
TYPE Original Research

PUBLISHED 30 April 2025

DOI 10.3389/fclim.2025.1550772

OPEN ACCESS

EDITED BY

Radhakrishna Basivi,

National Atmospheric Research Laboratory,

India

REVIEWED BY

Valerio Lembo,

National Research Council (CNR), Italy

Bhupendra Bahadur Singh,

Indian Institute of Tropical Meteorology (IITM),

India

*CORRESPONDENCE

Marion Devilliers

mde@dmi.dk

RECEIVED 24 December 2024

ACCEPTED 03 April 2025

PUBLISHED 30 April 2025

CITATION

Devilliers M, Olsen SM, Langehaug HR, Guo C,

Mahmood R, Tian T and Yang S (2025)

Constraining CMIP6 simulations for Atlantic

Water in the Arctic using an AMOC-SST index.

Front. Clim. 7:1550772.

doi: 10.3389/fclim.2025.1550772

COPYRIGHT

© 2025 Devilliers, Olsen, Langehaug, Guo,

Mahmood, Tian and Yang. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Constraining CMIP6 simulations
for Atlantic Water in the Arctic
using an AMOC-SST index

Marion Devilliers1*, Ste�en M. Olsen1, Helene R. Langehaug2,

Chuncheng Guo1, Rashed Mahmood1, Tian Tian1 and

Shuting Yang1

1National Center for Climate Research Department, Danish Meteorological Institute, Copenhagen,

Denmark, 2Nansen Environmental and Remote Sensing Center and Bjerknes Centre for Climate
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Atlantic Water plays a key role in future changes in the Arctic Ocean. It

contributes to Atlantification by transporting salt and heat within the Arctic

Ocean basins. Many studies also attribute the amplified warming of the Arctic

Ocean to an increase in poleward ocean heat transport by warming currents

or the increasing strength of ocean currents. Global models are needed to

reliably predict consistent trends in heat transport, as large-scale processes

are at play. However, these models are too coarse to resolve key ocean

processes and to address the complex interplay between ocean dynamics and

the bathymetry of the Arctic region. Here, we propose to construct a sub-

ensemble of simulations based on 235 historical simulations from 12 CMIP6

models that best represent the downstream drivers of Atlantic warming. We

select the model ensemble members showing the closest agreement with

observed surface temperature variability over 1960–1990 in the subpolar gyre

(SPG). More specifically, we use a recent index that links surface temperature

in the SPG to the Atlantic Meridional Overturning Circulation (AMOC): the

AMOC-SST index. The subsampled ensemble shows a better correlation with the

observed AMOC-SST index over the last 35 years of the historical period (1980–

2014). It also displays a reduced error and better correlation for the Atlantic

Water core temperature and depth in the Eurasian Arctic Ocean when compared

to reanalysis and observations. Overall, the AMOC-SST index-based selection

leads to a systematic improvement in the representation of the Atlantic Water

layer in the Eurasian Arctic region, suggesting a clear connection between the

Arctic Ocean and surface temperature in the subpolar region, and by extension,

possibly the AMOC.
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1 Introduction

There is an urgent need to reduce the uncertainty in predicted Arctic Ocean climate
change: it is changing more rapidly than the rest of the globe due to the “Arctic
amplification” phenomenon (Rantanen et al., 2022; Serreze and Barry, 2011), and these
fast changes have global repercussions (Goosse et al., 2018; Pithan and Mauritsen, 2014).
Over the past decades, both models and observations have shown a positive trend in the
northward transport of ocean heat to the Arctic Ocean by Atlantic inflows, which has
strongly affected the Arctic climate (Årthun et al., 2012; Barton et al., 2018; Wang et al.,
2020; Tsubouchi et al., 2021; Polyakov et al., 2023; Hansen et al., 2023).
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The primary water mass at the Arctic intermediate depth, the
Atlantic Water (AW), plays a key role in the heat budget of the
Arctic Ocean (Shu et al., 2019). Research indicates that one of
the main reasons for increased heat transport to the Arctic Ocean
is the warmer temperatures of the AW, which are transported
northward mostly through the Barents Sea, but also through the
Fram Strait (Koenigk and Brodeau, 2014; Oldenburg et al., 2018).
In more detail (see Supplementary Figure S1), it originates in the
North Atlantic, and warm and saline AW flows into the Nordic
Seas (Orvik and Niiler, 2002), with a portion entering the Barents
Sea before descending into the intermediate and deeper layers of
the Arctic Ocean (Maslowski et al., 2004). The remaining AW
approaches the Fram Strait, where it splits into two pathways: one
portion enters the Arctic Ocean, contributing to the warm AW
layer, while the other recirculates within the Fram Strait as part of
the West Spitsbergen Current and eventually joins the southward-
flowing East Greenland Current (Hattermann et al., 2016). A recent
warming trend in the AW layer of the Arctic Ocean has been
observed (Polyakov et al., 2012).

The climate models in the Coupled Model Intercomparison
Project (CMIP) still underestimate ocean heat transport to the
Arctic (Winkelbauer et al., 2024), which could lead to an
underestimation of changes in the Arctic region. They struggle with
the particular configuration of this area, which displays complex
bathymetry (Heuzé et al., 2023) and dynamical processes that
usually require higher resolution than that typically adopted by
the latest CMIP (Wang et al., 2024). The models tend to represent
the Atlantic Water (AW) layer as too thick and too deep, with a
large spread of temperatures that are both too warm and too cold
compared to observations (Heuzé et al., 2023; Khosravi et al., 2022).

The climate models also diverge in their projections of Arctic
climate change (Muilwijk et al., 2023), particularly at intermediate
depths (Langehaug et al., 2023). The projected weakening of the
AMOC (IPCC, 2023; Weijer et al., 2020) is expected to affect
exchanges with the Arctic; however, climate models demonstrate
significant differences in the projections for that part of the AMOC
involving exchanges with the Arctic through ocean heat transport
(Sgubin et al., 2017; Madonna and Sandø, 2022). In particular,
(Pan et al., 2023) showed that the discrepancies between the
model projections are strongly related to the simulated poleward
ocean heat transport (OHT) from the North Atlantic, which varies
significantly depending on the ocean component used by the
climate model. The large group of Nucleus for EuropeanModelling
of the Ocean (NEMO)-based climate models tends to project
larger increases in OHT, thus simulating stronger and more rapid
Arctic climate change compared to other climate models. In the
most recent version of the CMIP project (CMIP6), OHT in the
models showed less inter-model spread and mean values closer to
observations compared to CMIP5 models (Madonna and Sandø,
2022).

Applying external constraints to the ensemble of simulations
may help reduce uncertainties in future projections and model
biases regarding OHT. Through CMIP6, an impressive number
of coordinated and thus comparable simulations were performed
across model systems. This allows us to explore statistical sampling
methods using observed metrics to enhance the skill for Arctic
prediction beyond the model mean. Moreover, model and model

member (simulation) selection is increasingly explored in the
context of data assimilation (Ruiz et al., 2022; Le Bras et al., 2024)
or emergent constraints (Tokarska et al., 2020; Ribes et al., 2021;
Docquier and Koenigk, 2021; Langehaug et al., 2023). Selecting
individual simulations from a model using observations provides
new insights (Bonnet et al., 2021) and should be considered for
models exhibiting a large spread in their ensemble (Deser et al.,
2020; Mankin et al., 2020; Meccia et al., 2023). We propose to
constrain part of the CMIP6 ensemble of simulations by selecting
specific model ensemble members to reduce uncertainty in the
representation of the subsurface Arctic Ocean.

In the selection method, we investigated the connection
between the subpolar North Atlantic Ocean and the Arctic Ocean.
The gyre circulation in the northern North Atlantic and its
associated heat transport are recognized as significant factors in the
warming of the Arctic Ocean (e.g., Jungclaus et al., 2014; Oldenburg
et al., 2018; van der Linden et al., 2019). On a decadal timescale, Fan
et al. (2023) showed that the subpolar gyre (SPG) signal provides
predictability for salinity and temperature in the Nordic Seas. It
was also found in observations (Årthun et al., 2017) and pacemaker
experiments using climate models (Drews et al., 2024) that surface
temperature anomalies in the Northern Atlantic have predictive
potential for the northern climate.

On a longer time scale, some links can be found between
the changes in ocean heat transport toward the Arctic and the
variability of the Atlantic Meridional Overturning Circulation
(AMOC). A proposed signature of a weakened AMOC is the
cooling of the sea surface temperature (SST) of the SPG, resulting
from reduced heat transport to northern latitudes (Caesar et al.,
2018; Gervais et al., 2018; Saba et al., 2016). Other studies suggest
that the warming hole over the past century is unlikely to be
due to a slowdown of the AMOC; rather, it is a consequence
of enhanced northward heat transport out of the region (Keil
et al., 2020; He et al., 2022), explained by a trend toward a
more frequent positive phase of the North Atlantic Oscillation
(Fan et al., 2023). Nevertheless, under strong global warming and
a weakened AMOC, Oldenburg et al. (2018) found in CMIP5
models an increased Arctic OHT as strengthened gyre circulations
advect warmed surface waters. Heat loss to the atmosphere is
reduced, leaving more heat in the subpolar ocean that contributes
to enhanced ocean heat transport to the Arctic Ocean (Nummelin
et al., 2017). Finally, Weijer et al. (2022) provides some evidence
that the AMOC may influence the Arctic heat budget through its
impact on poleward heat transport, as climate models simulating
future scenarios almost unanimously project a decrease in the
strength of the AMOC and often an increase in OHT into the Arctic
(Hwang et al., 2011). Furthermore, as heat loss from the North
Atlantic declines, it can contribute to the weakening of the AMOC
(Garuba and Klinger, 2016; Gregory et al., 2016; Couldrey et al.,
2021). We explore these links between the AMOC and the Arctic
Ocean in this study, using a reconstructed AMOC index based on
the anomaly between the SST in the SPG and the global SST (Caesar
et al., 2018). The selected members are evaluated for their ability to
represent the Atlantic Water layer in the Eurasian Arctic region.

In Section 2, we describe our datasets, the selectionmethod, and
the evaluation tools for the selected subset in the Arctic. Section
3 presents the results obtained for the selected model ensemble
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members. Finally, a discussion and conclusion summarize the study
and explore future perspectives.

2 Materials and methods

2.1 Data

2.1.1 CMIP6 models
We use historical simulations under transient forcing that are

available for the period 1850–2014 on the CMIP6 ESGF nodes
(Eyring et al., 2016). The selection of the members occurs over
the period 1960–1990, with evaluation in the Arctic spanning the
period 1980–2014.

We have included the models that displayed at least 20
members, resulting in a total of 235 members constituting the
working database. The models are listed and described in Table 1.

2.1.2 Observations and reanalysis
2.1.2.1 HadISST

Sea Surface Temperature (SST) data are sourced from
the HadISST (Hadley Centre Global Sea Ice and Sea Surface
Temperature) dataset developed by Rayner et al. (2003). This
dataset combines global monthly SST and sea ice concentration
fields, covering the period from 1871 to the present. HadISST
employs reduced space optimal interpolation for SST data collected
from the Marine Data Bank (primarily ship routes) and ICOADS
(International Comprehensive Ocean–Atmosphere Data Set) until
1981, followed by a blend of in-situ and adjusted satellite SSTs from
1982 onward.

2.1.2.2 EN4

EN4 (Good et al., 2013) is a global ocean subsurface
temperature and salinity dataset covering the period from 1,900
to the present. It provides two main data products: (1) a database
of quality-controlled in situ profiles, and (2) spatially complete
analyses with a 1◦ × 1◦ horizontal resolution and 42 depth
levels from 83◦S to 90◦N. The data sources include Argo (2,000),
ASBO (Arctic Synoptic Basinwide Oceanography), GTSPP (Global
Temperature and Salinity Profile Program), and WOD13 (World
Ocean Database). The analyses encompass observation weights and
standard error information. Due to sparse observations in certain
regions, EN4 defaults to a 1970–2000 climatology. To align with
the CMIP historical period delimitation, we will utilize the EN4
product from 1970 to 2014.

2.1.2.3 ORAS5

The Ocean Reanalysis System 5 (ORAS5) reanalysis dataset
provides global ocean and sea-ice monthly mean data, prepared
by the European Centre for the ECMWF OCEAN5 ocean
analysis-reanalysis system (Copernicus, 2021). OCEAN5 (Zuo
et al., 2019) utilizes the NEMO ocean model and assimilates
subsurface temperature, salinity, sea-ice concentration, and
sea-level anomalies. The consolidated product employs
reanalysis atmospheric forcing (ERA-40 until 1978 and
ERA-Interim from 1979) and reprocessed observations. The
ORAS5 dataset is produced by ECMWF and funded by the
Copernicus Climate Change Service. To align with the CMIP

historical period delimitation, we will use ORAS5 reanalysis data
covering 1979–2014.

2.2 Method

2.2.1 AWCT and AWCD definition
In this study, we define the Atlantic Water Core Temperature

(AWCT) as the maximum temperature measured in the vertical
direction between 200 and 900meters (Shu et al., 2019) in the Arctic
Ocean. The AtlanticWater CoreDepth (AWCD) refers to the depth
at which the AWCT is found. Both AWCT and AWCD are spatially
averaged 2D variables evaluated along defined transects or regions.

2.2.2 Statistical tools
We use a set of statistical metrics to evaluate the skill of

CMIP6 ensemble members in reproducing observed variability in
the SPG and in representing AtlanticWater properties in the Arctic.
Specifically, we calculate the Pearson Correlation Coefficient (PCC;
Taylor, 2001) to assess the degree of linear agreement between
the AMOC-SST index from model simulations and the observed
index derived from HadISST over the selection period (1960–
1990). This allows us to identify ensemble members that exhibit
realistic temporal variability in upstream ocean conditions, which
are relevant for anticipating changes in the Arctic Ocean.

To evaluate model performance in the Arctic region, we use
the root mean square error (RMSE) and two of its variants: the
Centered RMSE (CRMSE), which eliminates the mean to isolate
differences in variability, and the Normalized RMSE (NRMSE),
which scales the RMSE by the mean of the observed field for
easier interpretation across variables. These metrics are applied to
the AWCT and AWCD in the Eurasian Arctic Ocean over the
evaluation period (1980–2014), using both ORAS5 reanalysis and
EN4 observational products as references.

The combination of these metrics enables us to evaluate both
temporal variability (via PCC) and absolute biases (via RMSE,
CRMSE, and NRMSE), as well as to determine whether the
selected model subset enhances the representation of Atlantic
Water properties compared to the full ensemble. By defining pi as
our predicted value at time i and oi as our observed value at time i,
we have the following:

RMSE =

√

√

√

√

n
∑

i=1

(pi − oi)2

n

CRMSE =

√

√

√

√

n
∑

i=1

((pi − p̄)− (oi − ō))2

n
NRMSE =

RMSE

ō

2.2.3 Member selection
We apply a constraint or selection to the 235 ensemble

members from the 12 CMIP6 models detailed in Table 1. Our
selection is based on an AMOC-SST index derived from SST
observations (Caesar et al., 2018). This index is defined by
calculating the anomaly (Figure 1, left) relative to the 1871-1900
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TABLE 1 Description of the CMIP6 models used in this study, including their respective research centers (institutions), the number of included ensemble

members, and the names and resolutions of their ocean components.

No. Model Nb of Ocean grid Nb of Ocean Institution

members resolution levels

1 ACCESS-ESM1-5 20 360× 300 50 MOM5.1 CSIRO-ARCCSS, Australia

(Ziehn et al., 2020)

2 CanESM5
⋆ 20 360× 291 45 NEMO3.4 CCCa, ECC, Canada

(Swart et al., 2019)

3 CNRM-CM6-1
⋆ 20 362× 294 75 NEMO3.6 CNRM, CERFACS, France

(Voldoire et al., 2019)

4 EC-Earth3
⋆ 20 362× 292 75 NEMO3.6 EC-Earth-Consortium France

(Döscher et al., 2022)

5 E3SM-2-0 18 30/60 km 60 MPAS-Ocean LLNL, ANL, BNL, LANL, LBNL, ORNL,
PNNL, SNL, USA

(Golaz et al., 2022) (unstructured)

6 GISS-E2-1-G 20 360× 180 4 0 GISS Ocean v1 Goddard Institute for Space Studies, USA

(Kelley et al., 2020)

7 HadGEM3-GC31-LL
⋆ 20 360× 330 75 NEMO-HG3-GO6 Met Office Hadley Centre, UK

(Andrews et al., 2020)

8 IPSL-CM6A-LR
⋆ 20 360× 332 75 NEMO-OPA Institut Pierre Simon Laplace, France

(Boucher et al., 2020)

9 MPI-ESM1-2-LR 20 2 56× 220 40 MPIOM1.63 Max Planck Institute for Meteorology,
Germany

(Mauritsen et al., 2019)

10 MIROC6 20 360× 256 63 COCO4.9 JAMSTEC, AORI, NIES, RIKEN, Japan

(Tatebe et al., 2019)

11 NorCPM1 20 320× 384 53 MICOM1.1 NorESM Climate modeling Consortium,
Norway

(Bethke et al., 2021)

12 UKESM1-0-LL
⋆ 17 360x330 75 NEMO-HG3-GO6 Met Office Hadley Centre, UK

(Sellar et al., 2019)

Models with ⋆ utilize NEMO as their ocean component.

FIGURE 1

Description of the AMOC-SST index (annual values are in blue, while the 20-year running mean is in dark blue) as described in Caesar et al. (2018),

using HadISST data. The anomaly plotted on the left is obtained by subtracting the November-May SST in the SPG (the blue zone in the right map)

from the global November-May SST.

difference between the global and SPG regions (Figure 1, right)
November-May SST.

We select model members from the CMIP6 models described
in Table 1 that display an AMOC-SST index with a Pearson

correlation coefficient (PCC) greater than 0.5 (pval≪ 0.01) with
the AMOC-SST index based on HadISST over the period from
1960 to 1990. In a tracer experiment (Wefing et al., 2021), it was
found that it takes about 10 years for the Atlantic Water layer to
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reach the Nansen Basin (see their Figure 6) after entering the Arctic
Ocean through three branches: the Norwegian Coastal Current
(NCC), the Fram Strait BranchWater (FSBW), and the Barents Sea
BranchWater (BSBW). Therefore, the evaluation of our selection is
conducted at the end of the historical period (1980–2014) to allow
for the water masses to travel and reach the Eurasian Arctic Ocean.

3 Results

To assess whether the selected ensemble members provide
improved performance compared to the full ensemble, we evaluate
the Atlantic Water Core Temperature (AWCT) and Core Depth
(AWCD) across the Eurasian Arctic region using RMSE, NRMSE,
and PCC. These metrics enable us to quantify both the magnitude
of model biases and the extent to which model variability
aligns with observations and reanalysis products. The results are
summarized in Table 2, indicating that the selected ensemble
exhibits reduced RMSE and enhanced correlation for both AWCT
and AWCD, suggesting a more realistic representation of Atlantic
Water properties.

3.1 AW layer in reanalysis, observation, and
CMIP6 models

A warming trend is observed in the AW layer during the last
few decades of the ORAS5 reanalysis (Figure 2). This finding aligns
with previous studies (Richards et al., 2022; Wang et al., 2024)
and emphasizes the importance of accurately representing these
water masses entering the Arctic for future projections. The trend
reaches 2◦C in the Barents Sea and Fram Strait and is evident
throughout the entire Arctic Ocean, with smaller values (<0.5◦C)
along the Canadian Archipelago, except in front of the Bering
Strait. The AW layer displays a cooling trend in the Canadian
Basin, which may be linked to a strengthening of the Beaufort Gyre
(Richards et al., 2022). However, uncertainty remains significant in
ocean reanalyses for the Arctic Ocean: Rautiainen (2020) compared

TABLE 2 Evaluation of the AWCT (top) and AWCD (bottom) over the

period 1980–2014.

AWCT [1980− 2014] RMSE PCC

Ens. mean EN4 0.67 (0.23) 0.67 (pval≪ 0.01)

Selection EN4 0.57 (0.22) 0.74 (pval≪ 0.01)

Ens. mean ORAS5 0.19 (0.11) 0.58 (pval≪ 0.01)

Selection ORAS5 0.11 (0.09) 0.7 (pval≪ 0.01)

AWCD [1980− 2014] RMSE PCC

Ens. mean EN4 0.73 (0.14) 0.49 (pval≪ 0.01)

Selection EN4 0.55 (0.13) 0.64 (pval≪ 0.01)

Ens. mean ORAS5 0.78 (0.10) 0.19 (pval= 0.26)

Selection ORAS5 0.59 (0.09) 0.45 (pval≪ 0.01)

The total and selection ensemble means (based on the 1960-1990 period) are compared to a
reanalysis product (ORAS5) and observations (EN4) in terms of bias (RMSE for AWCT and
NRMSE for AWCD) and correlation (PCC). CRMSE is shown in parentheses.

the temperature trends for the layer [300–700 m] in the Arctic
across several reanalyses (including ORAS5) and identified some
disagreements among the reanalysis products.

To assess the spread in CMIP6 models regarding the
representation of the AW in the Arctic, we evaluate the AWCT
and AWCD for 12 CMIP6 models (see Section 2.1) over different
transects across the Arctic, following the ocean circulation of the
deep waters. The top map in Figure 3a shows the AWCD averaged
over 1979–2018 from the ORAS5 reanalysis. In this product, the
depth of the AW layer core is about 200 meters in the Barents
Sea and over the Fram Strait, reaching 500 meters in the Beaufort
Sea. To capture AW flowing from the Eurasian Basin into the
Amerasian Basin, the time series of the AWCT and AWCD (mean
and standard deviation) averaged over the transect at the entrance
of the Amundsen Basin, which is the deepest abyssal plain in
the Arctic Ocean (red transect in Figure 3a), are computed and
displayed in Figures 3b, c. Core depths in excess of 500meters likely
reflect limited model skill.

The time series in Figures 3b, c illustrate the spread of CMIP6
models (measured as one standard deviation from the ensemble
mean) regarding the representation of the AW layer in the Arctic.
The total ensemble spread, calculated as the standard deviation
across all ensemble members, is 0.9◦C for the AWCT and 246
meters for the AWCD. For the AWCT, the models with the
maximum spread are E3SM-2-0 (0.9◦C) and EC-Earth3 (0.36◦C).
The models with the minimum spread are GISS-E2-1-G (0.04◦C)
and NorCPM1 (0.05◦C). The spread in AWCD ranges from 22
meters for the MIROC6 model to 231 meters for the CNRM-CM6-
1 model.

To evaluate the CMIP6 ensemble mean bias, we estimate the
AWCT and AWCD averaged over 1979–2014 for the ORAS5
reanalysis and 1970–2014 for the EN4 product (see Data section).

FIGURE 2

Trend of the AWCT in the ORAS5 reanalysis calculated from a least

squares polynomial fit over the period of 1970–2018.
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FIGURE 3

The top map (a) shows the mean of the AWCD for ORAS5 reanalysis from 1979 to 2014. The time series of the AWCT (b) and AWCD (c) are averaged

over the transect in the Amundsen Basin, which is plotted in red in the top map. The thick lines represent the mean of the CMIP6 models, and the

envelope shows the spread (one standard deviation) of the models. The thick black line represents the multi-model mean (MMM). The time series for

the ORAS5 reanalysis (mean and standard deviation) are shown in orange, while the EN4 product is represented by the thick red line.
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The results are very different for the AWCT: ORAS5 has an
average AWCT of 0.29◦C, while the EN4 AWCT is 1.18◦C. This
difference of almost one degree could be explained by the fact that
observations are hard to obtain in this remote region with extreme
conditions. The sparsity of hydrographic profile measurements
increases the uncertainties of the ocean subsurface data (Uotila
et al., 2019; Zuo et al., 2019). The reanalysis and the observations
agree more on the depth of the AWCT: ORAS5 has an average
AWCD of 380 meters, while the EN4 average is 347 meters. From
specific studies (Richards et al., 2022, their Figure 2) focusing on
the AW, it seems EN4 is closer to other observational products
than ORAS5 when looking at the area close to the transect in the
Amundsen Basin.

The multi-model mean (MMM) AWCT has a cold bias, as
it is 0.26◦C over 1950-2014, and half of the models have an
AWCT lower than 0◦C (ACCESS-ESM1-5, CanESM5, CNRM-
CM6-1, HadGEM3-GC31-LL, UKESM1-0-LL). TheMMMAWCD
over 1950–2014 is 700 meters, and almost every model shows a
deeper AWCT except for E3SM-2-0 (205 meters), which displays
a very different vertical water mass structure compared to the other
CMIP6 models (see Supplementary Figure S10), and NorCPM1
(440 meters), which has the least biased AWCD.

AWCT and AWCD time series are provided for other regions
(Barents Sea Opening or BSO, Fram Strait, and Makarov Basin)
as Supplementary Figures S2–S4. A positive trend is evident at the
end of the historical period in the AWCT over the BSO in the
multi-model ensemble mean, as well as in EN4 and ORAS5. An
assessment of AWCT and AWCD model means, reanalyses, and
observations for different transects over the Arctic during the 1950–
1980 period is provided in Supplementary Figures S5, S6. ES3M-
2-0 demonstrates the most biased mean state among the various
transects considered.

3.2 The model member selection

The selection method is applied to the ensemble members over
the 1960-1990 period (see Section 2.2), resulting in the selection
of 19 members out of 235. A Taylor diagram in Figure 4 illustrates
the distribution of the members in terms of the correlation
coefficient and centered RMSE (see Section 2.2). We note that
the selected members, based on our correlation criteria (coarse
crosses), exhibit a wide range of centered RMSE (measured by

FIGURE 4

Taylor diagram showing the relative relationships of the climate model members based on correlations (the red segment represents the 0.5 value),

standard deviations, and centered RMSE (the half circle, red for the 0.5 value). Crosses represent the CMIP6 model ensemble members. Bold crosses

denote the selected members, i.e., the members with PCC > 0.5 (pval ≪0.01) with respect to the reference: the HadISST AMOC-SST index over

1960–1990.
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FIGURE 5

AMOC-SST index for the multi-model ensemble mean (blue), the observations (HadISST, black), and the ensemble mean of the selection (orange).

The orange window highlights the period used for selection (1960–1990).

the distance to the black star). This highlights the challenge of
choosing between improving correlation and reducing bias when
selecting the members. The relatively small fraction of members
selected (8%) suggests that this method could be tested on a larger
dataset to identify more members that are well correlated with the
AMOC-SST index.

To illustrate the sensitivity to the window period used
for selection, Supplementary Figure S7 shows other periods for
comparison. The number of members selected varies around 10%
of the total number of members for the different time windows.

The time series of the AMOC-SST index for the ensemble
mean, the selection ensemble mean, and the observations
(HadISST) are presented in Figure 5. The selection ensemble mean
shows a stronger correlation (PCC = 0.32) with the HadISST
AMOC-SST index than the ensemble mean (PCC = 0.12) during
1980–2014 (following the selection period of 1960–1990). This
persistence indicates that the selected model members may exhibit
variability more akin to the observations of surface temperature
in the SPG region for several decades after selection is complete.
The method exhibits minimal sensitivity to the time window: when
the selection is conducted over 1950–1990, the correlation for
the 1980–2014 period increases from 0.12 (all members) to 0.50
(selected members) (see Supplementary Figure S8).

3.3 Evaluation of the members selected

The upstream impact of our approach is tested with a focus
on the representation of the AW properties at the entrance of the

FIGURE 6

Averaged AWCT of the ORAS5 reanalysis over 1979 to 2018. The

black trapezoid highlights the area used to assess the ensemble

selection method.

Eurasian Arctic Ocean (Figure 6) over the end of the historical
period [1980–2014]. Figure 6 displays a 2Dmap of the AWCT from
the reanalysis ORAS5 for the period 1979–2018 (the entire available
period), indicating a cooling of the water from the Eurasian to the
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FIGURE 7

Time series for the AWCT (a) and AWCD (b) averaged across the region depicted in Figure 6 for the multi-model ensemble (members in gray, mean in

black as MMM) and the selection ensemble mean (blue for PCC > 0.5, green for PCC > 0.65; selection period is 1960–1990), ORAS5 reanalysis (red),

and observations (orange). (c) Shows the temperature profiles averaged from 1980–2014 for the ensemble members, with selected members

represented by thicker lines.
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Canadian Basin. An equivalent figure using the EN4 product is
available in the Supplementary Figure S9.

The mean bias and correlation of AWCT and AWCD
with respect to reanalysis (ORAS5) and observations (EN4) are
calculated over the Eurasian Arctic region, as shown in Figure 6 and
displayed in Table 2. The NRMSE is applied to AWCD to normalize
the RMSE between 0 and 1, enhancing its readability.

Regarding the AWCT (Table 2, top), the selection ensemble
mean exhibits a stronger correlation with the reanalysis ORAS5
and the EN4 observation over the Eurasian Arctic than the total
ensemble. The RMSE decreases when estimated against ORAS5
and EN4 for the selection ensemble mean compared to the total
ensemble mean. For the AWCD (Table 2, bottom), both correlation
and error also improve when the selection ensemble mean is
compared to ORAS5 and EN4.

Equivalent results are presented in the Supplementary material
for another selection period (1950–1990; see
Supplementary Table S1) to illustrate the sensitivity of the findings.
Several other periods were tested (not shown), resulting in a
systematic reduction of the RMSE and an increase in correlation
with respect to reanalysis and observation for both AWCT and
AWCD. However, for some selection periods, including 1950–
1990, the AWCT RMSE with respect to ORAS5 was higher for
the selected members. In those cases, the AW layer from the
selection remains shallower (AWCD is less biased) but shows
a colder AWCT than the total (original) ensemble mean (see
Supplementary Figure S10).

Time series for the individual CMIP6 ensemble members are
shown in Figure 7 for the AWCT (Figure 7a) and the AWCD
(Figure 7b), along with the reanalysis and observations, averaged
over the black trapezoid in Figure 6, which primarily corresponds
to the Amundsen and Nansen Basins.

The ensemble mean of the members with a significant
correlation of 0.5 or higher (blue line) exhibits a warmer AWCT,
aligning better with ORAS5 and EN4. Selecting the members with
a correlation coefficient of 0.65 or higher (green line) positions
the selection ensemble between the EN4 and ORAS5 estimates,
complicating the assessment of whether the sub-selection is more
or less biased. Some studies suggest that EN4 may provide a more
realistic representation, whereas ORAS5 might be too cold for the
AWCT (Uotila et al., 2019; Richards et al., 2022), indicating that
our selection represents an improvement. After 2007, the AWCT
forORAS5, the ensemblemean, and both selection ensemblemeans
become nearly indistinguishable.

Regarding the AWCD, the selection shows improved
performance for the AWCD throughout the entire period
compared to both observations and reanalysis, particularly in the
decades following the selection. Increasing the threshold for the
selection from 0.5 to 0.65 for the correlation coefficient minimizes
the bias of the selected ensemble. Variability is also better captured,
and evaluation becomes easier as observations and reanalysis are
much closer in this region for estimating the AWCD.

The temperature profile from 1980 to 2014 of the ensemble
members is compared to ORAS5 and EN4 for the same region
(Figure 7c). Most members exhibit a core temperature that is
too deep below 200 meters, a well-known bias in CMIP models
(Langehaug et al., 2023; Shu et al., 2019, and see Section 1). The
MIROC6 model shows warmer temperatures than observations

below 300 meters, with a difference of up to 1.5◦C at a depth of
1000 meters. E3SM-2-0 displays a different structure, possibly due
to the unstructured grid mesh used in the ocean for this model.

4 Discussion

We have applied a selection method based on an AMOC-SST
index to 235 historical simulations from 12 CMIP6 models. The
selection of members aligns more closely with the observed index
than the total ensemblemean in the SPG over the next 25 years after
the selection period, indicating that we successfully constrained the
internal variability of the model ensemble members. Additionally,
the selection exhibits reduced error and better correlation for both
AWCT and AWCD in the Eurasian Arctic compared to reanalysis
and observations during the latter period.

While CMIP6 models are known to underestimate ocean heat
transport into the Arctic, our selection method does not directly
address this bias. However, the improved representation of Atlantic
Water properties (AWCT and AWCD) in the selected ensemble
suggests that the method goes beyond simply matching historical
trends in the SPG.

The selection based on the AMOC-SST index results in
consistent improvements in both the mean state and variability
in downstream Arctic regions over an independent evaluation
period. This indicates that the chosen members likely capture
more realistic large-scale drivers of Arctic Atlantification, rather
than coincidentally aligning with observed past variability. This is
consistent with the understanding that the AMOC plays a central
role in driving multidecadal variability in the North Atlantic,
including SST and salinity patterns that influence Arctic Ocean
properties (Zhang et al., 2019).

We have shown that the Atlantic Water layer in the selected
ensemble consistently remains shallower and, therefore, more
realistic across various selection periods. However, increasing the
constraint—by selecting members with a PCC greater than 0.65
instead of 0.5—leads to a significant reduction in the number of
selected members. Most members in the total ensemble exhibit a
low PCC (< 0.5) with the AMOC-SST index, indicating that this
method would benefit from testing with a larger ensemble size to
enhance its robustness.

The correlation threshold (PCC > 0.5, p ≪ 0.01) used for
ensemble member selection was chosen to ensure a statistically
meaningful relationship with the observed AMOC-SST index while
preserving enough members for further evaluation. Although
this value is somewhat arbitrary, it reflects a moderate level of
correlation that is commonly accepted in climate model evaluation.
To test the sensitivity of the results, we explored alternative
thresholds (e.g., PCC > 0.65), which led to fewer selected members
but showed similar improvements in downstream variables (see
Figure 7 and Supplementary Figure S10). In future studies, this
selection approach could be expanded to include additional
metrics’ such as RMSE or trend agreement in key Arctic variables’
to develop a more comprehensive and physically grounded
ensemble selection.

One limitation of the current approach is the relatively small
number of ensemble members retained after selection: only 19 out
of 235 ( 8%). This strict filtering was required to ensure statistical
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significance (PCC > 0.5, p ≪ 0.01) and relevance to observed
AMOC-SST variability. However, it does reduce the robustness of
the selected ensemble and raises the possibility of overfitting to
historical trends. This could limit the generalizability of the results,
especially for future projections beyond the training window.

While the selected members consistently show improved
performance in downstream variables (AWCT and AWCD), we
consider this study a first step toward a scalable method. Future
research should focus on expanding the ensemble size, applying
multi-metric selection, or adopting ensemble weighting schemes.
These approaches could maintain greater diversity within the
ensemble while leveraging observed constraints to improve model
skills in the Arctic.

An important consideration in this study is the use of
two different reference datasets’ ORAS5 reanalysis and the
EN4 observational product, for evaluating Atlantic Water
properties. Unlike purely observational datasets such as EN4,
which exhibit low bias in the mean state, ORAS5 uses an
ensemble-based data assimilation approach, ensuring physical
consistency in ocean circulation and stratification (Carton
et al., 2019). These datasets produce notable differences in
the Atlantic Water Core Temperature (AWCT) in the Arctic.
This highlights the inherent uncertainty in Arctic subsurface
observations and reanalysis products, driven by limited
in situ measurements and the application of extrapolation
techniques in regions with insufficient data coverage. While
these uncertainties complicate direct model evaluation, our
selection method demonstrates consistent improvement in
representing Atlantic Water Core Depth (AWCD) and, in most
cases, AWCT relative to both ORAS5 and EN4. The agreement
across multiple reference datasets suggests that the benefits of
the selection are robust to the choice of validation product.
Nonetheless, we acknowledge that observational uncertainty
remains a key limitation in constraining model skill in the
Arctic and should be accounted for in future multi-dataset
evaluations.

The selection method in this study relies on the AMOC-SST
index, which is derived from SPG SST anomalies and has been
proposed as an observational proxy for AMOC variability (Caesar
et al., 2018). This approach is motivated by evidence that SPG
surface temperature variability is associated with broader Atlantic
circulation changes that influence heat transport into the Arctic
(e.g., Fan et al., 2023; Drews et al., 2024). However, we acknowledge
that this index alone does not fully capture the complexity of the
mechanisms involved in Arctic Atlantification. Processes such as
salinity-driven stratification, vertical mixing, and gyre dynamics are
also key contributors to Atlantic water transport.

The AMOC-SST index serves as a statistical constraint,
reflecting upstream variability patterns linked to Arctic subsurface
changes. Although our results suggest this approach improves
agreement with observations for AW core temperature and depth,
we acknowledge that future ensemble selection efforts could
benefit from integrating multiple physical metrics’ such as OHT
estimates, salinity structure, or circulation strength—to create a
more mechanistic and comprehensive framework.

Although this study focuses on the connection between
multidecadal variability of SPG surface temperature and Arctic

Atlantification, we acknowledge that multiple mechanisms
contribute to the observed Arctic warming. For instance, the
North Atlantic Oscillation (NAO) influences both oceanic and
atmospheric circulation patterns, modulating heat and freshwater
transport into the Arctic. Sea ice loss itself acts as both a symptom
and an amplifier of warming through ice albedo feedback and
changes in vertical heat fluxes. In addition, atmospheric heat
transport and changes in wind-driven ocean circulation have been
shown to play key roles in shaping Arctic temperature trends
and variability.

The AMOC-SST index used here captures part of the
decadal-scale oceanic variability linked to AMOC, but it does
not encompass all relevant feedbacks or processes. Our results
should therefore be interpreted as highlighting one influential
pathway, rather than a comprehensive causal mechanism. Future
ensemble selection frameworks could benefit from incorporating
multiple observational constraints—including sea ice metrics,
surface heat fluxes, and freshwater content—to better represent the
interconnected drivers of Arctic change.

5 Conclusion

In conclusion, our study using CMIP6 climate models
suggests that the link between the surface SPG and the Arctic
region, specifically the Arctic-Atlantic connectivity, is of utmost
importance for improving the representation of the Atlantic layer
of the Arctic Ocean. While our findings provide a foundation
for further investigation, the complex nature of these interactions
highlights the need for additional research to clarify the extent and
mechanisms of this relationship. Continued exploration in this area
will be essential for enhancing our understanding of the Atlantic
Water layer and its broader implications.

The next step in this study involves increasing the number of
CMIP6 historical simulations to provide predictions with enhanced
skill for the Arctic region based on the ensemble screening
approach, as well as improving the robustness of the method for
additional models. For evaluating the method, the selection process
could also be examined in more regions along the Arctic circulation
pathways. More complex selection methods might be explored,
such as employing a weighted ensemble mean that incorporates
weights based on trends and mean states of the AMOC-SST
index, along with AWCT and AWCD in the Fram Strait and at
the Barents Sea Opening. Additionally, incorporating more in-

situ observations from the Arctic Data Centre (https://arcticdata.
io/catalog/) could enhance the evaluation, tailored to the specific
regions being studied.

Beyond ensemble selection, improving the representation of
Atlantic Water in the Arctic also requires advancements in model
physics. Current CMIP6 models often lack the spatial resolution
necessary to capture key ocean processes, such as narrow boundary
currents, mesoscale eddies, and interactions with the complex
Arctic bathymetry. These limitations contribute to biases in the
depth, temperature, and transport of Atlantic Water. Higher-
resolution ocean components, enhanced vertical mixing schemes,
and improved treatment of overflow processes at critical gateways
(e.g., Fram Strait, Barents Sea Opening) are essential steps forward.
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In addition, better coupling between ocean, sea ice, and
atmospheric processes—particularly in the North Atlantic and
Nordic Seas—would help models simulate more realistic pathways
and feedbacks. We recommend that future CMIP phases continue
developing eddy-permitting models and explore hybrid approaches
that combine dynamical refinement with data-driven constraints.
Together, these efforts could enhance both the fidelity of model
outputs and the utility of ensemble screening methods such as the
one presented here.
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