phases was based 
on literature values (Jia et  al., 2021; Wen et  al., 2022) 
(Supplementary Tables S4, S5). The calcite mineral volume fraction 
was set to 3 % over the entire model based on estimates for dry 
climates (Pfeiffer et al., 2023). For simplicity a constant distribution of 
calcite over depth was considered sufficient because sorbent was only 
applied in the top centimeters and rain events were not simulated. A 
more accurate distribution of calcite over depth would be necessary 
for different conditions. Thermodynamic constants are from the EQ3/
EQ6 database (Wolery, 1992).

2.2.3 Model approach and simulation scenarios
Prior to adding the sorbent, simulations were run to steady state 

to both create a baseline and exclude transient features that confuse 
the analysis. Depending on the initial scenario, steady- state profiles 
were obtained after 60–100 days. To allow all scenarios to reach steady 
state, the spin-up period was set to 400 days, at which point sorbent 
was added, and the model was run until it reached steady state again. 
Simulation scenarios explored variations in (1) background CO2 
production rates, (2) application rates, (3) application density, (4) 
application depth, and (5) increased CO2 production after application 
(Supplementary Table S6).

Three simulation scenarios with low, medium, or high CO2 
production over time were developed (Supplementary Figure S2) to 
simulate a range of observed pCO2 profiles (Cerling, 1984; Amundson 
et al., 1998; Davidson et al., 2006; Wang et al., 2013; Chirinda et al., 
2014; Winnick et  al., 2020). Low CO2 production resulted in low 
simulated pCO2 and might represent soil respiration rates in drylands, 
although it should be noted that uncertainty of CO2 production rates 
is high in drylands due to data scarcity (Oertel et al., 2016; Warner 

FIGURE 2

The simulated model domain (left) and the reaction network, including diffusive transport (right), are shown. When CO2(g) dissolves in water, it 
becomes aqueous: CO2(g) ↔  CO2(aq). The convention ( )H CO CO aq H CO*2 3 2 2 3= +  has been adopted.
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et al., 2019). Medium and high CO2 production rates are more typical 
for temperate forests and croplands (Warner et al., 2019). The medium 
and high rates were included because those ecosystems also occur in 
drylands and because soil amendments such as biochar can increase 
soil respiration rates (El-Naggar et al., 2019).

Application rates were varied between 2 and 20 t/acre (Lehmann 
and Rondon, 2006; Thengane et al., 2021). The application density, 
which accounts for the importance of mixing and downward physical 
transport of biochar (Spokas et al., 2014) was varied by changing the 
application depth while holding the application rate constant.

A simulated increase in CO2 production after soil amendment 
application in addition to sorption (Supplementary Figure S1) was 
intended to replicate increased soil respiration (positive priming) that 
sometimes occurs after amendment of biochar, specifically in soil with 
initially low fertility (El-Naggar et al., 2019). Although CO2 sorption does 
not directly affect soil respiration rates, most soil amendments will 
fundamentally alter a range of soil properties and can change soil 
respiration rates. For biochar, positive and negative priming have been 
observed in field experiments (Mosa et al., 2023). Mechanisms previously 
implicated in changes of CO2 emissions after biochar application are 
transport effects introduced by altered pore structure (Fan et al., 2020), 
increased water retention, increased SOC stock, promotion of CO2-fixing 
bacteria, and CO2 sorption (El-Naggar et al., 2019; Mosa et al., 2023). 
Mineral soil amendments also affect soil water retention, porosity, pH, 
and nutrient availability (Jarosz et al., 2022; Sha et al., 2022) and could 
thereby alter bacterial communities (Jarosz et al., 2022; Zeng et al., 2022) 
and increase microbial activity (Doni et al., 2021).

To describe the relative mobility of a chemical species, a retardation 
factor, Rf, is often used (Freeze and Cherry, 1979). Various methods for 
calculation have been developed and critically reviewed (Priddle and 
Jackson, 1991). The relationship between Rf and porosity, bulk density, 
and sorption coefficients is deduced from mass balance and verified 
with empirical data. However, transport and scale effects can lead to 
variations between theoretical and field measurements (Priddle and 
Jackson, 1991). Methods based on breakthrough curves and times have 
been shown to give better results for gas–solid systems and are often 
applied to laboratory and field data (Priddle and Jackson, 1991; Dou 
et al., 2016). Here, a simulation that mimics column experiments with 
a constant tracer gas injection is used to simulate the effects of sorption 
on migration of CO2 after sorbent deposition. A simulation scenario 
where only sorbent was present as solid phase was compared to a 
scenario where only unreactive quartz was present as solid phase. To 
ensure comparable diffusion, the porosity was set to 0.7 for both 
simulations based on biochar porosity (Gray et al., 2014). In both cases 
CO2 production within the column was set to zero. However, pCO2 was 
set to 30,000 ppm at the lower boundary. This ensures CO2 diffuses 
through the column. When sorbent is present there will be a delay in 
transport. In this set up the retardation factor Rf is related to the ratio 
of breakthrough time of the sorbed CO2 and the CO2 in the unreactive 
quartz column (Dou et al., 2016) (Equation 8):

 
s

f
u

tR
t

=
 

(8)

Where t is the time that it takes to reach half of the initial 
concentration in the column filled with sorbent (subscript s) and 
unreactive quartz (subscript u) respectively. The retardation factors 

were calculated from simulated concentrations at a depth of 0.75 cm. 
Breakthrough curves were constructed for pCO2 at 0.5 depth.

A one-time reduction of CO2 soil emissions was calculated as 
difference between simulated soil efflux without sorbent (i.e., the 
baseline or counterfactual) and with sorbent over the relaxation time 
(Equation 9):

 

( ) ( )

( )
_ _

_

% 100

t t
c st i t i
t

ct i

J t dt J t dt
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J t dt

−
= ⋅
∫ ∫

∫  

(9)

Where J is the diffusive flux between soil and air, the subscript c 
indicates the counterfactual scenario, and the subscript s refers to 
scenarios with sorbent. Because flux J equals CO2 production P under 
steady state conditions in the baseline scenario, Equation (9) can be 
rewritten as (Equation 10):

 

( )_ _

_

% 100

t t
s st i t i

t
st i

P dt J t dt
removed

P dt

−
= ⋅
∫ ∫

∫  

(10)

2.2.4 Model output analysis
For model verification and assessment, a time- and depth-

integrated mass balance was developed (Equation 11):

 

( )

2

_ _ _ _ _

_

+ + = −

−

∫ ∫ ∫ ∫ ∫

∫

t t t t t

t i t i t i t i t i
t

t i

dCO dDIC dCalcite dUdt dt dt P dt
dt dt dt dt

J t dt

 

(11)

Where t represents time, carbon storage in the soil is calculated as 
the inventory of CO2(g), DIC, and calcite, while U denotes CO2 
sorption. A detailed description of the mass balance can be found in 
supplemental information. The time elapsed between sorbent addition 
and the return of the system to steady state is the relaxation time.

3 Results

3.1 Baseline conditions under varying CO2 
production rates

Under baseline conditions with no sorbent present, simulated 
pCO2 increased with depth and was higher in scenarios with higher 
CO2 production (Figure  3A). The model adequately reproduced 
observed CO2 trends for low, medium, and high CO2 production 
where concentrations often rapidly increase to concentrations between 
5,000 and 30,000 ppm over the first 50 cm (Cerling, 1984; Amundson 
et al., 1998; Davidson et al., 2006; Wang et al., 2013; Chirinda et al., 
2014; Winnick et al., 2020). CO2 gradients over depth (dCO2/dz) were 
positive, meaning an efflux from the soil was simulated (Figure 3B). 
Simulated DIC increased, pH decreased and Ca2+ increased with 
depth and pCO2 (Figures 3C–E). Depletion of the calcite mineral 
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volume fraction was higher with higher pCO2 (Figure 3F). As noted 
in the methods section, the calcite distribution over depth was 
simplified for model interpretation and will typically vary as a function 
of depth depending on climate (Pfeiffer et al., 2023).

3.2 Soil CO2 response to sorbent addition

Sorption of CO2 affected soil pCO2 and soil CO2 efflux (Figure 4). 
The simulated sorption capacity (sorbed CO2/g sorbent) aligned with 
observed data that had been used to derive sorption isotherms 
(Figure 4A). Sorption increases with pCO2, which in the simulations 
increased with depth and CO2 production. The scenario with the 
highest CO2 production reached almost 0.015 bar within the 
application depth of 25 cm, under which the sorption capacity was 
almost three times higher than at atmospheric pCO2. Over the 
simulation time, the addition of the sorbent to the soil is visible in a 
decline of pCO2 (Figure 4B). At a depth of 20.5 cm, the simulated pCO2 
was initially around 2,000 ppm for a scenario with low CO2 production. 
At day 400 of the simulation, sorbent was added and pCO2 decreased 

to almost 0 ppm. After several days the pCO2 rose again and then 
slowly returned to steady state after around 50 days. The return to 
steady state was faster with higher CO2 production. Sorption behavior 
was transient over depth because gas diffusion and production are not 
instantaneous (Figure 4C). Immediately after application, sorbed CO2 
over depth followed a u-shape with high sorption at the atmosphere-
soil and the shallow-deep soil interface. The shape indicates that gas 
from the deeper soil and the atmosphere was diffusing in (Figure 4D). 
The sorption temporarily reduced CO2 efflux and even caused CO2 
influx from the atmosphere (Figure 4B). The effect on efflux lasted 
longer when CO2 production was lower.

Total maximum sorption was higher with higher CO2 
production and higher total sorbent mass (Figure 5). Total sorption 
can be related to mean steady state pCO2 over application depth 
(Supplementary Figure S3). A temporary reduction in efflux was 
related to CO2 production and sorbent mass, as was expected 
(Figure 5B).

Transport occurred in simulations only via diffusion, which is 
slow compared to advection and results in a notably delayed 
breakthrough and broadened breakthrough curve (Figure  6) 

FIGURE 3

Shown are baseline conditions under constantly low, medium, and high CO2 production. Simulated depth profiles of (A) pCO2, (B) concentration 
gradient [dCO2(g)/dz], (C) DIC, (D) pH, (E) Ca2+, and (F) the calcite mineral volume fraction are presented.
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compared with sorption studies that pump gas into columns (Kaur 
et al., 2019; Pal et al., 2019; Al Mesfer et al., 2020).

3.3 Response of soil geochemical 
parameters

Depth profiles show that changes in pCO2 through sorption 
affected all simulated parameters (Figure 7). Changes are particularly 

visible immediately after application and where sorbent had been 
applied (in the top 25 cm). Immediately after sorbent application, the 
pCO2 reached almost zero over the application depth. The CO2 
gradients changed from positive to negative at the atmosphere-soil 
interface, indicating that there was CO2 influx to the soil instead of 
efflux. The CO2 gradients strongly increased where sorbent amended 
soil meets the unamended soil. Over the application depth, simulated 
DIC was reduced by over 90%, and pH increased from 7.5 to 8. The 
pH was increased because sorption of CO2 that is in equilibrium with 

FIGURE 4

Sorbed CO2, pCO2 and CO2 efflux after sorbent addition. (A) Sorbed CO2 (mol/g sorbent) as a function of pCO2 simulated under high CO2 production 
(red line) and observed values that were used to fit the Langmuir isotherm (Ringsby et al., 2024) (grey dots). Sorbent was present in model over the 
top 25 cm. (B) Simulated pCO2 over time at a depth of 0.205 m for one scenario with low CO2 production with sorbent addition at day 400. Simulated 
pCO2 was at a steady state before sorbent addition and returned to steady state after roughly 50 days. (C) Transient depth profiles of sorbed CO2 over 
the top 0.5 m under low CO2 production. Shown are initial baseline conditions without sorbent (red), conditions at 0.1, 1, and 7 days after sorbent 
application, and final sorption (green) upon which all other simulated parameters return to baseline conditions. The grey area indicates the application 
depth. (D) CO2 efflux at soil surface with low, medium, and high CO2 production. A drop below zero indicates influx to the soil.

FIGURE 5

(A) Total sorbed CO2 and (B) temporary reduction in CO2 efflux, both as a function of total added sorbent mass and depending on CO2 production.
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the aqueous phase removes bicarbonate ions and protons from 
solution via:

 ( )2 2 3CO aq H O HCO H++ ↔ +-
 (12)

The simulated Ca2+ was around 50% lower and the calcite 
mineral volume fraction was slightly increased due to precipitation. 
The precipitation was temporary, and calcite redissolved. The 
transient change in calcite mineral volume fraction was larger with 
higher total sorption. Transient conditions lasted longer when CO2 
production was lower. Transient conditions lasted for 30–50 days 
when only sorption and no increased CO2 production 
was simulated.

Assuming an increased CO2 production after amendment 
application resulted in deviation of soil geochemical parameters after 
20 days (Figure 7): higher pCO2, higher dCO2/dz, higher DIC, lower 
pH, higher Ca2+, and lower calcite volume fraction. This indicates that 
changes in CO2 production  – an empirical representation of soil 
respiration  – have the potential to persistently change 
soil geochemistry.

A high retardation factor of 37.5fR =  was calculated in a 
simplified simulation scenario with either sorbent or unreactive 
quartz. The delay in diffusion due to sorption is clearly visible in pCO2 
heatmaps (Figure  7). In the column with quartz, pCO2 increases 
rapidly in <1 day and is then at steady state. With sorbent, there is a 
slow increase over 30 days, after which steady state is reached.

4 Discussion

In the following we will discuss how manipulation of soil CO2 
affects inorganic C cycling in unsaturated soils and the importance of 
transient conditions. We  present implications for application and 
monitoring of CDR that affects the soil response. Although 
simulations were focused on C cycling, there are additional benefits 
and limitations for soil amendment application in drylands, which 
we will also discuss.

4.1 Inorganic carbon cycling in dry soils

Figure 8 shows how carbonate alkalinity and Ca2+ concentrations 
are related to carbonate dissolution via acids in addition to other 
processes, e.g., degassing and sorption. The 1:1 line in Figure  8 
indicates carbonate dissolution through carbonic acids (Semhi et al., 
2000; Perrin et al., 2008):

 
2

3 2 2 3CaCO CO H O 2HCO Ca ++ + ↔ +-  (13)

And a possible reaction for the 2:1 line is (Zamanian 
et al., 2018):

 
2

3 3 2 2 3 3 2CaCO NH H O 2O HCO Ca NO 2H O++ + + → + + +- -

 (14)

Equation 14 describes calcite dissolution after N fertilizer 
application. Acidification leads to increased calcite dissolution rates 
and cations are balanced by nitrate anions, as opposed to only 
bicarbonate (Zamanian et al., 2018). This reaction has been identified 
as a CO2 source in agricultural areas that are either limed or where 
carbonates naturally occur (Semhi et al., 2000; Perrin et al., 2008; 
Zamanian et  al., 2018). Transient conditions above the 2:1 line 
occurred in the simulations due only to sorption and degassing—
contributing to lower bicarbonate concentrations but no cations. 
Some calcite precipitation occurred simultaneously resulting in a 
slight drop in cation concentrations.

Transient conditions in drylands are often driven by wetting 
events, which cause a complex biogeochemical soil response (Jarvis 
et al., 2007) including increased soil respiration, desorption (Sánchez-
García et al., 2020), and dissolution and reprecipitation of carbonate 
minerals (Angert et al., 2015; Gallagher and Breecker, 2020). A short-
term increase in CO2 efflux is known as “Birch effect” and is mostly 
attributed to increased soil respiration although immediate release of 
CO2 has been associated with desorption (Kemper et  al., 1985; 
Sánchez-García et al., 2020) which strongly depends on OM content 
in soils (De Jonge and Mittelmeijer-Hazeleger, 1996). Carbonate 
dissolution increases with elevated pCO2, which dampens the soil CO2 
efflux after wetting events and has been associated with 
underestimation of soil respiration rates when carbonates are present 
(Angert et  al., 2015; Gallagher and Breecker, 2020). A second 
important source of transient conditions in drylands are daily, 
seasonal, and annual temperature changes. Increased temperature 
generally leads to increased soil respiration and desorption although 
concomitant changes in moisture can either amplify or reduce this 
response (Tang et al., 2003; Shen et al., 2009; Darrouzet-Nardi et al., 
2015; Sagi et al., 2021).

Transient conditions lasted for varying time scales in the 
simulations, which has implications for monitoring (Figure  9). 
Increased calcite precipitation lasted only a few hours while the soil 
CO2 efflux was affected over more than 10 days. Comparison to field 
observations shows similar variations in time scales. The Birch effect, 
which occurs on dryland soils, is most pronounced for a few hours or 
days after a wetting event (Jarvis et  al., 2007; Unger et  al., 2010). 
Seasonal variations in wet-dry cycles will lead to prolonged variation 
in carbonate dissolution and precipitation (Breecker et  al., 2009; 
Gallagher and Breecker, 2020; Domínguez-villar et al., 2022).

FIGURE 6

Simulated breakthrough curves for pCO2 at 0.5 m depth when a 1 m 
column consists of either unreactive quartz or sorbent. Gas transport 
occurs only through diffusion resulting in a delay to reach steady 
state conditions without sorption.
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Transient conditions are also important to for managing carbon 
cycling in drylands. In 5 h laboratory experiments, the peak after 
wetting composed almost 80% of the total CO2 efflux (Sánchez-García 
et al., 2020). Transient conditions due to drying and rewetting—even 
when short-lived—were found to result in higher soil CO2 emissions 
than constantly moist soils and gain relevance because of the spatial 
extent of drylands (Jarvis et al., 2007; Shen et al., 2009).

Shown as comparison to the simulated soil CO2 efflux is the 
range of carbonate alkalinity fluxes in rivers in carbonate-dominated 
catchments (Zhang S. et al., 2022) (Figure 9). Carbonate alkalinity 

export to rivers derived from calcite correlates with hydrological 
conditions and carbonate precipitation under dry conditions leads 
to increased CO2 soil efflux (Wen et  al., 2022). Therein lies a 
potential benefit of increased gas sorption within carbonate 
containing soils. Sorption is reversible and desorption of CO2 that 
occurs when water is present could aid export of carbonate alkalinity 
to rivers. How much of the desorbed CO2 escapes to the atmosphere 
or is trapped in pore space depends on a myriad of environmental 
factors, such as water amount and soil properties (Sánchez-García 
et al., 2020).

FIGURE 7

Simulated changes in soil geochemical parameters due to sorption on soil amendment and increased CO2 production. (A) Simulated pCO2 at depth 
20.5 cm and over simulation time. Heatmaps over depth and simulation time for (B) sorbed CO2, (C) pCO2, (D) dpCO2/dz., (E) DIC, (F) pH, (G) Ca2+, and 
(H) calcite volume fraction. Application rate of 9.86 t/acre and 25 cm application depth.
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4.2 Implications for application of soil 
amendments and monitoring of CDR

The simulated dynamics indicate both potential co-benefits and 
disadvantages for co-application of various soil amendments. 
Application of soil amendments that cause positive priming might 
be suitable to be combined with EW, because the increased production 
of CO2 could drive mineral dissolution. However, soil amendments 
that induce negative priming associated with reduced CO2 production 
could hinder EW. Biochar can cause positive or negative priming, but 
the underlying drivers are still poorly understood (El-Naggar et al., 
2019). Thus, sites-specific evaluation of the response to biochar may 
be required.

The simulations have further implications for monitoring 
established or promising soil CDR methods. CDR via biochar 

currently only considers C that is contained in biochar, but biochar 
also affects native soil C. This is why recommendations for monitoring 
would be relevant for biochar if native soil C is regulated in the future. 
This is especially important because fragile drylands soils are more 
vulnerable to climate change (Lal, 2019). Key drivers for carbon 
cycling, such as temperature and precipitation, are currently changing 
at a regional scale, while the local response of SOC and SIC pools in 
drylands is uncertain (Shen et al., 2009; Wang et al., 2022). Depending 
on specific climatic and soil conditions in drylands, monitoring 
campaigns need to adequately capture transient conditions over 
different time scales. If degassing, (de)sorption, and soil gas 
displacement are expected to play a major role and should 
be investigated (Sánchez-García et al., 2020), monitoring needs to 
capture transient conditions that might last only a few hours or days. 
On the other hand, climates dominated by seasonal variations need to 
capture these variations over longer time scales and to avoid under-or 
overestimation of carbon fluxes.

Various monitoring methods need to be applied to distinguish 
different processes within the carbon cycle. There are a range of 
parameters that can help to monitor CDR by distinguishing between 
organic and inorganic carbon cycling. Carbon mass balance over 
depths, pCO2 depth profiles, O2 concentrations or depth profiles, and 
carbon isotope composition can help to distinguish biotic and abiotic 
process (Angert et  al., 2015; Gallagher and Breecker, 2020). 
Monitoring major cations and anions is helpful to resolve if carbonate 
and silicate weathering consumes CO2 or is driven by other acids 
(Perrin et al., 2008; Zamanian et al., 2018).

Simulated carbon dynamics are specifically relevant for 
monitoring of EW. Monitoring of all parameters that are affected by 
CDR methods like EW can be expensive, which is why monitoring 
schemes that provide reliable CDR estimates based on as little 
monitoring as possible are under development and there is no 
consensus yet on what constitutes a reliable method. Fuhr et al. (2023) 
also points out that highly dynamic natural background conditions 
need to be accounted to monitor EW fluxes reliably. Various methods 
to monitor or predict EW have been presented in the literature: (1) 
carbonate alkalinity and cation concentrations either in rivers (Knapp 
and Tipper, 2022; Zhang S. et al., 2022) or in soils (Holzer et al., 2023), 
(2) Ca, Mg and nitrate ions and rare earth elements (Kantola et al., 
2023) (3) total alkalinity (Fuhr et al., 2023), (4) electrical conductivity 
(Rieder et al., 2023), and (5) simulations of varying complexity and 
spatial scale (Beerling et al., 2020; Cipolla et al., 2021; Kanzaki et al., 
2023). An important process that was highlighted by simulations here 
and should be considered when monitoring EW is degassing, which 
resulted in additional removal of DIC from solution as well as short-
lived calcite precipitation. Most streams are oversaturated with respect 
to CO2 and degassing is prevalent (Stets et al., 2017). Estimates suggest 
up to 60% of CO2 emissions from streams originate from DIC (Duvert 
et al., 2019; Winnick and Saccardi, 2024), and 30% of CO2 originate 
from DOC (Khadka et al., 2014). Spatial and temporal patterns of 
pCO2, degassing and sources of degassing depend on flow regimes, 
respiration, alkalinity, and groundwater inputs (Khadka et al., 2014; 
Winnick and Saccardi, 2024). A positive correlation between the pool 
of DIC and the contribution of DIC to degassing fluxes has been found 
(Winnick and Saccardi, 2024). In the simulations, degassing and 
removal of DIC also led to calcite precipitation. However many rivers 
are supersaturated with respect to calcite potentially due to inhibition 
(Knapp and Tipper, 2022).

FIGURE 8

Carbonate alkalinity and Ca2+ and Mg2+ concentrations shown for 
steady state conditions at the soil-atmosphere interface (red square), 
transient conditions at the soil-atmosphere interface (blue dot), and 
steady state conditions at 1 m depth. The lower line depicts the 1:1 
ratio expected for carbonate dissolution exclusively from carbonic 
acid. The upper line depicts 2:1 stoichiometry of calcite dissolution 
through other acids, e.g., in fertilizer impacted sites. The area above 
the 2:1 line represents conversion of bicarbonate to CO2 through 
degassing.

FIGURE 9

Total concentration changes in sorbed CO2, soil CO2, DIC in 
porewater, and calcite over simulation time in comparison with CO2 
efflux from soil (right y-axis). The red area indicates the range of 
carbonate alkalinity flux in rivers in carbonate-dominated 
catchments (mol m−2 s−1) (data from Zhang S. et al., 2022).
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4.3 Carbon sequestration potential

The simulations show that abiotic C-sinks such as CO2 sorption gain 
importance as a C sink in soils when biological activity is low, which is 
the case in many dryland ecosystems (Warner et al., 2019; Sagi et al., 
2021). The relative reduction in CO2 efflux over relaxation time was 
higher with lower CO2 production (Figure 5). Moreover, dryland soils 
with low organic matter content have the lowest sorption capacity of all 
naturally occurring soils and around 10 times lower sorption capacity 
than the simulated sorbents (De Jonge and Mittelmeijer-Hazeleger, 
1996; Ravikovitch et al., 2005; Davidson et al., 2013). Although CDR 
through sorption is estimated to be relatively low for a single application 
(around 2% of total C for the simulated biochar as detailed in SI), soil 
amendments could be relevant for drylands due to the limitations of 
other methods and through provision of soil health benefits.

4.4 Additional considerations for soil 
amendments in drylands

Soil amendments have the co-benefit of alleviating soil 
degradation, specifically salinization. Soil salinity is a worldwide 
concern, with drylands, irrigated lands, and agricultural lands most at 
risk (Dregne et al., 1991; Ivushkin et al., 2019). Mechanisms that have 
been implicated in salinity amelioration with biochar are: release of 
Ca2+ and Mg2+, adsorption of Na+, proton release that promotes Na+ 
uptake in certain plant species, increased salt leaching through 
increased porosity (Akhtar et al., 2015; Amini et al., 2016), reduced 
EC (Lashari et al., 2015), and changes in evaporation dynamics (Liang 
et  al., 2021; Lee et  al., 2022). However, depending on biochar 
characteristics biochar could release Na+ (Saifullah Dahlawi et al., 
2018) and some biochar studies have been criticized because salt stress 
was induced with NaCl (Akhtar et al., 2015).

Challenges for soil amendment application are health risks, 
transport emission and albedo changes. Although biochar feedstock 
can contain heavy metals and organic contaminants, the fraction that 
is bioavailable after pyrolysis tends to be  small (Godlewska et  al., 
2021). Sorbent materials generally immobilize contaminants if the 
sorbent is immobile (Godlewska et  al., 2021) suggesting positive 
health effects. Soil amendments can lead to reduced wind erosion 
long-term, which could be an important benefit for drylands (Şeker 
and Manirakiza, 2020; Pi et al., 2021).

Emissions from implementation, e.g., material preparation and 
transport will reduce the CDR potential. Transport emissions are a 
particular concern, because there is typically little infrastructure in 
drylands. Sources for biochar are scarce in drylands due to relatively 
lower above ground biomass (Cook-Patton et al., 2020), however, 
most of the global irrigated lands are situated on drylands (Dregne 
et al., 1991; Siebert et al., 2015) and could provide biomass sources, as 
could other organic wastes.

Albedo refers to surface albedo, which varies by land cover type, color, 
wetness and surface irregularities (Zhang X. et al., 2022). Albedo is highest 
in deserts (0.2–0.45) and dry soils (0.15–0.36) while increased water 
content (0.06–0.19) and vegetation cover reduce albedo (grasses 0.2, 
savannah 0.15–0.2) (Garratt, 1993). Biochar application was found to lead 
to albedo reduction of 0.05 on agricultural soil, which lowered the 
predicted climate change mitigation benefit by 13–22% (Meyer et al., 2012). 
The changes in soil albedo are less of a concern for vegetated grasslands 

and shrublands, which make up around two thirds of global drylands. 
Future work should assess albedo changes in field trials.

5 Summary

Reactive transport simulations were performed to investigate 
dynamics between organic and inorganic C pools in dryland soils and 
to predict CDR via CO2 sorption on soil amendments. In the simulations, 
CDR via sorption gained importance when biological activity was low –
transient conditions lasted longer and a larger percentage of CO2 was 
prevented from efflux during those transient conditions. Simulations 
highlighted that CO2 removal via sorption causes transient conditions 
affecting CO2 efflux, pCO2, DIC, pH, major cations and calcite. The 
simulated dynamics have implications for the application of a range of 
CDR methods, e.g., if the combined application of biochar and minerals 
for enhanced rock weathering will benefit CDR depends on soil priming 
effects. The transient conditions have implications for monitoring: the 
presence of carbonates, degassing, and desorption can affect the timing 
and magnitude of the soil CO2 response, which needs to be considered 
in sampling schedules or sampling parameters. Future work should 
include evaluation of different sorbent designs, transport modes, and 
albedo changes. Considering that a high percentage of dryland soils are 
degraded and that other methods are limited by water availability, soil 
amendments with high sorption potential and soil health benefits could 
provide valuable CDR potential and aid restoration of dryland soils.
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