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The integration of “greening the gray” (GTG) into marine infrastructure represents
a transformative approach to enhancing biodiversity and ecosystem services in
heavily modified environments. However, the ecological effectiveness of GTG
remains hindered by inconsistent methodologies and knowledge gaps. This study
proposes a methodological approach for GTG biodiversity assessments, focusing
on appropriate control site selection, integration of count and coverage data
through occupancy methods, and applying coverage-based rarefaction to address
sampling biases. The approach facilitated consistent evaluation of biodiversity data
and reliable evaluation of GTG performance across various contexts, specifically
using a GTG project at the Port of Vigo in Spain as a case study. This methodology
structure supports sustainable marine infrastructure development by providing
scalable, evidence-based methodologies for biodiversity assessment and fostering
international collaboration among ecologists, developers, and stakeholders.
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1 Introduction

Ecosystem Technology (Ecotech) focuses on developing and implementing
environmentally friendly, resource-efficient technologies and is supportive of long-term
ecological health (Straskraba, 1993; Moser, 1994; Haddaway et al., 2018). These include
emerging proactive strategies such as ecomimicry and engineering with nature (Firth et al.,
2016a,b), which aim to mitigate environmental impacts by applying different technological
solutions to enhance biodiversity and ecosystem services (Straskraba, 1993; Moser, 1994;
Naylor et al., 2017; Firth et al., 2020, 2024). Integrating these “greening the gray” (GTG)
technologies within built environments, such as coastal and marine infrastructure, represents
a holistic approach that addresses ecosystem and operational services in parallel to essential
engineering functions. However, the efficacy and long-term sustainability of GTG EcoTech
remain subject to ongoing research (Firth et al., 2024).

As urbanization and climate change continue to drive the replacement of natural habitats
with artificial structures, the need for GTG EcoTech becomes increasingly urgent. The global
expansion of marine construction, driven by climate change and urbanization, has transformed
coastlines into heavily modified environments (Gittman et al., 2015; Gittman et al., 2016; Firth
et al., 2016a,b; Floerl et al., 2021). These anthropogenic changes, which include seawalls,
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breakwaters, and artificial islands, create “novel ecosystems” with
complex ecological consequences. Marine infrastructure is not
inherently designed with nature in mind; however, it can utilize GTG
EcoTech, such as ecomimicry, to enhance ecosystem services
(Marshall and Lozeva, 2009; Perkol-Finkel and Sella, 2015; Sella et al.,
2022). The successful use of ecomimicry depends on an understanding
of place-based ecosystem processes that can be used to balance and
sustain the ecosystem in context (Straskraba, 1993; Winter et al., 2020).

Despite the potential benefits, significant knowledge gaps persist
regarding the ecological performance and assessments of
infrastructure that apply GTG EcoTech. This necessitates moving
beyond conceptual application and towards evidence-based
assessments of how these technologies can support and enhance a
site’s ecology. Biodiversity, for example, is increasingly recognized for
its intrinsic value and role in providing ecosystem services and
promoting ecosystem health (Laurila-Pant et al., 2015; Batavia and
Nelson, 2017). The United Nations has established policy objectives
for marine resources through its 14th Sustainable Development Goal
(United Nations General Assembly, 2015). To achieve ‘sustainable
development, ‘stakeholders must be able to determine what success
looks like. As such, there is a growing need to accurately assess and
compare biological diversity, as existing environmental frameworks
may not adequately address this in marine infrastructures (Riisager-
Simonsen et al.,, 2022). This underscores the importance of integrating
assessment protocols into regulatory frameworks.

Achieving uniform biodiversity assessment methodologies where
GTG EcoTech is utilized is essential for several reasons. First, marine
infrastructure varies in terms of size, location, and configuration (e.g.,
seawalls, breakwaters, piers, and offshore platforms). Creating a
biodiversity assessment framework will allow consistent data to
be collected from these different types of structures. Second, it can
facilitate data comparisons across sites with varying sampling efforts
and methodologies, as well as mitigate data offsetting due to seasonal
and geographical differences. A consistent protocol will allow us to
determine whether differences in biodiversity are due to the GTG
EcoTech implementation, environmental changes, or simply
discrepancies in how data was collected or analyzed. Finally, as human
activities increasingly alter natural habitats, understanding the
efficiency of GTG EcoTech in marine infrastructure is paramount for
avoiding “greenwashing” by ineffective strategies (Firth et al., 2020).
Consequently, these misleading or deceptive greenwashing claims can
promote ineffective strategies that fail to support biodiversity needs or
ecological function (Firth et al., 2020).

Despite the diversity of existing frameworks and methods, the
absence of a common methodological approach limits comparability
across projects and ecosystems. Establishing shared methodologies
would allow researchers and practitioners to generate more consistent
data, facilitate meta-analyses, and strengthen the evidence base for
nature-inclusive infrastructure. From a management and policy
perspective, common approaches also provide clarity for decision-
makers, reduce the risk of greenwashing, and support transparent
evaluation of ecological and social outcomes.

The following paper highlights the importance of developing
comparable biodiversity data collection and analysis methodologies,
which are crucial for evaluating the effectiveness of different GTG
EcoTech interventions. This will allow the quantification and
comparison of GTG projects of various forms and locations, thus
creating baseline development guidelines. We aim to propose a
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methodological approach framework that comprehensively represents
biodiversity within the GTG EcoTech study area. This will provide
insights into how effective various GTG EcoTech solutions are in
increasing biodiversity and other ecosystem services.

2 Challenges and solutions in
ecological assessments

Marine infrastructure creates unique ecosystems distinct from
natural habitats, necessitating innovative approaches to accurately
assess biodiversity and ecosystem dynamics (Ferrario et al., 2016;
Knights et al, 2024). Standardized sampling and analysis
methodologies are essential for establishing clear criteria for comparing
biodiversity across sites sampled under varying conditions (Christie
etal, 2019). When formulating the sampling structure, the following
elements are necessary for comparability estimates: appropriate
controls, unified data from different sampling methods, and
standardized sampling effort through data analysis (Figure 1). To
showcase these concerns, we have utilized data from the Port of Vigo,
Spain (www.livingports.eu, Horizon 2020, GA 970972), where concrete
seawalls incorporating EcoTech were placed adjacent to standard
concrete seawalls to evaluate differences in biodiversity patterns.

2.1 Case study

The Port of Vigo case study consists of sampling from two distinct
nature-inclusive seawall types, ‘Mangrove’ (210m*) and Azuri
(120m?), and their respective control walls. The seawalls are 11.5
meters apart, made from standard smooth Portland cement. Before
construction began, a baseline survey was conducted to assess the
existing sessile communities. This survey was performed one month
before the construction of the seawalls. Post-installation monitoring
was carried out at 3, 6, 9, and 12 months post-deployment on the
treatment and control seawalls.

The monitoring array included a total of 40 treatment/control
quadrates: 10 for the Mangrove Seawall (5 at intertidal, 5 at subtidal),
10 for the Azuri Seawall (5 at intertidal, 5 at subtidal), 10 for the
Mangrove control (5 at intertidal, 5 at subtidal), and 10 for the Azuri
control (5 at intertidal, 5 at subtidal). The biological community
monitoring of the seawall panels was conducted by photographically
documenting randomly placed 30 x 30 cm quadrates. Data collection
followed the protocol of Perkol-Finkel et al. (2008), which assesses the
percent cover of colonial/encrusting species and the count of solitary
organisms. All organisms seen were included in the database; none
were excluded.

2.2 Appropriate controls

Evaluating the effectiveness of a GTG treatment requires
appropriate controls, which are crucial in ecological experimental
research, serving as benchmarks against which the outcomes of
interventions can be measured. Research indicates that most studies—
approximately 74%—utilize reference or control sites for comparison,
although not all do (Wortley et al., 2013; Christie et al., 2019). Controls
help isolate the independent variable’s effect, ensuring that observed
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FIGURE 1
Challenges and solutions in ecological assessment of EcoTech applied to marine greening-the-gray infrastructure.

differences are attributable to the treatment rather than confounding
factors. For instance, a habitat restoration project may appear
successful in increasing marine invertebrate populations; however,
without a control site, it is difficult to determine whether this increase
is a result of the restoration efforts or merely natural fluctuations in
the ecosystem (Osenberg et al., 2006; Suding, 2011; Wortley et al.,
2013; Christie et al., 2019).

When selecting a control site for the application of GTG
EcoTech in marine infrastructure, it is essential to consider
factors such as geographic proximity, habitat similarity, physical
conditions (substrate orientation, light availability, oxygen levels,
water movement, salinity, and turbidity), and anthropogenic
pressures (marine traffic, floating debris, run-offs, etc.). The
control site and the GTG EcoTech impacted site should be as
similar in attributes as possible, to enable tracking of temporal
changes and response to environmental shifts. For example, if the
GTG EcoTech infrastructure is a seawall, the control should be an
adjacent standard seawall under similar environmental
conditions and anthropogenic pressures that can accommodate
the same survey method and effort. Marine infrastructure can
significantly differ from the natural environment. For instance,
the efficiency of GTG EcoTech on a vertical seawall constructed
on a sandy bottom should be assessed relative to a standard
seawall in the same setting, rather than comparing it directly to
the sandy bottom habitat itself.

As such, we recommend utilizing the Randomized Control-
Impact (R-CI) methodology, which evaluates the ecological effects of
an intervention by randomly assigning treatment sites (i.e., the GTG
infrastructure) and control sites (status quo infrastructure), allowing
researchers to compare outcomes and isolate the impact of the
intervention. This minimizes the need for pre-intervention sampling
and is a reliable method for understanding the effect of manipulating
a variable in an ecosystem (Carpenter et al., 1989). This approach
distributes confounding factors (e.g., environmental variability)
equally across treatment and control groups, which ensures
comparability and reduces initial differences between groups,
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provided sufficient sites and temporal sampling points are included
(De Palma et al., 2018; Larsen et al., 2019; Christie et al., 2020).
Without appropriate controls, studies risk misleading conclusions and
the continuation of ineffective practices, ultimately hindering the
advancement of ecological science.

2.3 Combining count and cover data

The methodology for data capture should comprehensively
represent the study area’s biodiversity and maximize data
consolidation. Two major methods of biodiversity assessment are
coverage percentage for colonial or sprawling species and count
data for solitary species (Murray, 2001). This forced segmentation
of biodiversity data into “count” species and “cover” species
complicates meaningful comparisons at the community level
(Figures 2A,B). There are statistical methods to move from cover
data to count data, but these typically require additional
information, such as the size or mass of the recorded species, that
is not always available (Zvuloni and Belmaker, 2016).

The categorization of species data into “count” versus “cover”
introduces bias because each metric captures distinct aspects of a
species’ presence and influence within an ecosystem. Count data
emphasizes numerical abundance, possibly overstating the ecological
importance of small, numerous organisms and underrepresenting the
impact of large, sparse ones (Elphick, 2008). Count data is also highly
sensitive to sampling methodology (Elphick, 2008). Conversely, cover
data reflects spatial dominance, which can underemphasize the
contribution of small but abundant species and overemphasize larger,
less abundant species, ultimately providing a limited view of
population structure and dynamics (Miller and Ambrose, 2000). One
solution for this issue is the consolidation of data by calculating
occupancy for both types of species. For example, when assessing the
species composition of a quadrat or transect, the sampling unit should
be divided into many smaller units (cells). Then, instead of an overall
estimate of the number (for solitary organisms) or cover (for colonial

frontiersin.org


https://doi.org/10.3389/fclim.2025.1529019
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Leit et al.

10.3389/fclim.2025.1529019

Count Cover Occupancy GTG/Control
100 02 ——
30 @
§ 75 04
£ 20 40 % I
o 50
% H %’00
2 S
10 20 2
-0.1
0 0 [ I
GTG Control GTG Control GTG  Control Count Cover Occupancy
(C) Sample-size-based sampling curve (D) GTG/Control
04
. 40 03
% zammm="
E 30
§ ° 02 ®
&
20
—> &
K 0.0 e
0 50 100 150
Number of sampling units 0.1
[=@=] control [=l=] GTG 5 s
= Rarefaction = = = Extrapolation Sampling Unit
(E) Coverage-based sampling curve (F) GTG/Control
60 o5 o
05
40
] o
g 504 °
03
05 056 07 038 0.9 1.0 02 ) i
Sample coverage
[=@=] Control [=l=] GTG o i
m— Rarefaction = = = Extrapolation Coverage
FIGURE 2
Comparison of biodiversity between GTG and Control seawalls 1 year after installation. (A) Species richness (y-axis) measured using three different
methods—percent cover, counts of individuals, and occupancy (x-axis). (B) Log ratio of species richness (y-axis) between GTG and Control seawalls,
shown across the three survey methods (x-axis). Values above zero indicate GTG supported more species. Error bars show standard error.
(C) Rarefaction curves showing estimated species richness (y-axis) as a function of the number of sampling units (x-axis). Curves illustrate how richness
increases with additional sampling effort. (D) Log ratio of species richness (y-axis) between GTG and Control seawalls, calculated at two fixed sample
sizes (x-axis: 20 and 125 units, marked in panel (C). (E) Coverage-based rarefaction curves showing species richness (y-axis) as a function of sample
coverage (x-axis, ranging from 0 to 1, where higher values mean more complete sampling of the community). (F) Log ratio of species richness (y-axis)
between GTG and Control seawalls, calculated at two coverage levels (x-axis: 0.7 and 0.8, marked in panel E).

organisms), each cell should identify the presence or absence of these
species (Van Genne and Scrosati, 2022).

We illustrate this approach using the Port of Vigo case study. To
reformat the Port of Vigo case study data, we divided the digital
photographic quadrats into 5 cm by 5 cm boxes and identified the
presence or absence of species. The scheme chosen to determine
presence within the quadrat should be carefully considered and
uniform throughout the study, to avoid overestimation or
underestimation (Zvuloni et al., 2008). To deal with the borders of
the quadrat, we employed a center rule scheme, where organisms that
had their respective ‘center’ within the quadrat were counted
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(Zvuloni et al., 2008). In situations with many species present, this
process could be expedited by carefully choosing an artificial
intelligence software to help identify and count species (Goodwin
etal., 2022).

Using this occupancy approach promotes consistency in data
collection across various contexts and facilitates easier comparisons
over time or between locations. For instance, Figures 2A,B, which are
based on photo-quadrate analysis of the GTG-enhanced seawall and
the standard concrete seawall in the Port of Vigo, present contrasting
views of the structure’s richness. For instance, determining which
infrastructure offers greater richness depends on the data output
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selected. If researchers only recognize “counted” species, the GTG
infrastructure would seem to have lower richness (Figures 2A,B).
Conversely, if they only recognize “cover;” the richness would appear
artificially higher. Using occupancy combines the different sampling
methods and allows us to estimate a single ratio between the GTG
structure and the control (Figures 2A,B). The occupancy metric
provides an essential, comparable framework for assessing the
effectiveness of EcoTech’s application on the GTG infrastructure. By
integrating both count and cover data, this metric offers a streamlined
view of the sampled community, serving as a vital tool for evaluating
ecological outcomes across diverse sites.

2.4 Standardized sampling effort

All diversity estimates are both scale-dependent and sampling
effort-dependent. Hence, the perceived increase in diversity of a GTG
EcoTech initiative will depend on the sampling method and sampling
effort (Gotelli and Colwell, 2001; Chase and Knight, 2013). It is
important to note that we rarely estimate all individuals and species
on marine infrastructure, and hence, reaching an asymptotic
relationship between sampling effort and diversity measures is an
unrealistic goal. Instead, we suggest using a coverage-based rarefaction
approach, a statistical technique used to estimate sample completeness
by focusing on the proportion of individuals in a sample that is part
of the identified species (Chao and Jost, 2012). Coverage-based
rarefaction works by statistically estimating the species richness,
diversity, or functional diversity of a community at a standardized
level of sample coverage. Coverage-based rarefaction adjusts for
differences in sampling effort, ensuring comparability between
datasets of varying sizes (Chao and Jost, 2012). This enables us to
evaluate sampling completeness with increasing sample size, and then
compare the efficiency of GTG EcoTech applied on an infrastructure
and control one at the same coverage level.

A notable benefit of the coverage-based approach is that the
comparisons of the control marine infrastructure to the one
presenting GTG EcoTech can be normalized for sampling effort.
When sampling effort is by the number of individuals, as done
when using traditional rarefaction, the ratio between the control
and EcoTech applied structure diversity will depend on the exact
sampling effort used. Figures 2C,D illustrate that the log ratio
between the richness of the EcoTech applied structure and the
control ones depends on the value of the sampling effort chosen
for comparison. In practical terms, this means that the apparent
difference in species richness can shift depending on how many
samples are collected, which complicates direct comparisons.
However, with coverage-based rarefaction, the same proportional
increase in richness can be found at different coverage levels. For
instance, a 20% increase in species richness can be consistently
observed at both 50 and 90% coverage levels (Figures 2E,F). By
accounting for how completely the community has been sampled,
rather than just the number of individuals sampled, coverage-
based methods provide more stable and comparable results. This
allows for comparability between the EcoTech and control sites
across varying sampling efforts or monitoring levels. This
approach can be applied to other community-level measures, such
as functional, evolutionary, or phylogenetic diversity (Chao et al.,
2021), which are all crucial factors in assessing the infrastructure’s
success. Thus, by focusing on coverage rather than just the

Frontiers in Climate

10.3389/fclim.2025.1529019

number of samples or individuals, these methods enhance the
reliability of ecological assessments.

It is important to note that GTG and control sites may achieve
similar levels of sample completeness at very different levels of
sampling effort (Chao and Jost, 2012). Thus, in many cases, the less
complex control site may need fewer samples to reach a similar level
of coverage. This is a substantial benefit as it means there is no need
to put unnecessary effort into sampling the simple control sites, and
proportionally more effort can go into the often more complex GTG
structures where the Ecotech is applied.

Nonetheless, it is crucial to avoid very low coverage values for
comparison, as they may undermine the reliability of the estimates.
We suggest using the iNEXT.4steps package in R (Chao and Hu, 2024)
to facilitate coverage-based rarefaction, as it provides tools for
estimating species diversity, visualizing coverage curves, and
effectively comparing biodiversity across different samples;
Additionally, this package in R enables the integration of Hill numbers
(Hsieh et al., 20165 Chao et al., 2014), to quantify diversity using the
“effective number of species” taking into account different weights of
richness versus evenness when calculating diversity (Chao et al.,
2014). Specifically, Hill numbers represent q = 0 represents species
richness (all species weighted equally), g =1 is sensitive to typical
species’ abundance (exponential of Shannon entropy), and g =2 is
sensitive to dominant species’ abundance (inverse Simpson index).

3 Conclusion

By outlining several key steps, including appropriate controls,
using occupancy data to combine count and coverage, and employing
coverage-based rarefaction, we can generate comparable estimates of
the diversity benefits of GTG structures. These estimates can
be obtained regardless of spatial location (tropical versus temperate
regions, regions under different anthropogenic pressures, etc.), and
structure type (seawalls to breakwaters, artificial reefs, pier piles, or any
other formations). For researchers, following this protocol entails
selecting controls at a site, shaping data into occupancy, and analyzing
using coverage-based rarefaction. When doing so, to minimize bias in
data collection, it is crucial to define clear rules for including or
excluding species that straddle quadrat borders. Once coverage-based
rarefaction information and biodiversity data are consolidated, a ratio
of species richness (or other diversity measures) between the control
and GTG treatment can be generated. This ratio can be effectively used
to compare diverse GTG EcoTech applied sites, sampled in different
locations and times, regardless of the type of structure or its location.

We note that there is inherent bias in oversimplifying complex
ecological dynamics by solely relying on such metrics, as this may
overlook critical nuances in species interactions, functional roles, and
successional pathways. Therefore, a comprehensive understanding
necessitates integrating several quantitative measures and the broader
ecological context to avoid drawing misleading conclusions from
simplified metrics.

The ability to assess the efficacy of GTG infrastructure can inform
both national and international standards of “best practice” From a
policy and regulatory perspective, establishing core, standardized
indicators for biodiversity, ecosystem services, and design
performance can support the adoption of GTG monitoring
frameworks within existing directives such as the EU Marine Strategy
Framework Directive and the UN Sustainable Development Goal 14.
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By aligning monitoring protocols with these frameworks, projects can
demonstrate measurable ecological benefits and reduce the risk of
greenwashing, ensuring that claims of ‘nature-inclusive infrastructure’
are evidence-based. Flexible, tiered methodologies that combine
global guiding principles (e.g., [IUCN NbS Standard), regional or
national adaptations, and project-specific ecological and social
monitoring can enable decision-making across scales.

This comparative approach enables marine ecologists, developers,
and stakeholders to collaboratively develop a scalable understanding
of ecosystem services in various GTG projects. The insights into
streamlined comparisons are crucial for effective EcoTech initiatives,
facilitating informed decision-making and efficient resource
management. Practitioners, organizations, and policymakers should
work together to create usable and widely adopted data
analysis protocols.
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