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Extreme weather events such as heatwaves, cyclones, floods, wildfires, and 
droughts are becoming more frequent due to climate change. Climate change 
causes shifts in biodiversity and impacts agriculture, forest ecosystems, and 
water resources at a regional scale. However, to study those impacts at the 
regional scale, the spatial resolution provided by the general circulation models 
(GCMs) and reanalysis products is inadequate. This study evaluates advanced 
deep learning models for downscaling European Center for Medium-Range 
Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) 2-m temperature data by a 
factor of 10 (i.e., ranging approximately from 250 to 25 km resolution) for the 
region spanning 50° to 100° E and 0° to 50° N. We concentrate on gradually 
improving downscaling models with the help of residual networks. We compare 
the baseline Super-Resolution Convolutional Neural Network (SRCNN) model 
with two advanced models: Very Deep Super-Resolution (VDSR) and Enhanced 
Deep Super-Resolution (EDSR) to assess the impact of residual networks and 
architectural improvements. The results indicate that VDSR and EDSR significantly 
outperform SRCNN. Specifically, VDSR increases the Peak Signal-to-Noise 
Ratio (PSNR) by 4.27 dB and EDSR by 5.23 dB. These models also enhance the 
Structural Similarity Index Measure (SSIM) by 0.1263 and 0.1163, respectively, 
indicating better image quality. Furthermore, improvements in the 3°C error 
threshold are observed, with VDSR and EDSR showing increases of 2.10 and 
2.16%, respectively. An explainable artificial intelligence (AI) technique called 
saliency map analysis provided insights into model performance. Complex 
terrain areas, such as the Himalayas and the Tibetan Plateau, benefit the most 
from these advancements. These findings suggest that advanced deep learning 
models employing residual networks, such as VDSR and EDSR, significantly 
enhance temperature data accuracy over SRCNN. This approach holds promise 
for future applications in downscaling other atmospheric variables.
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1 Introduction

Climate change mitigation and adaptation are humanity’s most 
significant challenge in the 21st century (IPCC, 2021). Global 
temperatures are rising, with each successive year increasingly 
recorded as the hottest (Hansen et al., 2006; Allen, 2018; Samset et al., 
2023). On 22 July 2024, the daily global mean temperature reached a 
record high of 17.16°C, as reported by the Copernicus Climate 
Change Service (C3S). This record surpassed previous highs of 
17.09°C on 21 July 2024 and 17.08°C on 6 July 2023. Over the past 
decade, the annual maximum daily global temperatures have 
consistently reached record highs, indicating a warming trend (IPCC, 
2021; Scott et al., 2016; Frame et al., 2020). Small island nations in 
coastal areas may lose their entire country to the oceans due to 
accelerated sea level rise (Nicholls and Cazenave, 2010; Fox-Kemper, 
2021). Climate change poses a threat to biodiversity as many species 
struggle to adapt to its rapid changes (Pecl et al., 2017; Bellard et al., 
2012; Urban, 2015). Ocean warming causes coral bleaching and the 
loss of polar bear habitats (Stirling and Derocher, 2012; Hughes et al., 
2017); global food security and crop yields face threats. Many studies 
show that higher temperatures reduce crop growth and yields (Lobell 
et al., 2011; Rosenzweig et al., 2014). Sub-Saharan and South Asian 
countries are hardest hit because they rely on rainfall for irrigation, 
unlike Europe and America (Wheeler and Von Braun, 2013; Bilal and 
Gupta, 2024). Climate change exerts a 2-fold pressure on water 
resources: higher temperatures increase evapotranspiration, reducing 
surface and groundwater availability, while altered precipitation 
contributes to this issue (Gupta et  al., 2024). Some regions face 
extreme droughts, and others endure heavy rainfall due to changing 
patterns (Gosling and Arnell, 2016; Pathania and Gupta, 2024; Gupta 
and Jain, 2020). Water-scarce areas become more vulnerable 
(Pendergrass and Knutti, 2018). The cascading effects underscore the 
importance of Sustainable Development Goal 13 (Climate Action), 
which advocates for international collaboration to alleviate climate 
risks and enhance adaptive capacity in at-risk areas. Increasing events 
related to chronic heat waves and urban heat islands increase heat-
related illnesses (McMichael et al., 2006; Watts et al., 2015).

Local-scale adaptation strategy planning is unfeasible due to 
general circulation models (GCMs’) inability to represent detailed 
climate characteristics and variability (Held et al., 2019; Giorgi, 2006; 
Seneviratne et al., 2012; Maraun, 2013). Spatial resolution ranges from 
100 to 500 km; however, for analyzing fine-scale climate features, it 
must be below 25 km (Christensen et al., 2007; Schär et al., 2004). 
Improving the resolution of GCMs is essential for effectively 
addressing local-scale climate issues. Remote sensing data from 
satellites is an additional source for monitoring climate variability. 
Satellites utilize advanced sensors to measure temperature, 
precipitation, and atmospheric composition (Justice et al., 2002; Asrar 
and Dozier, 1994). Cloud cover, complex terrain, and a fixed return 
period result in spatial and temporal gaps for these satellites. 
Reanalysis products combine diverse climate data from in situ stations, 
satellite remote sensing, and outputs from physics-based climate 
models. This integration yields a comprehensive dataset for analyzing 
long-term climate trends (Kalnay, 1996; Dee et al., 2011). Notable 
reanalysis products include the fifth-generation atmospheric 
reanalysis of the global climate by the European Center for Medium-
Range Weather Forecasts (ECMWF ERA5), and Modern-Era 
Retrospective analysis for Research and Applications (MERRA) (Dee 

et al., 2011; Saha et al., 2010; Rienecker et al., 2011; Hersbach et al., 
2020). The reanalysis data achieves a spatial resolution of 50–10 km; 
however, it remains insufficient for studying the local impacts of 
climate change.

To bridge the existing gap between the available coarse-resolution 
climate data and the requirement of high-resolution data to study the 
impacts of climate change at the local scale and to make accurate 
assessments of its effects, we  need downscaling techniques. 
Downscaling has been a persistent subject of interest across numerous 
scientific fields, particularly in meteorological and climatological 
research. A diverse array of methods exists to downscale physical 
parameters such as temperature, precipitation, and wind speed. 
Primary methods employed to generate high-resolution gridded 
climate data are dynamic and statistical downscaling (Hewitson and 
Crane, 1996; Rummukainen, 1997; Wilby and Wigley, 1997).

Dynamic downscaling simulates high-resolution climate data 
using regional climate models (RCMs). These models use physical 
principles to simulate climate processes with a higher spatial resolution 
using GCM boundary conditions (Giorgi, 2006; Wang Y. et al., 2004). 
This method ensures that high-resolution data are physically consistent 
with larger-scale climate dynamics due to the model complexity and 
the need to replicate climate processes over long periods and wide 
domains. However, dynamic downscaling is significantly 
computationally expensive. While statistical downscaling has been the 
preferred method due to its lower processing demands and its ability 
to uncover empirical correlations between past coarse-resolution and 
high-resolution data (Wilby and Dawson, 2013). Recent advancements 
in machine learning and artificial intelligence (AI) have introduced 
more sophisticated approaches to enhance predictive accuracy. 
Machine learning techniques, particularly in Earth sciences and 
hydrology, have significantly improved the ability to model complex 
systems (Raaj et  al., 2024; Barbhuiya et  al., 2024). Among these 
advancements, convolutional neural networks (CNNs)-based super-
resolution deep learning algorithms have emerged as powerful tools 
for improving spatial resolution beyond what traditional statistical 
methods could achieve (LeCun et al., 2015; Goodfellow et al., 2020; 
Guo et  al., 2016; Yang et  al., 2019). Single-image super-resolution 
involves generating high-resolution images from their low-resolution 
counterparts (e.g., Yang et al., 2019). This task is analogous to the 
downscaling of climate variables. Convolutional neural networks 
(CNNs) effectively capture complex non-linear spatial relationships in 
climate data. This makes them useful, especially for tasks involving 
spatially distributed data, such as climate data. While CNN-based 
architectures have been increasingly applied in Earth-system sciences 
(e.g., Shen, 2018; Reichstein et al., 2019), their application for climate 
data downscaling remains underexplored (e.g., Vandal et al., 2019; 
Baño-Medina et al., 2021). CNNs utilize gridded climate data similar 
to image data, leveraging their ability to discern spatial patterns in 
complex datasets, as found by recent studies in downscaling (Baño-
Medina et al., 2020; Pan et al., 2019). Nevertheless, the traditional 
CNN methodology, which depends on comparatively shallow 
architectures, has frequently yielded inferior results when juxtaposed 
with statistical downscaling methods. Shallow networks may find it 
challenging to represent complex structures and rare, extreme events, 
which are essential for accurately modeling climate data characterized 
by high spatial variability. Although stacking additional layers may 
enable CNNs to capture more intricate features (LeCun et al., 2015), 
deeper CNNs frequently face challenges such as vanishing or 
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exploding gradients, leading to unstable training and network 
deterioration (Pan et  al., 2019). The limitations of plain CNN 
architectures render them less effective for climate downscaling, 
necessitating robust representations of local and extreme events. The 
challenges encompass the inability to reliably capture extreme events 
and the propensity to overfit on localized training data, resulting in 
inadequate generalization when forecasting unseen or rare 
occurrences. Residual Networks, as proposed by He et  al. (2016), 
integrate residual connections to resolve these challenges, facilitating 
more stable and efficient training of deeper networks. They incorporate 
shortcut connections to circumvent layers and alleviate degradation, 
facilitating effective learning in deeper architectures. Residual 
connections mitigate vanishing gradients by facilitating the 
propagation of gradients through the network without significant 
diminishment or amplification. With their larger receptive fields, 
deeper networks should theoretically integrate more spatial 
information and model complex patterns in climate data more 
accurately. Thereby surpassing shallow networks in capturing both 
global and local features. The advantages of incorporating residual 
connections in CNN architectures are explored, particularly for 
overcoming the limitations of traditional CNNs in modeling complex 
spatial patterns and extreme climate phenomena in downscaling 
applications. This research will evaluate the efficacy of advanced 
models such as Very Deep Super-Resolution (Kim et al., 2016) (VDSR) 
and Enhanced Deep Super-Resolution (Lim et al., 2017) (EDSR), 
which employ residual connections, in enhancing climate downscaling 
accuracy, particularly in areas and events where shallow CNNs have 
historically underperformed. To clear the decisions and relationships 
taken by deep learning algorithms, explainable AI has been used 
(Rampal et al., 2022b) to improve the transparency of deep learning 
algorithms. With its help, it is possible to identify the most relevant 
features at coarse resolution. To better understand the working of the 
residual connections in the process of downscaling, we also delve into 
the explainability part of the AI models used in our study. Early work 
by Baño-Medina et  al. (2020) highlighted XAI’s value in refining 
localized temperature and precipitation predictions through statistical 
downscaling. Subsequent studies expanded these applications—for 
instance, Rampal et  al. (2022a) employed gradient-driven 
explainability methods to map geographic influences on extreme 
rainfall forecasts, particularly for high-impact weather systems such as 
atmospheric rivers and tropical cyclones. Further investigations by 
González‐Abad et  al. (2023) and Balmaceda-Huarte et  al. (2024) 
utilized XAI frameworks to audit machine learning downscaling tools, 
exposing artificial correlations in model behavior while developing 
metrics to assess their generalization capacity under novel climate 
conditions. Our aim is to analyze the residual connections’ influence 
in advanced super-resolution networks on downscaling 2-m 
temperature data for the Indian subcontinent. Although conventional 
CNN-based models, such as SRCNN, demonstrate efficacy in climate 
downscaling, they frequently fail to represent intricate spatial 
relationships and localized climate extremes accurately. Advanced 
architectures with residual connections, such as VDSR and EDSR, 
were investigated to enhance downscaling accuracy in intricate 
landscapes such as the Himalayas and the Tibetan Plateau. The 
primary goals include downscaling 2-m temperature data for the 
chosen study area, evaluating the influence of residual connections on 
performance, and identifying regions where deep learning-based 
downscaling exhibits suboptimal performance.

2 Data

The downscaling of temperature data was performed for a region 
spanning 50°–100° E and 0°–50° N (see Figure 1), covering over 25 
million km2. It covers Central Asia, the Indian subcontinent, and the 
Arabian Peninsula. It contains a wide range of climates, from tropical 
and sub-tropical to temperate and arid. The landscapes in this area 
range from the rainforests of the Western Ghats, which get up to 
6,000 mm of rain a year, to the Thar Desert, which gets less than 
200 mm of rain a year on average. The study area includes the 
Himalayan mountains, commonly known as the “Third Pole” due to 
its extensive ice coverage, which contains the tallest peaks on the 
planet, including Mount Everest at 8,848 m. The study domain also 
includes the plains of the Indus and Ganges rivers, which are home to 
more than a billion people and are some of the most densely populated 
agricultural areas in the world. The study domain also includes 
portions of Central Asia and the Arabian Peninsula. Almost 44.67% 
of the study is covered by the water bodies, specifically the ocean. This 
includes the Indian Ocean, the Bay of Bengal, and the Arabian Sea. 
The diverse climates and topographies present a unique challenge for 
climate modeling and downscaling, making it a critical area for 
scientific study to better understand and mitigate the impacts of 
climate change.

The 2-m temperature data from ERA5 from 1 January 1973 to 31 
December 2023 are used; ERA5, the fifth-generation ECMWF 
reanalysis, offers comprehensive climate information from 1940 
onward. It provides a detailed and consistent record of atmospheric, 
land, and oceanic parameters. The ERA5 dataset is known for its high 
spatial and temporal resolution, with 2-m hourly data available at a 
0.25° × 0.25° grid. This high resolution makes ERA5 an invaluable 
resource for tasks such as downscaling, where high-precision data is 
crucial for accurate regional climate analysis. The dataset incorporates 
a vast array of observations and employs advanced data assimilation 
techniques, ensuring high accuracy and reliability in representing 
historical climate conditions. Using ERA5 data, this study benefits 
from the rich temporal coverage and detailed spatial granularity 
necessary for understanding and modeling temperature variations in 
the specified region.

3 Methodology

Three deep learning–based super-resolution techniques were 
applied to achieve a 10x downscaling of gridded 2-m temperature 
data. The three techniques are SRCNN, VDSR, and EDSR. All three 
downscaling methods use an end-to-end approach, which means that 
the networks do both the calibration and downscaling work 
simultaneously. The 51-year ERA5 hourly temperature dataset 
underwent data preprocessing steps described in Section 3.1. The 
convolutional layer utilizes filters that process the input data with a 
specified stride to extract spatial patterns. Each convolution operation 
was executed by calculating the element-wise dot product between the 
filters and various patches of the input. The outcome was optionally 
followed by a nonlinear transformation known as the activation 
function. This study employed the rectified linear unit (ReLU) 
activation function (He et al., 2016). The ReLU activation function is 
the most widely and extensively utilized activation function in hidden 
layers because of its efficiency and simplicity. Each model uses the 
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same training, validation, and test sets. The downscaling methods’ 
training process is identical and follows a supervised learning 
approach. After a series of experiments, we found that it is best to train 
a network with a learning rate 0.0001. Therefore, for all the training 
cases, Adam optimizer with a learning rate of 0.0001 and MSE was 
used as the loss function, with a batch size of 16 was chosen as the 
common standard. SRCNN could run with a batch size up to 64, but 
EDSR encountered graphics processing unit (GPU) memory 
constraints at batch sizes above 16. To avoid overfitting, validation loss 
was calculated after every epoch. Finally, an evaluation is conducted 
on the three methods’ results using various metrics and explained in 
Section 3.3.

Most figures adopt perceptually uniform color palettes from the 
Scientific Color Maps (Crameri, 2018) collection. This has ensured 
that the figures’ color schemes are accessible to all readers with color 
vision deficiencies interpret our findings correctly.

3.1 Data preprocessing

The 2-m temperature data is divided into training (from 1 January 
1973 to 31 December 2003), validation (from 1 January 2004 to 31 
December 2013), and test (1 January 2014 to 31 December 2023) sets. 

The training set is utilized to calibrate the models, the validation set 
for optimization and mitigating overfitting, and the test set to assess 
the models’ efficacy on novel data. This configuration guarantees a 
thorough evaluation of the models’ capacity to generalize across 
various timeframes. We use the ERA5 2-m temperature data, initially 
available at an hourly resolution. The data was converted into daily 
mean temperature values by averaging the hourly data for each day to 
facilitate downscaling. The daily mean temperatures were calculated, 
yielding data at a spatial resolution of 0.25° × 0.25°. To train the 
downscaling models effectively, paired high-resolution and 
corresponding low-resolution datasets were necessary. Bilinear 
interpolation was applied to the high-resolution data, downsampling 
it to a spatial resolution of 2.5° × 2.5°. The low-resolution temperature 
data pairs, combined with the original high-resolution data, 
constituted the training dataset for the super-resolution and 
downscaling models. The low-resolution data functioned as input, 
whereas the high-resolution data served as the target output for model 
training, enabling models to learn to enhance low-resolution data and 
produce high-resolution outputs. All three downscaling methods 
require a data preprocessing step, which includes tasks such as 
normalization and resizing. Normalization is performed by 
subtracting the minimum value from each pixel and dividing by the 
range ([maximum value] − [minimum value]). This 

FIGURE 1

Study domain with the color bar representing the region’s elevation (in meters).
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minimum–maximum normalization ensures that all the data values 
are within the range of [0, 1]. This improves the performance and 
convergence of the neural network. After the normalization process is 
performed as shown in (Equation 1), the normalized data is resized.

 

( )
( ) ( )
−

=
−

min
max min

i i
i

i i

X X
X

X X  
(1)

This normalization process uses iX to show the pixel intensity 
value in the image, min ( iX ) to show the lowest pixel intensity value, 
and max ( iX ) to show the highest pixel intensity value. This scaling 
changes each pixel to a value between 0 and 1. This keeps the relative 
intensities the same and improves consistency for analysis or training 
models. For resizing a Python-based library, OpenCV’s resize function 
is used to resize the data to a fixed image size. OpenCV (Open Source 
Computer Vision Library), originally developed by Intel® and now 
maintained by the OpenCV.org community (https://opencv.org). 
Consistent input data shape is vital for properly training neural 
networks. Finally, after the normalization and resizing are performed, 
all the preprocessed high- and low-resolution images are converted 
into NumPy arrays. This conversion to NumPy arrays was performed 
to ensure the efficient handling and processing by the neural network, 
and that it is in a suitable format for model training.

3.2 Downscaling methods

3.2.1 SRCNN
The Super-Resolution Convolutional Neural Network (SRCNN) 

(Figure 2) is designed to enhance image resolution through convolutional 
layers. It takes grayscale images as input, in our case, the temperature 
Network Common Data Form (NetCDF) file. We read and wrote 
gridded temperature data in Network Common Data Form (NetCDF), 
developed and maintained by the Unidata program at the University 
Corporation for Atmospheric Research (UCAR) (https://www.unidata.
ucar.edu/software/netcdf), which was converted to NumPy arrays and 
will be treated as images by the networks. SRCNN consists of three 
primary layers: the first layer employs 64 filters with a 9 × 9 kernel, 
followed by a dimensionality-reducing layer with 32 filters and a 1 × 1 

kernel. The final layer outputs the high-resolution image using a single 
filter with a 5 × 5 kernel. Compiled with the Adam optimizer at a 
learning rate of 0.0001 and using the Mean Squared Error (MSE) loss 
function. Our implementation of the SRCNN model includes minor 
modifications, which apply “same” padding. This step ensures the output 
dimensions remain the same as the input dimensions. We used the 
Adam optimizer instead of Stochastic Gradient Descent for faster 
convergence. SRCNN is effective for super-resolution tasks, making it 
suitable for medical imaging and satellite imagery applications.

3.2.2 VDSR
The Very Deep Super-Resolution (VDSR) network (Figure  3) 

features a deep architecture comprising 20 convolutional layers, each 
utilizing 64 filters and 3 × 3 kernels with ReLU activation. This depth 
enables the model to capture intricate details essential for high-quality 
super-resolution. A residual learning approach is employed, adding 
the original input image to the output from the final layer, which helps 
alleviate the vanishing gradient problem. We implemented a VDSR 
model with slight modifications: utilizing the Adam optimizer with a 
learning rate of 0.0001, employing Keras’s default weight initialization. 
These modifications were implemented to enhance model 
performance and training stability within our application context. 
VDSR is optimized for effective training and high performance, 
making it suitable for tasks such as photography and satellite imagery.

3.2.3 EDSR
The Enhanced Deep Super-Resolution (EDSR) model (Figure 4) is 

a state-of-the-art architecture that enhances image resolution through 
residual learning techniques. It features an input layer for grayscale 
images of size 201 × 201, an initial convolutional layer with 64 filters, and 
16 residual blocks, each with two convolutional layers (Figure 5). The 
residual connections help mitigate vanishing gradient issues, enabling 
effective learning. The architecture concludes with a final convolutional 
layer and a residual addition, producing high-resolution output. Our 
implementation of the EDSR model incorporates slight modifications, 
that is, the exclusion of residual scaling and the utilization of grayscale 
input images. While based on the EDSR framework, these changes 
optimize the model for the specific application context of single-channel 
super-resolution. EDSR significantly improves image quality and detail, 
making it suitable for applications in photography and medical imaging.

FIGURE 2

Illustration of the SRCNN model architecture that consists of three convolutional layers designed for super-resolution processing.
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3.3 Evaluation metrics

We employ two key metrics to assess the efficacy of downscaling 
models: Structural Similarity Index Measure (SSIM) and Peak Signal-
to-Noise Ratio (PSNR). SSIM evaluates perceptual quality by 
analyzing luminance, contrast, and structural details between images, 
yielding a value ranging from −1 to 1, where values approaching 1 
signify increased similarity. It is especially efficacious for assessing 
visual quality in tasks such as image reconstruction (Wang Z. et al., 
2004). Additionally, we  use multiscale-SSIM (MS-SSIM), which 
evaluates image quality at multiple scales. MS-SSIM captures both fine 
details and overall patterns, making it especially useful for climate data 

downscaling, where preserving small-scale features and global 
structure is critical. Unlike standard SSIM, MS-SSIM is more robust 
to local variations and noise, providing a more comprehensive 
assessment of model performance (Wang et  al., 2003). PSNR, 
measured in decibels (dB), quantifies the ratio between the maximum 
signal and the accompanying noise, with elevated values indicating 
superior image fidelity (Huynh-Thu and Ghanbari, 2008). Both 
metrics are extensively utilized in image processing to assess the 
precision of generated outputs.

4 Results

4.1 Comparative analysis of downscaled 
temperature models

Accurately capturing temperature variations at a fine spatial scale 
in climate is critical for improving predictions and decision-making. 
We compare the performance of three deep learning-based super-
resolution models—SRCNN, VDSR, and EDSR—in downscaling 
coarse-resolution ERA5 temperature data to a finer resolution of 
0.25°. By comparing the outputs of these models, we can see how 
model complexity affects the accuracy and quality of temperature 
predictions, especially in regions with complex terrain such as the 
Himalayas. Here, visually comparing low-resolution and high-
resolution temperature datasets can show how useful downscaling 
techniques are.

Figure 6 compares low-resolution ERA5 temperature data with 
downscaled outputs from three super-resolution deep learning 

FIGURE 3

Illustration of the VDSR model architecture that consists of 20 convolutional layers and a single residual skip connection designed for super-resolution 
processing.

FIGURE 4

Illustration of the EDSR model architecture that includes 34 convolutional layers with 16 residual blocks.

FIGURE 5

Residual Block in EDSR Model. A residual block in EDSR applies 
convolutional layers and ReLU activations, then adds the input X  to 
the output, producing 1+Xi . This skip connection aids in efficient 
learning.
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models: SRCNN, EDSR, and VDSR, all at a resolution of 0.25°. The 
top-left plot presents the input low-resolution (2.5° × 2.5°) ERA5, 
exhibiting coarse temperature patterns with restricted spatial detail. 
The SRCNN output in the top-right considerably enhances resolution, 
improving visibility of local temperature variations, yet it remains 
imprecise in capturing finer details, particularly in mountainous 
regions. The bottom-right plot illustrates the VDSR model output, 
enhancing temperature gradients and accurately depicting local 
temperature variations, particularly in the regions affected by elevation 
and terrain, like the Himalayas. The bottom-left plot displays the 
EDSR output, providing the most precise and most detailed 
representation of temperature variations.

4.2 Performance metrics and error 
threshold analysis across models

Table  1 presents a detailed comparison of the three super-
resolution models (SRCNN, VDSR, and EDSR), emphasizing the 
escalating complexity and efficacy of each. SRCNN, comprising 

merely three convolutional layers and 8,129 trainable parameters, is 
the most rudimentary model and exhibits the poorest performance 
among the three, as indicated by structural similarity and image 
quality metrics, specifically SSIM (0.8466) and PSNR (28.65 dB). 
VDSR, comprising 20 layers and 665,921 parameters, employs just one 
residual connection to enhance depth, thereby capturing more 
complex details and markedly improving performance, attaining an 
SSIM of 0.9541 and a PSNR of 33.32 dB. The highly complex model, 
EDSR, comprising 34 layers and 1,219,841 parameters, significantly 
improves performance, attaining the highest SSIM (0.9629) and PSNR 
(34.01 dB). Considering that PSNR is a logarithmic metric, EDSR’s 
PSNR exceeds that of SRCNN by approximately 3.44 dB, signifying a 
significant enhancement in image quality. The inference performance 
and GPU memory utilization for the three super-resolution models 
are displayed in Table 1. SRCNN, the simplest model, shows moderate 
inference speed and minimal memory requirements. VDSR, due to its 
deeper architecture, offers marginally improved inference speed but 
requires greater peak memory consumption. EDSR, the most complex 
model, shows a slightly reduced inference speed and utilizes the most 
GPU memory. The results demonstrate the trade-off between 

FIGURE 6

The first subplot shows the input 2.5° resolution ERA5 temperature data, while the other three subplots display the downscaled outputs generated 
using SRCNN, EDSR, and VDSR models, respectively, at 0.25° resolution.
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improved image quality, resulting from greater model complexity, and 
the associated increase in computational resource demands.

The effectiveness of the three super-resolution models (SRCNN, 
VDSR, and EDSR) on temperature data within different error 
thresholds is compared in Table 2. Thresholds at 1, 2, and 3°C show 
the percentage of predictions that fall inside these error ranges. 
SRCNN exhibits the lowest performance across all thresholds, with 
38.84% of predictions accurate within 1°C, 68.04% within 2°C, and 
78.81% within 3°C. VDSR achieves optimal performance at the 1°C 
error threshold, with 43.70% of predictions residing within that range. 
VDSR demonstrates enhancements at the 2 and 3°C thresholds, 
achieving 70.74 and 81.37% accuracy in predictions, respectively. 
EDSR demonstrates the highest accuracy at the 2 and 3°C thresholds, 
reaching 71.51 and 81.43% of predictions, respectively, while 
exhibiting a marginally lower performance at the 1°C threshold, with 
39.00% of predictions within the margin.

4.3 Model comparison for the extreme 
temperature days

Figure  7 presents 12 subplots that illustrate the mean annual 
number of days during which temperature exceeds percentile 
thresholds of 90th, 95th, and 99th across the study region for the 
testing period (2014–2023). These subplots help assess the efficacy of 
the downscaled products in capturing the extreme temperature 
conditions associated with heat waves.

For each latitude–longitude grid cell, the 90th, 95th, and 99th 
percentiles were calculated using 51 years of daily temperature data 
and they were used as the threshold for plotting the mean annual 
number of days that the temperature at each grid cell exceeded these 
percentile thresholds (Klein Tank and Können, 2003; Data, 2009). In 
Figure  7. EDSR and VDSR consistently outperform the SRCNN 
across all metrics at all percentile thresholds. Percentile-based 
extreme event identification provides a more accurate representation 
across diverse climates, from the high mountains of the Himalayas 
and the Tibetan Plateau to the arid deserts of the Arabian Peninsula, 
rather than using a fixed threshold, like 30°C, established by the India 
Meteorological Department (IMD). Typically, climate data follows a 
baseline pattern, such as seasonal cycle or long-term trends, which 
are even somewhat captured by shallow networks. However, the 

extreme events, such as the exceedance of temperature from the 99th 
percentile, are best captured by the residual connections. Residual 
learning separates the predictable baseline from high-frequency 
anomalies, enabling the model to capture general climate trends and 
critical extreme events more effectively. The residual temperature 
maps presented in Figure 8 depict the discrepancies between the 
predicted temperatures from our three downscaling models (SRCNN, 
VDSR, and EDSR) and the observed ERA5 temperatures for the 
hottest day of 2023, which occurred on 22 July, with a mean 
temperature of 26.15°C for our study area. The analysis of the residual 
temperature maps indicates that SRCNN exhibits the poorest 
performance among all the models. SRCNN overestimates 
temperatures in the Himalayan mountains and Tibetan Plateau by 
10–15°C; other models also exhibit this overestimation, albeit to a 
lesser extent than SRCNN. The overestimation is markedly 
diminished by utilizing residual learning in the downscaling method.

In the SRCNN, several regions exhibited negative residuals ranging 
from 7 to 10°C; however, nearly all these areas disappeared in the 
residual maps produced by VDSR and EDSR. Similarly, Figure  9 
illustrates the residual temperature map for the coldest day of 2023. The 
average temperature documented on 13 January was 
6.89°C. Additionally, SRCNN’s map exhibits numerous locations where 
temperature estimations are both overestimated and underestimated, 
with a significant concentration of these locations along the Himalayan 
Mountain range and the Taklamakan Desert. Conversely, in 
downscaling methods based on residual learning, it is evident that these 
irregularities are significantly diminished. The residual learning-based 
models perform exceptionally well in mainland India, which exhibits 
relatively minimal topographical variations compared to the Himalayan 
regions. These models exhibit significantly smaller residuals, indicating 
more precise temperature predictions. The residual learning method 
effectively captures the accurate temperature distribution in simpler 
terrains, such as coastal areas and plains, where discrepancies between 
observed and predicted temperatures are minimal.

4.4 Explainable AI techniques

Figure 10 reveals distinct spatial prioritization patterns based on 
saliency maps for all three downscaling models. The plots tell how 
each downscaling model architecture focuses during the downscaling 

TABLE 1 Comparison of SRCNN, VDSR, and EDSR models, showing the number of CNN layers, trainable parameters, SSIM and PSNR values, along with 
their inference performance and GPU memory usage.

Model CNN 
layers

Trainable 
parameters

SSIM PSNR (dB) Average 
inference time 

(ms)

Peak GPU 
memory (GB)

Current GPU 
memory (GB)

SRCNN 3 8,129 0.8466 28.65 51.50 ~6.63 ~4.84

VDSR 20 665,921 0.9541 33.32 48.16 ~9.35 ~4.85

EDSR 34 1,219,841 0.9629 34.01 52.02 ~11.84 ~6.04

TABLE 2 This table shows the performance of SRCNN, VDSR, and EDSR models based on the percentage of predictions within 1, 2, and 3°C error 
thresholds.

Model 1°C Error threshold (%) 2°C Error threshold (%) 3°C Error threshold (%)

SRCNN 38.84 68.04 78.81

VDSR 43.70 70.74 81.37

EDSR 39.00 71.51 81.43
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FIGURE 7

Comparison of mean annual exceedance days and performance metrics (SSIM, MS-SSIM, and pattern correlation) for ERA5 and deep learning models 
(SRCNN, VDSR, and EDSR) at the 90th, 95th, and 99th percentiles.

FIGURE 8

The residual temperature maps for 22 July 2023—the hottest day of that year—are presented for three models: SRCNN, EDSR, and VDSR. These maps 
illustrate the differences between the predicted and observed temperatures, highlighting each model’s performance in capturing temperature 
anomalies on that specific day.
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performed by it. Here, SRCNN exhibits a narrow attention, 
concentrating exclusively on the Himalayan and the Tibetan regions. 
It is neglecting almost every critical location of the Indian 
subcontinent. The VDSR moderately expands this focus by 
incorporating adjacent zones beyond the Himalayan belt and Tibet. 
In contrast, EDSR demonstrates a comprehensive and diverse 
attention distribution throughout the Indian subcontinent. Apart 
from the mountainous regions, it also gives importance to the other 
parts, such as the hydrologically active Western Ghats, arid zones, 
and coastal belts. This expansive attention profile—enabled by EDSR’s 
residual learning framework—allows the model to integrate 
multiscale features across diverse terrains, preserving fine-grained 
details often lost in coarser architectures. The residual connections 
likely facilitate this by propagating contextual information through 
deeper layers, ensuring broader spatial awareness during 
downscaling. These results highlight that attention diversity is pivotal 
for capturing India’s geographic heterogeneity, directly translating to 
superior reconstruction fidelity in high-resolution 2-m 
temperature mapping.

5 Discussion

5.1 Incompetencies with shallow CNNs in 
climate downscaling

Recent studies have assessed the efficacy of basic CNNs for 
downscaling 2-m temperature in comparison to traditional statistical 
downscaling techniques, revealing minimal enhancement (Baño-
Medina et al., 2020; Miao et al., 2019; Pan et al., 2019; Lan et al., 2020; 
Vandal et  al., 2019). Baño-Medina et  al. (2020) evaluated CNN 
methodologies with three convolutional layers, SRCNN, and different 
configurations for downscaling temperature and precipitation in 
Europe. The results demonstrated overall enhancement; however, they 
were not consistently superior to traditional downscaling methods. 
Sun and Tang (2020) utilized the identical CNN methodology in 
China; however, their results were inferior to basic Bais Correction 
and Spatial Downscaling (BCSD) in accurately depicting temporal 
correlations, particularly concerning precipitation. Vandal et al. (2019) 
employed a three-convolutional layer SRCNN model to systematically 

FIGURE 9

Residual temperature maps for the coldest day of 2023 (10 January), showing the differences between predicted and observed temperatures for the 
SRCNN, VDSR, and EDSR models.

FIGURE 10

Saliency maps for (a) SRCNN, (b) VDSR, and (c) EDSR.
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downscale precipitation from a 1° resolution to a 0.125° resolution, 
applying a scaling ratio of 2 at each iteration, resulting in outcomes 
slightly better than the BCSD. The fundamental CNN architecture in 
previous deep learning downscaling consisted of only three 
convolutional layers, which is relatively shallow and may explain the 
limited improvement compared to conventional statistical 
downscaling methods. In contrast, the residual learning-based 
architecture was derived from an improved super-resolution CNN 
framework, consisting of more than 15 convolutional layers, which is 
considerably deeper than the previous simple CNN downscaling 
architecture (e.g., Baño-Medina et al., 2020; Pan et al., 2019; Vandal 
et al., 2019). Deep networks can seamlessly incorporate low, mid, and 
high-level features in an end-to-end multilayer manner. Research 
demonstrates that network depth is of critical importance (Simonyan 
and Zisserman, 2014). The findings have facilitated the broad 
application of extensive deep CNN architectures in multiple domains. 
We  evaluated the benefits of the residual learning architecture by 
comparing it to the established three-layer convolutional plain 
architecture (SRCNN) for downscaling, in addition to the VDSR and 
EDSR architectures. Overall evaluations from metrics such as PSNR 
and SSIM indicate that VDSR and EDSR consistently surpass SRCNN 
in performance. For plain downscaling networks like SRCNN, model’s 
accuracy get saturated at a point and after that it degraded quickly 
with increase in number of layers that makes the model deeper (Wang 
and Tian, 2022).

5.2 Efficacy of advanced residual networks 
for climate data downscaling

Our comparison of three super-resolution models—SRCNN, 
VDSR, and EDSR—for downscaling temperature data offers valuable 
insights into the efficacy of various deep learning architectures. This 
discussion interprets the findings, focusing on the benefits of residual 
networks and the impact of architectural improvements such as depth 
and skip connections. The progression from SRCNN to VDSR and 
EDSR illustrates (Table 1) that increasing model complexity enhances 
the ability to capture fine details in climate data. This is evidenced by 
the significant improvements in super-resolution performance 
achieved through deeper architectures with residual connections, such 
as VDSR and EDSR, which effectively manage intricate patterns and 
spatial variations. The performance metrics across SSIM, PSNR, 
RMSE, and prediction accuracy at various temperature thresholds 
indicate that the residual networks (VDSR and EDSR) outperform the 
basic SRCNN model. According to the results of these two metrics 
shown in Table 2, we can say that residual networks-based models 
work better for the task of super-resolution, and EDSR is the best 
model for super-resolution. This superiority is attributed to the 
enhanced capacity of residual networks to capture complex patterns 
and fine details in the data. The residual learning framework, 
particularly in VDSR and EDSR, helps mitigate the degradation 
problem typically encountered in deeper networks by allowing the 
models to learn identity mappings, thereby focusing on refining the 
residuals between the high- and low-resolution data. Efficient training 
of deeper networks is possible with residual connections. The risk of 
overfitting and vanishing gradient is also absent, which allows 
capturing more complex temporal and spatial dependencies. With 
these skip connections there is more effective backpropagation hence 

these networks learn complex mappings which are inherent in climate 
data (Wang et al., 2024). EDSR emerges as the best-performing model 
in terms of SSIM and PSNR, showcasing its ability to produce high-
quality, structurally accurate images. Its architectural refinement, 
primarily removing unnecessary batch normalization layers and 
increasing depth, enhances its capacity to reconstruct high-resolution 
details effectively. The improved performance of EDSR in broader 
error allowances (2°C and 3°C thresholds) further emphasizes its 
robustness and generalization capabilities. VDSR, while slightly 
lagging behind EDSR in structural similarity and image quality, 
demonstrates the highest precision within the 1°C error threshold. 
This indicates its proficiency in making precise predictions, which can 
be  crucial for applications requiring high accuracy in  localized 
temperature estimates. The deeper architecture of VDSR, coupled with 
residual learning, enables it to capture intricate patterns, leading to 
lower RMSE and MAE values than SRCNN. Its focus on wider 
activation functions and deeper networks allows it to balance 
performance and computational efficiency, making it a viable option 
for practical applications where resources are constrained. The 
capability of EDSR to identify nuanced local patterns, especially in 
complex topographies, highlights the advantages of deeper residual 
networks for climate data downscaling. The plots shown in Figure 6 
demonstrate that EDSR and VDSR surpass SRCNN, yielding more 
precise and detailed temperature representations at higher resolutions. 
However, with the improved accuracy achieved by these residual 
connection-based networks, they come with trade-offs, that is, an 
increase in computational resources. These improvements in the 
downscaling can also be  achieved for other variables such as 
precipitation and wind speed, few studies have used residual 
connections in some ways and have achieved better results—to name 
a few: Sharma and Mitra (2022), Wang and Tian (2022), Wang et al. 
(2021), Liu et al. (2020), and Wang et al. (2024).

5.3 Residual patterns and model efficiency 
across climatic zones

Figures  11, 12 illustrate average temperature maps for the 
validation period (2004–2013) and the testing period (2014–2023). The 
maps illustrate the residuals (the difference between predicted and 
actual values) from three distinct downscaling models: SRCNN, VDSR, 
and EDSR throughout South Asia. SRCNN encounters difficulties in 
areas with complex topography, such as the Himalayas, likely due to 
the complexities of temperature predictions influenced by elevation 
and microclimate factors. This region exhibits notable orange and red 
streaks, signifying a persistent overestimation of temperature over the 
20-year period from 2004 to 2023. EDSR and VDSR demonstrate a 
reduced presence of orange and red streaks, indicating diminished 
overestimation in predictions derived from the residual network 
compared to SRCNN. It also shows that they are managing the high-
altitude regions of Tibet and the Himalayan belt more effectively. 
Significant enhancements are evident in the areas of Iran and 
Afghanistan, as SRCNN exhibits considerable inconsistency in certain 
parts of this region. The SRCNN both underestimates and overestimates 
in various areas of this region, indicating its failure to downscale in arid 
to semi-arid climates effectively. The challenge of maintaining 
consistent temperature predictions in arid climates is addressed by the 
residual learning models VDSR and EDSR. Both models exhibit 

https://doi.org/10.3389/fclim.2025.1572428
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Jha et al. 10.3389/fclim.2025.1572428

Frontiers in Climate 12 frontiersin.org

significantly superior performance in these areas, demonstrating 
minimal residuals compared to SRCNN. Over the Indian Ocean, all 
three models perform exceptionally well. Both validation (Figure 11) 
and testing (Figure 12) show very low residuals across most of the 
region, likely because of the low temperature variability over the ocean. 
However, residuals are higher along the coastal boundaries, where land 
meets sea, especially for SRCNN, while VDSR and EDSR maintain 
lower errors. This suggests that the advanced residual network 
architectures (VDSR and EDSR) are more effective at capturing subtle 
variations in these challenging transition zones, further supporting 
their superior overall performance in downscaling applications.

The plots in Figure 13 demonstrate each model’s ability to reduce 
error. These threshold map plots indicate the percentage of the region 
where the models’ temperature predictions fall below 1, 2, and 3°C. The 

plots illustrate the precision of each model, indicating that as the error 
tolerance rises (from 1 to 3°C), the proportion of areas with model 
predictions within the acceptable error range also increases. At a 
threshold of 1°C, all models exhibit subpar performance; however, 
predictions based on residual learning consistently surpass those of 
SRCNN. Notably, we  observe a substantial enhancement in arid 
climatic regions of Pakistan, Afghanistan, and Iran. Additionally, 
certain areas of southern India exhibit improvements in prediction. At 
2 and 3°C errors, the hue of blue intensifies, indicating an increasing 
number of points falling within the threshold from 2014 to 2023. 
Despite a relaxed error threshold of 3°C, a persistent white region is 
evident in the Himalayas and the Tibetan Plateau, an extensive high-
altitude region encompassing northern India, Nepal, Bhutan, and 
Western China. The difficulty in accurately predicting temperatures in 

FIGURE 11

Mean residual temperature maps representing the differences between predicted and observed temperatures for the validation period 2004–2013.

FIGURE 12

Mean residual temperature for the testing period 2014–2023.
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these regions likely arises from the intricate terrain and severe 
conditions, where models fail to capture the complex climate variations 
effectively. Upon increasing the error threshold to 3°C, the white 
regions diminish slightly in size, yet they remain considerable. The 
enduring white regions indicate where the models encounter difficulties.

5.4 Limitations and potential areas for 
further research

Despite the promising results, several limitations persist; 
notably, the deep learning-based downscaling models fail to 
predict temperature in complex climatic regions, such as high-
altitude regions of the Himalayas and the Tibetan Plateau; another 
region that remains a problem is the arid to semi-arid region of 
Afghanistan and Iran. These problems must be addressed so that 
our downscaling results are more comprehensive. One way to do 

this is by including additional variables; for example, elevation 
information would improve the downscaling results in the 
Himalayas and the Tibetan Plateau, or the addition of climatic 
variables such as precipitation, humidity, and wind speed can 
improve the predictions in arid to semi-arid climatic zones. Our 
current study focuses on deterministic downscaling using a deep 
learning model approach and not the uncertainty quantification, 
which we recognize is crucial for climate downscaling. In future 
research, we  will extend this work to incorporate probabilistic 
output methods such as the Monte Carlo dropout and ensemble 
model approaches. This will help address the uncertainty and 
further enhance the downscaled outputs. XAI also has its 
limitations, as shown by a few studies, it was inconsistent with 
conclusions from different XAI techniques (Rudin et al., 2019). 
Some inherent issues are related to the nature of XAI (Bommer 
et al., 2023). XAI results must be interpreted carefully as they tend 
to oversimplify the decision-making process of the DL-based 

FIGURE 13

Illustrations of the threshold map plots for each model (SRCNN, VDSR, and EDSR) indicate the percentage of regions where temperature predictions 
fall within 1, 2, and 3°C thresholds. Each model is shown for the period 2014–2023, with varying error tolerance levels.
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downscaling models. Recently, a few researchers have started 
exploring the use of XAI in the field of climate science (Mamalakis 
et  al., 2022). In the future work, we  plan to integrate physics-
informed constraints and compare critical thermodynamic 
variables (e.g., lapse rates and energy fluxes) between the 
downscaled outputs and independent observations to ensure that 
the results maintain fidelity with established atmospheric 
dynamics. We plan to explore physics-informed neural networks 
to incorporate atmospheric dynamics and thermodynamic 
constraints into our downscaling framework.

6 Conclusion

The study examines three super-resolution models (SRCNN, 
VDSR, and EDSR) for downscaling temperature data ranging 
approximately from 250 km to 25 km spatial resolution. It focuses on 
the benefits of residual networks and architectural improvements such 
as depth and skip connections. The results conclusively demonstrate 
that residual networks, particularly VDSR and EDSR, significantly 
outperform the baseline SRCNN model in terms of SSIM, PSNR, 
RMSE, MAE, and predictive accuracy. As shown by VDSR and EDSR, 
increasing the network depth makes it easier for the model to figure 
out complex structural features from the data. This makes it easier to 
see how temperatures change in places with complicated terrain, such 
as the Himalayas, the Tibetan Plateau, and Afghanistan’s semi-arid 
areas. With an SSIM of 0.9629 and a PSNR of 33.88 dB, EDSR has the 
best overall performance, showing that it can reconstruct images very 
well. However, VDSR also does much better, with an SSIM of 0.9729 
and a PSNR of 32.92 dB, especially for assessing localized temperature. 
This approach of incorporating residual connections effectively 
identified local extreme events (Figure 7) and demonstrated significant 
potential for precise downscaling in the absence of local-scale data. In 
addition, adding skip connections greatly improves the performance 
and training efficiency of these residual networks by reducing the 
vanishing gradient problem. This makes it easier to train deeper 
architectures. The study shows that both VDSR and EDSR are better 
than SRCNN across all error ranges (1, 2, and 3°C) based on 
temperature thresholds, with EDSR doing better across wider 
thresholds and VDSR doing better within the 1°C error margin. In 
agriculture, water resource management, and urban planning, where 
precise temperature data is essential, enhancements in prediction 
accuracy in these areas are vital. Even though the models have some 
benefits, none of them can consistently make predictions within 3°C 
in places such as the Tibetan Plateau, where temperature patterns 
change quickly and make it hard to make accurate predictions. This 
limitation shows the importance of including extra elevation data in 
the downscaling process to make the model more accurate in rough 
terrain. Adding additional data, such as humidity or rainfall, may also 
make the model work better in dry areas. The results show that 
residual-based deep learning models could help make climate models 
more accurate, especially in places with different landscapes and 
weather conditions. By making better temperature predictions, these 
models are useful tools for fields such as agriculture, urban planning, 
and water resource management that need accurate temperature 
predictions. In the future, researchers might investigate applying 
residual networks to other climate variables and regions to see how 
well they work on a larger scale and in more challenging conditions. 

This would help us understand climate impacts and how to reduce 
them better.
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