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Remote sensing AI foundation models, which are large, pre-trained models 
adaptable to various tasks, dramatically reduce the resources required to perform 
environmental monitoring, a central task for developing ecosystem technologies. 
However, the unique challenges associated with remote sensing data necessitate 
the development of digital applications to effectively utilize these models. Here, 
we discuss early examples of user-centered digital applications that enhance the 
impact of remote sensing AI foundation models. By simplifying model training and 
inference, these applications open traditional machine learning tasks to a range 
of users, ultimately resulting in more locally-tuned, accurate, and practical data.
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1 Introduction

AI foundation models have recently emerged as powerful tools for analyzing large 
environmental datasets, particularly in the field of remote sensing (Zhu et al., 2024; Zhang 
et al., 2024; Tao et al., 2023). These foundation models are pre-trained on large, frequently 
unlabeled datasets, enabling efficient and accurate fine-tuning on diverse downstream tasks 
(Bommasani et al., 2021; Han et al., 2022). For example, a remote sensing foundation model 
may be pre-trained through self-supervised learning on a large corpus of unlabeled satellite 
imagery, learning general representations that capture patterns across the pre-training data 
distribution (Klemmer et al., 2023; Wang D. et al., 2024). A user can then fine-tune this model 
for a specific downstream task, such as monitoring restoration of a specific habitat. Because of 
the efficient pre-training of the foundation model, a relatively small amount of task-specific 
training data is needed to reach a high level of performance (Allen et al., 2023). Another 
underappreciated advantage of foundation models is their potential to dramatically simplify 
the technical requirements and engineering work needed to build and deploy state of the art 
technologies (Bommasani et al., 2021).

Foundation models for remote sensing data show much promise within ecosystem 
technology, where ecosystem sensing is of critical importance. Ecosystem technology (ecotech) 
is an emerging field seeking to systematize and integrate natural-system inspired, technological 
interventions to promote climate resilience and biodiversity. All place-based ecotechnologies 
require up-to-date, contextualized monitoring data to inform (1) fundamental science for initial 
technology development (2) site selection and project planning and (3) ongoing monitoring, 
reporting, and verification. In particular, rewilding, landscape restoration, landscape 
engineering, afforestation, regenerative agriculture, and, along the coasts, cultivation of 
wetlands, dune ecosystems, mangroves and seagrasses may be effectively studied via remote 
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sensing. Given the diversity and place-specificity of anticipated 
interventions, new methods of analysis will be required, more precise 
and adaptable to local conditions than traditional, broad land-use—
land-cover surveys. Remote sensing AI foundation models offer a 
promising pathway for developing these techniques.

Current research on foundation models has focused on the 
development of the models themselves (Cong et al., 2022; Jakubik 
et al., 2023; Tseng et al., 2023; Szwarcman et al., 2025), often in concert 
with substantial training datasets (Bastani et al., 2023; Wang et al., 
2023), and on benchmarking these models on increasingly varied 
tasks (Lacoste et al., 2021; Lacoste et al., 2023; Marsocci et al., 2024). 
The introduction of climate-relevant benchmarks, such as forest and 
burn-scar datasets, and initiatives like the ESA-sponsored project 
Foundation Models for Climate and Society, with its focus on ice, 
drought, and flood-zone mapping, anticipate a shift toward more 
applications-oriented research. We note some experimental real-world 
use cases of foundation models below.

We argue that purpose-driven digital applications can unlock 
the potential of foundation models for environmental decision 
making. Building on sophisticated foundation model features that 
follow from extensive pre-training, a digital application can 
automate subsequent complex machine learning workflows and 
greatly simplify downstream model training and inference. Digital 
applications can thus allow environmental scientists, policymakers, 
and other stakeholders to more easily interact with these powerful 
models, and they can constitute critical components of future 
ecosystem technologies.

An analogous example is GPT, a foundation model for text (OpenAI, 
2023). A state-of-the-art large language model, GPT only gained 
significant attention with the release of ChatGPT, a tuned chat-bot 
interface accessible through a web browser or smartphone app. The 
usability of ChatGPT drove record-setting adoption, making it the fastest 
digital application in history to reach 100 million users (Hu, 2023).

Importantly, digital applications for remote sensing AI foundation 
models provide value beyond simply visualizing model outputs. In 
addition, as we explain here, they can greatly simplify the fine-tuning 
process for foundation models. This capability opens the door for 
human-in-the-loop or active learning approaches for rapid fine tuning 
of models, greatly accelerating the process of developing accurate 
models and high quality datasets.

In this article, we share our perspective from having developed an 
early digital application for environmental monitoring that leverages 
remote sensing foundation models. This kind of application is not just 
a technical innovation but also a concrete example of ecotech—
demonstrating how ecological monitoring and management are 
evolving through technology. We first provide general technical design 
considerations for developing these kinds of applications and then 
consider some existing prototypes. These examples point to 
compelling new possibilities for utilizing high-quality remote sensing 
datasets, and, we  hope, can guide fruitful collaboration between 
application developers and research scientists.

2 Key considerations for developing 
user interfaces for remote sensing 
foundation models

In this section, we discuss several of the key considerations for 
building digital applications that leverage remote sensing AI 

foundation models. Among these considerations, four have stood out 
in our work: (1) choice of task, (2) prompting strategy, (3) support for 
machine learning, and (4) integration with other tools, including other 
forms of AI.

2.1 What task is supported?

Many modern remote sensing foundation models are generally 
trained to be multitask, such that they support some combination of 
classification, segmentation, regression, object detection, and change 
detection (Lu et  al., 2024). For example, the foundation model 
Skysense has been shown to perform well on 16 benchmark datasets 
across seven different kinds of tasks (Guo et al., 2024).

Development of a digital application for environmental 
monitoring requires understanding user needs and appropriately tying 
these needs back to these tasks. For instance, a user interested in 
tracking deforestation might be interested in creating an alert for new 
logging roads in a given area (change detection and classification). 
Alternatively, the user might be interested in quantifying the footprint 
of the deforested area (segmentation).

2.2 What is the prompting strategy?

Whereas traditional remote sensing machine learning models 
might require as input a curated dataset with defined labels and a 
single sensor image or pixel time series, a user can interact with a 
pre-trained foundation model in a more flexible, nuanced manner. 
Varied prompting strategies can often be directly incorporated into 
user interfaces built on these foundation models.

2.2.1 Natural language prompting
Given the popularity of ChatGPT and Large Language 

Models, a natural target for development is language prompting 
of remote sensing foundation models. Several “vision language 
models” (VLMs) have been developed specifically targeted for 
this mode of interaction with remote sensing data (Hu et  al., 
2023; Irvin et al., 2024; Kuckreja et al., 2024; Liu et al., 2024). 
These models allow a user to ask text-based questions such as, 
“Where has infrastructure development taken place in this 
landscape?” The models take this text query and a remote sensing 
image as input and provide a text string as output.

Natural language prompting simplifies interactions with 
remote sensing foundation models. However, in many cases 
natural language prompting can be limited. For example, training 
VLMs requires large geospatial datasets that associate imagery 
with textual labels (Irvin et al., 2024). While many significant 
advances have been made to create these training datasets, they 
often rely on geographically biased or otherwise incomplete 
sources like OpenStreetMap (Li et al., 2020).

2.2.2 Location-based prompting
An alternative to natural language prompting of foundation 

models is location-based prompting, where a user provides a point, 
bounding box, or other geographic reference as input to a model. 
Meta’s Segment Anything Model (SAM) attracted significant attention 
when it was released in 2023, partly for the ease of use of its interactive 
point or bounding box prompting. This capability has been embraced 
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by the geospatial community, with projects like samgeo, a geospatial 
toolbox for SAM that includes a python notebook map-based user 
interface (Wu and Osco, 2023).

2.3 How are model training and inference 
incorporated?

To be useful for downstream applications, foundation models are 
often fine-tuned with application-specific training data. But this is not 
necessarily the case. For example, users of ChatGPT derive value from 
interactive chat without needing to fine tune the GPT model. In 
general there are four possibilities for how a technology might interact 
with a pre-trained foundation model for training and inference:

 a) Pure inference: in this case, the pre-training task of the 
foundation model is directly useful for downstream 
applications. For example, a super resolution model can 
directly output super-resolved images.

 b) Zero shot learning: LLMs have popularized the idea of zero shot 
learning, where a model is used to classify a target that was not 
present in its training set by providing a semantically-rich 
description of the target to the model at inference time. For 
example, the VLM TEOChat demonstrates zero-shot capability 
to perform question answering on novel remote sensing datasets 
that were not included in its training set (Irvin et al., 2024).

 c) Few shot learning: given the extensive pre-training of 
foundation models, a handful of task-specific training examples 
can be used to fine-tune a foundation model or a projection 
head. Techniques used in few-shot learning include partial 
weight retraining (e.g., LoRA, Hu et  al., 2021) or training 
projection heads that use the outputs of a foundation model 
encoder as inputs.

 d) Full fine tuning: full fine tuning of the foundation model may 
achieve high levels of performance, but this usually requires 
more extensive labeled datasets and computation.

An example of an application incorporating full fine tuning is 
provided by IBM, NASA, and others with their Prithvi foundation 
model (Jakubik et  al., 2023; Szwarcman et  al., 2025). They have 
released a digital application to support fine-tuning workflows, with 
online dataset management, computational resources, and 
visualization tools (IBM Research, 2024). Fine-tuned models in public 
release include instances tuned for flood inundation mapping, burn 
scar mapping, and multi-temporal crop classification, and a recent 
study investigated fine-tuning for prediction of locust breeding 
grounds (IBM Research and NASA, 2025; Yusuf et al., 2024).

The zero shot and few shot learning cases are particularly well-suited 
for user interfaces, because these modes of interaction are enhanced by 
user feedback. Human-in-the-loop strategies may be employed to fine-
tune models interactively, as we will discuss for two cases below.

2.4 How might these systems integrate 
future powerful AI tools?

Integration between remote sensing AI foundation models and other 
forms of AI technology offers substantial opportunities for enhancing 

environmental monitoring and ecosystem technologies. As discussed 
above, natural language prompting is one promising possibility. It points 
toward an array of interactions by which general-purpose AI models, 
including large language models like GPT, can complement and extend 
the specialized functions of remote sensing models.

In the future, general-purpose AI will streamline large-scale data 
analysis, interpreting outputs from remote sensing models into 
actionable insights (e.g., Planet Labs PBC, 2025). Calling on AI 
models’ language capabilities, users without specialized technical 
backgrounds can easily query complex datasets, request detailed 
analyses, or explore scenarios through straightforward prompts. 
We  can also look to generalized AI to optimize environmental 
monitoring workflows. These models may be used to dynamically 
adjust monitoring parameters, determine optimal sensor deployment, 
or prioritize analysis regions based on predictive modeling outcomes.

Importantly, integration with generative AI models introduces 
risks that go beyond the statistical errors expected of a discriminative 
classifier. Without careful engineering, a generative model like GPT 
may “hallucinate” nonfactual information or may behave in ways 
contrary to the goals of the digital application. These risks can 
be mitigated by managing the scope of integration, for instance, by 
constraining data retrieval to specific trusted sources and passing 
those trusted sources directly to the user. Active attention from the 
user and verification of generative outputs is warranted.

3 Case study: Earth Index

Our experimental user interface, called Earth Index, is a tool for 
few-shot classification of satellite imagery that functions via location-
based prompting (Figure 1). In many respects it can be considered a 
search tool for the planet: A user indicates a few objects of interest on 
a web map, and in real time Earth Index surfaces other similar 
example objects from the area of interest (AOI).

Earth Index is a production web application that offers point and 
brush tools for labeling on the web map, options for searching and 
validating search results, a selection of satellite image basemaps, and logic 
for state and project management. The application refers user queries to 
a geospatially-enabled relational database, where pre-computed model 
embeddings are stored and indexed. An embedding is the vector output 
of the AI model on an input image patch. As such, it gives a mathematical 
representation of the objects and terrain on that part of the Earth’s 
surface. For technical details, please refer to the Supplementary material. 
The basic workflow is intended to be almost self-explanatory for intended 
users, who include researchers with environmental domain expertise but 
no presumed exposure to machine learning.

Through close reading of proposed detections and adding positive 
and negative labels, the human user iteratively refines the search. The 
search is open-ended. Under the hood the tool constructs a representative 
embedding vector from the labeled vectors and runs an approximate-
nearest-neighbor search for other embedding vectors in its vicinity, up 
to a user-defined radius. Mathematically, this is essentially a 
recommendation system. Its efficacy rests on the foundation model’s 
power to usefully organize the embedding vector space.

As well as being capable discriminators of land cover, remote sensing 
foundation models offer good representations of objects on Earth’s 
surface, which means they can be used to detect industrial infrastructure 
and signs of illicit resource extraction. To give one concrete example, the 

https://doi.org/10.3389/fclim.2025.1520242
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Strong et al. 10.3389/fclim.2025.1520242

Frontiers in Climate 04 frontiersin.org

Pulitzer Center Rainforests Investigation Network is using Earth Index 
to investigate small-scale open-pit gold mining in the Mekong delta 
region. A data journalist at the Pulitzer Center and one of the present 
authors each began Earth Index searches with points identified from a 
mine field previously reported in the media. By iterative search and 
validation against external data sources, we learned the unique features 
of mine scars in this region. Notably, houses of miners and their families 
are often interspersed among the toxic mud-sludge pools left after the 
mining. We used this understanding to formulate successively more 
precise searches, finally producing detailed maps of five significant 
mining areas across a 200 kilometer-wide zone. These detections guided 
field reporting trips of a local reporter, who interviewed both miners and 
members of community groups who patrol the forest against illegal 
logging activities. The reporter conveyed amazement at having traveled 
hours on dirt road by motorbike, only to stop at a river crossing, walk 
up-river, and come upon the promised mines.

Challenges for sustained adoption relate to the difficulties of 
working with the satellite imagery itself: framing problems appropriate 
to the resolution of the imagery, interpreting findings, and persevering 
to disambiguate target objects from a complex background. We now 
include training materials for new users with worked examples of 
iterative search.

3.1 Streamlined machine learning

Geographic search seeks to surface sites which are similar to those 
queried, to be evaluated by a user according to greater or lesser relevance. 
To exhaustively catalog a phenomenon, one typically needs recourse to 

machine learning with labeled data. This workflow requires a higher level 
of data fluency from a user than open-ended Earth search.

We use a Jupyter notebook with a Leaflet map-based interface, a 
raw version of the Earth Index application, to train logistic regression 
or Multilayer Perceptron (MLP) models atop the embedding vectors 
output by the foundation model encoder. The Leaflet satellite web map 
supports labeling of sites on the fly, via clicks on the map. Code for 
model training, validation, ensembling, and inference follow in 
successive sections of the notebook. By building atop the foundation 
model, the complexity of subsequent modeling is cut by orders of 
magnitude versus end-to-end training. On a MacBook Pro, MLP 
training and inference on an AOI of 100,000 km2 each take only a few 
minutes. Experiments with street-level photography indicate that the 
combination of a pre-trained foundation model with a projection head 
can meet or exceed performance of models trained end-to-end with 
labeled data (Chen et al., 2020).

In a pilot study, we applied this streamlined process to build a 
dataset of poultry animal feeding operations across the American 
southeast, including the largest poultry producing states. Concentrated 
Animal Feeding Operations (CAFOs) are industrial animal agriculture 
facilities where large numbers of animals are raised in confined 
conditions. They pose significant threats to the environment and to 
the health and livability of nearby communities (Crippa et al., 2021; 
Nicole, 2013; Wing et al., 2000).

Even though the facilities share notable visual similarities across 
states, naive attempts to extrapolate a machine learning model from 
one state to another can be frustrated by differences in background 
geography. This can be approached as a challenge in local fine-tuning, 
where the integrated labeling and training interface speeds model 

FIGURE 1

Earth Index is a user interface and associated set of services that is built on remote sensing foundation models. Using Earth Index, non-experts can 
search satellite imagery interactively, building on the knowledge of the pre-trained foundation model.
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iteration. Beginning with a model based on labeled data from North 
Carolina (Handan-Nader and Ho, 2019), and proceeding through 
negative sampling and iterative training, we derived a collection of 
state-based models that yields, to our knowledge, the most 
comprehensive available map of poultry facilities for the region 
(Figure 2). No federal agency maintains a comprehensive registry of 
CAFO locations, and patchwork regulations leave significant gaps in 
existing state-level data (Miller and Muren, 2019).

More details on the modeling process can be  found in the 
Supplementary materials.

4 Conclusion

The development of novel digital applications for remote sensing 
foundation models signals a transformative shift in environmental 
monitoring. These applications simplify and accelerate labeling, 
model fine tuning, and intuition building, enabling human-in-the-
loop workflows that generate accurate, locally fine-tuned data. By 
bridging the gap between data and domain experts, these technologies 
allow downstream users like policymakers, journalists, and 
environmental advocates to build impactful datasets with minimal 
technical expertise.

Digital applications built on AI foundation models for remote 
sensing data are powerful enablers of ecotechnologies. They can process 
massive amounts of environmental data, offer real-time monitoring, 
and generate predictive analytics that enhance our ability to manage 
and restore ecosystems. Paired with experts through iterative analyses, 
these tools can serve as a bridge from raw data to actionable insights 
that drive more integrated, ecologically informed interventions.

As foundation models and digital applications continue to mature, 
we envision a future where the technology stack for environmental 
monitoring is increasingly modular and simplified. Downstream users 
who want to make use of remote sensing data will no longer be required 
to learn specific technical skills for machine learning model 
development. Instead, technologies driven by simple interfaces will 
enable a collaborative future where domain experts directly participate 
in the model development process. Digital applications will be key to 
realizing the full potential of foundation models, ultimately enabling 

critically needed environmental monitoring and stewardship at a 
global scale.
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