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The growing urgency of climate change necessitates innovative strategies

to enhance system resilience across many sectors. Artificial Intelligence (AI)

emerges as a transformative tool in this regard, yet existing research remains

fragmented across sectors and regions. We conducted a systematic literature

review of 385 peer-reviewed articles published between 2000 and early 2025,

following the PRISMA protocol. The analysis classifies AI applications across

nine key sectors and evaluates their relevance to adaptation, mitigation, or

both. AI methodologies and regional distribution were also assessed. The

findings show a dominant focus on adaptation (64.4%), with only 16% of studies

addressing mitigation, and 19.4% engaging both. Classical Machine Learning

techniques are themost used (51.4%), followed by deep learningmodels (22.3%).

Regional disparities are evident: Asia and global-scale studies account for two-

thirds of the literature, while Africa and South America are underrepresented.

Sectorally, agriculture and urban infrastructure receive the most attention.

Despite the promise of AI, major challenges persist in data access, model

transparency, and equitable deployment, particularly in vulnerable regions. This

review distinguishes itself by o�ering a comprehensive, cross-sectoral synthesis

and emphasizing system-level resilience. It highlights the need for regionally

tailored AI solutions, interdisciplinary collaboration, and ethical frameworks to

ensure AI contributes meaningfully to global climate resilience e�orts.

KEYWORDS

artificial intelligence (AI), system resilience, climate change, green transition, sustainable

development, climate adaptation, machine learning

1 Introduction

The escalating impacts of climate change pose profound challenges to global economic,

social, and environmental stability. Extreme weather events, rising sea levels, shifts in

biodiversity, and increasing resource scarcity threaten critical systems across various

sectors, necessitating robust adaptation and mitigation strategies. In response to these

multifaceted risks, Artificial Intelligence (AI) has emerged as a powerful tool for enhancing

resilience across diverse domains, from agriculture and energy to disaster management
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and healthcare. AI’s ability to process vast amounts of data,

generate predictive models, optimize resource allocation, and

support decision-making has positioned it as a powerful enabler

of systemic adaptation and climate-informed decision-making.

However, despite its growing adoption, a systematic understanding

of how AI contributes to resilience remains limited.

While individual and community-level resilience (micro-

level) is undeniably important—for instance, household

adaptive behaviors or psychological resilience—our review

concentrates on system-level (macro-level) resilience. This

is because our interest lies in how large-scale systems and

sectors (energy grids, agricultural systems, cities, etc.) can

withstand climate shocks, an area where AI interventions

often have broader policy and infrastructural implications.

We acknowledge that micro-level resilience contributes to

systemic resilience; however, including both scales broadens

the scope beyond a manageable range. Thus, we choose to

maintain a macro focus, and we discuss this as a limitation of

our study.

Resilience has been extensively explored in economic,

environmental, health, and social sciences, with definitions often

centered on the ability of systems to absorb shocks, adapt to

changing conditions, and recover from disturbances. In the

context of climate change, resilience refers to the capacity of

communities, industries, and ecosystems to withstand and

respond effectively to climate-induced stressors. While AI holds

promise in enhancing these adaptive capacities, there is still a

lack of comprehensive research that systematically examines its

role across different sectors and geographical regions. Previous

studies have explored specific applications of AI, such as climate

modeling, disaster risk reduction, and sustainable resource

management. However, a fragmented understanding persists

regarding the extent to which AI facilitates resilience-building

efforts and the key methodological approaches used in AI-driven

climate solutions.

AI’s technical capabilities (such as predictive modeling,

optimization algorithms, and pattern recognition) directly

contribute to resilience in different ways across sectors. For

instance, in agriculture, AI-based predictive models can enable

farmers to anticipate droughts or pest outbreaks, thus safeguarding

crop yields (building agricultural resilience). In urban planning,

optimization algorithms can design smarter infrastructure

networks that continue to function during extreme events

(enhancing urban resilience). In disaster management, pattern

recognition from satellite imagery can expedite damage assessment

and response. By mapping these capabilities to resilience outcomes

(anticipation, robustness, rapid recovery), we frame how AI serves

as a resilience-building tool.

This systematic literature review addresses these gaps by

analyzing existing research onAI applications that bolster resilience

against climate-related challenges. The study identifies, categorizes,

and evaluates AI-driven approaches across multiple sectors,

assessing their contributions to climate adaptation and mitigation.

Specifically, the paper examines the distribution of AI applications

across key resilience-related sectors, including agriculture, water

management, energy, disaster preparedness, urban planning, and

health, such as:

- Classify AI methodologies used in resilience-building efforts,

differentiating between machine learning techniques, deep

learning models, remote sensing technologies, and hybrid

approaches and highlight case studies.

- Analyze the adaptation-mitigation focus of AI applications,

distinguishing studies that emphasize climate adaptation,

mitigation, or both.

- Explore regional disparities by assessing the geographical

distribution of research on AI and resilience, highlighting

underrepresented regions and potential research gaps.

More explicitly this review is providing an answer to the

following research questions:

- In which sectors are AI applications for climate resiliencemost

prevalent, and where are they lacking?

- What types of AI methodologies are being applied, and

how does their usage distribute between adaptation and

mitigation contexts?

- How is the existing research geographically distributed, and do

we see gaps in regions most vulnerable to climate change?

- What common challenges and opportunities emerge from the

literature regarding AI’s contribution to resilience?

Our review of 385 academic papers reveals significant trends

in AI-driven resilience research. A majority (64.4%) of studies

focus on adaptation, addressing challenges such as climate

forecasting, risk assessment, and infrastructure resilience. Only

16% emphasize mitigation, while 19.4% integrate both approaches,

underscoring the need for stronger AI contributions to emissions

reduction strategies.

In terms of AI methodologies, Classical Machine

Learning/General ML dominate the field, appearing in 51.4%

of studies, followed by Deep Learning (22.3%), and Traditional

Machine Learning & Ensemble Models (8.3%) and Natural

Language Processing & Text Mining (2.3%). More specialized

approaches, including Hybrid Multi-Method AI (6.5%), Statistical

& Econometric Models (2.9%), Remote Sensing & GeoAI (2.0%),

and Reinforcement Learning & Graph-Based Methods (1.0%),

remain underutilized in resilience-related research. The remaining

3.3% are Domain-Specific/Other Specialized Methods.

The regional analysis highlights disparities in research focus.

The largest proportion of studies adopt a global perspective

(34.3%), followed by Asia (31.9%) and Europe (11.7%), while

Africa (7.5%), North America (10.4%), Oceania (2.3%), and

South America (1.8%) are comparatively underrepresented.

These findings suggest an uneven distribution of AI research,

with potential gaps in regions most vulnerable to climate

change impacts.

The remainder of this paper is organized as follows: Section

2 defines the notion of resilience used in this paper in the

face of Climate Change. Section 3 outlines the methodology

used in our systematic literature review. Section 4 presents the

key findings, including sectoral classification, AI typologies, and

regional disparities, while Section 5 highlights key limitations,

research gaps, and future directions. Finally, Section 6 concludes

the study by summarizing key takeaways.

Frontiers inClimate 02 frontiersin.org

https://doi.org/10.3389/fclim.2025.1585331
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Ayadi et al. 10.3389/fclim.2025.1585331

2 Resilience in the face of climate
change adaptation and mitigation

Resilience is a foundational concept in climate change

adaptation and mitigation, widely applied across multiple

disciplines, including economics, environmental sciences, and

social policy. While definitions of resilience vary, they converge on

the idea that it reflects the capacity of systems—whether ecological,

economic, or infrastructural—to absorb shocks, adapt to changing

conditions, and recover without losing their core functionality

(Nisioti et al., 2023; Nyangon, 2024). Given the accelerating

pace of climate-related disruptions, resilience has become a

strategic priority for policymakers, businesses, and international

organizations seeking to minimize vulnerabilities and enhance

adaptive capacity.

In the economic literature, resilience is often framed in

terms of the ability of economies to withstand climate shocks—

such as extreme weather events, natural disasters, and supply

chain disruptions—without experiencing long-term losses in

productivity and welfare (Hallegatte, 2014). Economic resilience

is closely linked to structural factors, including the diversification

of industries, robustness of financial systems, and effectiveness of

policy interventions (Briguglio et al., 2014).

From an ecological standpoint, resilience refers to the ability

of ecosystems to maintain their structure and function despite

environmental stressors, such as deforestation, biodiversity loss,

and climate variability (Walker et al., 2004). Ecosystem resilience is

influenced by factors such as species diversity, resource availability,

and ecosystem connectivity, which determine the system’s ability to

recover from disturbances and sustain ecological services.

At the meso-level, resilience is also widely discussed in the

context of infrastructure and urban planning, where it pertains

to the ability of cities and critical infrastructure to withstand and

recover from climate-related hazards, such as flooding, heatwaves,

and sea-level rise (Meerow et al., 2016).

This paper adopts a macroeconomic and systemic perspective

on resilience, focusing on how AI applications contribute

to enhancing the resilience of large-scale systems—including

economies, industries, and critical infrastructure—rather than

examining individual or micro-level resilience, as is often explored

in health sciences or behavioral studies. Unlike psychological

resilience, which pertains to individuals’ capacity to cope with

stress (Bonanno, 2004), our analysis centers on how AI-

driven innovations strengthen economic, environmental, and

infrastructural resilience at a broader scale.

3 Methodology

The review is conceived as a Systematic Literature Review (SLR)

to synthesize insights on how artificial intelligence contributes to

enhancing system resilience to climate change. This approach is

grounded in the SLR methodology as delineated by Tranfield et al.

(2003). Such a methodology is selected for its ability to ensure

transparency, reproducibility, and robust evidence aggregation

while minimizing bias. The process is meticulously guided by

the PRISMA framework (Moher et al., 2009), which provides a

TABLE 1 Search string.

Search string

Search string: (“Artificial Intelligence” OR “AI” OR “Machine Learning” OR
“Deep Learning” OR “Neural Networks” OR LLM OR “Large Language
Model”) AND (Resilience OR “System Robustness” OR “System
Adaptability” OR “Vulnerability Reduction” OR “Robust Systems”) AND
(“Climate Change” OR “Global Warming” OR “Climate Variability” OR
“Climate Crisis” OR “Climate Adaptation” OR “Climate Mitigation” OR
“Climate Resilience”)

Database Results

https://app.dimensions.ai 680

https://www.scopus.com 485

https://www.webofscience.com 447

Source: Authors.

structured protocol for documenting every phase of the review—

from the formulation of the search strategy to the synthesis of

findings. In addition, the CADIMA online tool is instrumental

in managing the review workflow by facilitating automated

data extraction and screening, thereby ensuring the consistent

application of criteria across all stages (Kohl et al., 2018).

3.1 Data sources and search strategy

To construct a comprehensive review of literature, three

primary databases are chosen: Scopus, Web of Science, and

Dimensions.ai. The first two are selected due to their rigorous

indexing criteria and broad coverage of relevant disciplines.

Dimensions.ai is chosen as a complement because it is known

for its extensive reach and innovation in indexing; it aggregates

publications (including those with Crossref DOIs) across many

fields and can sometimes index newer or interdisciplinary works

not yet included in Web of Science or Scopus. Google Scholar

is not employed, as it includes a substantial amount of non–

peer-reviewed literature (e.g., reports, theses), which can introduce

noise; this review remains confined to peer-reviewed studies.

The search strategy is carefully developed by combining key

terms from three thematic domains: (a) AI technical terms, (b)

resilience-related terms, and (c) climate-related terms. The search

is restricted to peer-reviewed articles published in English (due

to resource and interpretation constraints), with the literature

confined to studies from January 1, 2000 to February 4, 2025,

thereby capturing two and a half decades of AI applications in

climate resilience. This calibrated approach ensures a balance

between breadth and precision, capturing studies directly relevant

to the application of artificial intelligence in enhancing system

resilience in the context of climate change. See Table 1 for the

search string.

3.2 Study selection process

The initial database search yields 1,612 records, which are

subsequently refined to 926 unique entries after the removal of

duplicates. These records undergo a preliminary screening of
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titles and abstracts to ascertain their relevance to the intersection

of artificial intelligence and climate resilience. This stage results

in the exclusion of 272 records that do not meet the thematic

requirements. Following this, 654 full-text articles are rigorously

evaluated for eligibility, ensuring that each study meets the overall

focus of the review.

3.3 Inclusion and exclusion criteria

A detailed set of inclusion and exclusion criteria is applied

to the full-text articles to ensure relevance and quality (Table 2).

Eligible studies are required to focus on systems, sectors, or

domains—such as energy, water, agriculture, transportation,

or biodiversity protection—and on stakeholders including

policymakers, practitioners, and communities affected by climate

change. In addition, the studies need to present an explicit

discussion of artificial intelligence applications, including machine

learning, neural networks, and predictive analytics, as a means

of enhancing system resilience. Finally, only primary studies

reporting measurable outcomes—such as improved adaptability,

reduced vulnerability, enhanced recovery capacity, or optimized

sustainability metrics—are included. This rigorous set of criteria

ensures that only the most pertinent and high-quality research is

retained for analysis. 11 studies were excluded due to a “lack of

measurable outcomes” (target criteria) representing 4.3% of all

excluded papers at the full-text level.

To ensure consistency in applying the inclusion and exclusion

criteria, the two authors conduct a double screening on a sample

subset of records to develop a common understanding of the

inclusion criteria.

3.4 Reporting and flow diagram

The entire review process is succinctly represented in

a PRISMA flow diagram, which outlines the methodological

progression from the initial identification of 1,612 records to the

final inclusion of 385 studies. This diagram visually encapsulates

TABLE 2 Inclusion and exclusion criteria.

Key element Criteria

Population Studies must focus on systems, sectors, or domains impacted
by climate change (e.g., energy, water, agriculture,
transportation, biodiversity protection) or on stakeholders
involved in implementing AI solutions for resilience (e.g.,
policymakers, practitioners, communities).

Index test Selected studies must explicitly discuss the application of AI
technologies to enhance system resilience in the context of
climate change mitigation, adaptation, or the green
transition. This includes AI methods such as machine
learning, neural networks, or predictive analytics.

Target Papers must report measurable outcomes related to system
resilience, such as improved adaptability, reduced
vulnerability, enhanced recovery capacity, or optimized
sustainability metrics (e.g., increased renewable energy
integration or improved resource management).

Source: Authors.

the key stages of the review—from the initial identification phase

and duplicate removal to the rigorous screening based on titles

and abstracts, followed by the comprehensive full-text eligibility

assessment (see Figure 1).

4 Results

This systematic review synthesizes 385 studies on the role

of AI in enhancing resilience against climate-related challenges.

Our analysis reveals a dominant focus on adaptation strategies,

with 64.4% of the studies addressing climate adaptation, 19.4%

integrating both adaptation and mitigation, and only 16%

centering exclusively on mitigation efforts.1 This distribution

underscores the prevailing emphasis on AI-driven solutions for

climate resilience, highlighting a relative gap in research targeting

mitigation strategies.

The publication trend of AI applications in climate resilience

demonstrates a rapid and exponential growth in recent years

(Figure 2). Between 2012 and 2018, research output was minimal,

with only a handful of studies published. A significant acceleration

is observed from 2020 onward, particularly in the past 2 years. In

2023, 70 papers (18.18%) were published, but the most striking

surge occurred in 2024, which accounts for 199 papers—over half

(51.69%) of the total sample. This substantial rise underscores

a growing academic and policy interest in leveraging AI for

climate resilience.

Even though our literature review only extends to February 4,

2025, 41 identified papers (10.65%) published in 2025 (an increase

of 71% compared to the 24 papers published in the same period in

2023, and an increase of 14% compared to the 36 papers published

in the same period in 2024), suggesting that this research area

is poised for even greater expansion throughout the year. This

upward trajectory highlights the increasing recognition of AI’s

potential in addressing climate-related challenges and suggests that

AI-driven climate resilience will remain a key research frontier in

the coming years.

The regional distribution of AI applications in climate

resilience research reveals significant disparities (Figure 3). Asia

(31.9% of papers) and global-scale studies (34.3%) receive the

most attention, whereas South America (1.8%) and Oceania (2.3%)

remain critically understudied. Africa accounts for 7.5% of studies,

underscoring the pressing need for greater AI-driven climate

resilience research in vulnerable regions. Europe (11.7%) and

North America (10.4%) have moderate representation; however,

some key sectors—particularly climate and agriculture—remain

underexplored in these region. One striking fact is that although

only 7.5% of studies focus on Africa, the continent is among

the most vulnerable to climate change impacts (according to

IPCC report of 2024 among other sources),with severe projected

impacts on agriculture, water security, and health. This mismatch

between research attention and climate risk is concerning. It

1 This dominance of adaptation-focused studies is statistically significant

(two-sample test of proportions of the three categories of adaptation,

mitigation and both, p < 0.0001), underscoring a real skew in research

attention.
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FIGURE 1

PRISMA flow diagram of the systematic literature review.

suggests that the regions that could benefit themost fromAI-driven

resilience solutions are currently the least studied. For policy, this

underrepresentation means current AI tools may not be tailored to

African contexts, and there is a pressing need to invest in research

and capacity building in these regions.

The sectoral breakdown of reviewed studies by region

highlights most researched areas in each region. “Agriculture,

Forestry, and Food” emerges as the dominant focus in South

America and Africa, whereas it receives comparatively less

attention in North America and Oceania. As anticipated, Oceania

shows the highest proportion of studies related to “Coastal and

Marine” and “Climate and Weather Monitoring,” reflecting the

region’s vulnerability to climate-related challenges. Overall, the

distribution of AI applications across sectors mirrors regional

priorities and contextual needs (Figure 4).

To further dissect the role of AI in climate resilience, studies are

classified based on the type of AI tools employed. As illustrated in

Table 3, We acknowledge that the categories listed in Table 3 group

both AI techniques (e.g., Deep Learning, NLP) and application

contexts (e.g., GeoAI). While not strictly taxonomic, this pragmatic

categorization reflects how these terms appear in the reviewed

literature. For clarity: NLP is treated as a methodological class of

models specialized in human language processing, while GeoAI is

understood here as the application of AI tools to geospatial data—

i.e., a domain of application rather than a technical approach.

FIGURE 2

Number of published papers according to the year of publication

until 04/02/2025.

This hybrid categorization was retained to preserve fidelity to how

studies self-described their methodology.

Classical Machine Learning/General ML approaches constitute

the most frequently utilized methods, representing 51.43% of
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FIGURE 3

Number of publications by geographic focus.

FIGURE 4

Sectoral breakdown of reviewed studies by geographical regions.

the reviewed studies. Deep learning techniques, including neural

network models, account for 22.34%, reflecting their increasing

adoption for complex predictive modeling and pattern recognition

tasks. Traditional machine learning and ensemble models comprise

8.31%, while hybrid and multi-method approaches contribute

6.49% of the reviewed applications. Despite the widespread

integration of machine learning techniques, domain-specific and

specialized AI models remain underrepresented, accounting for

just 3.12% of studies. Similarly, reinforcement learning and

graph-based approaches constitute a mere 1.04% of applications,

indicating limited exploration of these advanced methodologies in

climate resilience. Remote sensing and GeoAI applications, crucial

for environmental monitoring and disaster prediction, appear

TABLE 3 Frequency of AI types used in the reviewed studies.

Type of AI applied Frequency Percent

Deep learning/neural network models 86 22.34

Domain-specific/other specialized methods 12 3.12

Classical machine learning/general ML 198 51.43

Hybrid/multi-method approaches 25 6.49

Natural language processing & text mining 9 2.34

Reinforcement learning & graph-based methods 4 1.04

Remote sensing & GeoAI 8 2.08

Statistical & econometric models 11 2.86

Traditional machine learning & ensemble methods 32 8.31

Total 385 100

Source: Authors.

in only 2.08% of studies, suggesting an opportunity for further

research in leveraging satellite and geospatial data for climate

adaptation. Statistical and econometric models, which traditionally

inform policy and economic resilience planning, comprise 2.86% of

the reviewed literature.

For the sake of clarity and interpretability, we provide below a

brief explanation of each category, as derived from the content and

methods described in the reviewed studies:

Deep Learning/Neural Network Models (22.34%): This category

includes studies that applied neural network-based models, such

as Convolutional Neural Networks (CNNs), Recurrent Neural

Networks (RNNs), Long Short-Term Memory networks (LSTMs),

and Deep Belief Networks (DBNs). These methods are typically

used for processing unstructured data, including imagery, time
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series, and sequential data, particularly in domains like climate

forecasting, satellite image analysis, and disaster prediction.

Domain-Specific/Other SpecializedMethods (3.12%):This group

captures AI techniques that are highly customized or proprietary

to a specific application domain. Examples include agent-based

models used in environmental simulation, biologically inspired

models, or systems embedded with domain knowledge (e.g., crop-

specific AI in agriculture). These methods are often tailored for

particular use cases and are not easily generalizable across sectors.

Classical Machine Learning/General ML (51.43%): The

most frequent category, it includes standard non-deep-learning

techniques such as decision trees, support vector machines

(SVMs), k-nearest neighbors (KNN), logistic regression, and Naive

Bayes classifiers. These models are often used for classification,

regression, or clustering and are considered foundational within

AI applications. In many reviewed studies, the specific method was

not deeply described—hence the general “ML” label.

Hybrid/Multi-Method Approaches (6.49%): This category

encompasses studies that combine two or more AI methods—such

as integrating neural networks with optimization algorithms

(e.g., genetic algorithms or fuzzy logic), or blending machine

learning with physical modeling. These hybrid approaches aim to

overcome limitations of single models by enhancing performance,

robustness, or interpretability.

Natural Language Processing & Text Mining (2.34%): This

group includes studies using NLP for extracting insights from

unstructured textual data—such as policy documents, social media,

or news feeds. Techniques include named entity recognition,

sentiment analysis, topic modeling (e.g., LDA), and transformer-

based models like BERT. These are often used to understand public

perceptions of climate risk or analyze institutional responses.

Reinforcement Learning & Graph-Based Methods (1.04%):

These advanced AI techniques involve dynamic decision-making

(reinforcement learning) or structured data representation (graph-

based learning). While less common in the reviewed literature,

some studies apply reinforcement learning for adaptive system

control (e.g., in energy grids), and graph neural networks for

modeling interdependent systems or climate networks.

Remote Sensing & GeoAI (2.08%): This refers to AI applications

that process geospatial data, satellite imagery, or LiDAR datasets.

Techniques in this group include GeoAI, image classification,

spatial clustering, and object detection used in environmental

monitoring, urban heat mapping, deforestation tracking, and flood

extent estimation.

Statistical & Econometric Models (2.86%): Though not strictly
AI, these models were often used in conjunction with AI

tools or as benchmarks. They include regression-based models,
ARIMA time-series forecasting, panel data analysis, and other
econometric techniques commonly used in climate economics,

policy assessment, or risk quantification.
Traditional Machine Learning & Ensemble Methods (8.31%):

This subset of classical ML focuses on ensemble-based techniques,

such as Random Forests, Gradient Boosting Machines (e.g.,

XGBoost), and bagging. These models combine multiple learners

to enhance predictive accuracy and reduce variance. They were

commonly used in climate-related classification tasks (e.g., land

cover, hazard zones) and outperformed simpler single-model

approaches in many cases.

These findings indicate a strong reliance on Classical

Machine Learning/General ML and deep learning for climate

resilience research while highlighting underutilized areas such as

reinforcement learning, remote sensing applications, and hybrid

modeling techniques. The next sections delve into sector-specific

trends, exploring how AI applications are distributed across

the 9 key identified sectors, namely, Agriculture, Forestry and

Food; Cities and Infrastructure; Climate and Weather Monitoring;

Coastal and Marine; Disaster and Risk Management; Ecosystems;

Energy and Industry; Health; and Water Resources (see Table 4).

Given the vast number of studies identified in some sectors, it is

not feasible to cite all of them. Consequently, a subset of the most

representative works is selectively referenced to illustrate the key

elements of each sector.

4.1 Agriculture, forestry and food sector

The agriculture sector, a cornerstone of global food security,

is facing unprecedented challenges due to the combined pressures

of climate change and resource limitations (Rojas, 2021). Its

vulnerability to climate variations poses a significant threat

TABLE 4 Sectors in which AI technology enhances the resilience toward climate change.

Sector of the papers Frequency Percent Description

Agriculture, forestry and food 117 30.39% AI for precision agriculture, crop yield prediction, land use planning, and food security.

Cities and infrastructure 98 25.45% AI applied to smart urban planning, infrastructure resilience, and sustainable city systems.

Climate and Weather monitoring 17 4.42% AI used in climate modeling, meteorology, and early warning systems.

Coastal and marine 46 11.95% AI applied to coastal zone management, ocean monitoring, and marine biodiversity.

Disaster and risk management 19 4.94% AI for hazard prediction, emergency response, risk mapping, and crisis management.

Ecosystems 9 2.34% AI for ecosystem monitoring, biodiversity conservation, and habitat protection.

Energy and industry 46 11.95% AI to optimize renewable energy systems, emissions reduction, and industrial efficiency.

Health 2 0.52% AI to assess and respond to climate-related health risks such as heat stress, and support health system
resilience.

Water resources 31 8.05% AI for water quality monitoring, drought prediction, and watershed management.

Total 385 100%
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to its stability and productivity. Altered climatic conditions,

including shifts in temperature, humidity, and rainfall patterns

are profoundly affecting agricultural practices (Sejian et al., 2022).

Simultaneously, extreme weather events, such as droughts, floods,

and heatwaves, are increasingly jeopardizing crop yields and the

overall agricultural output; the brunt of drought-related damages,

accounting for a staggering 83% of global losses between 2006 and

2016 (Rojas, 2021). The situation is further compounded by rising

CO2 levels and the proliferation of invasive pests, leading to altered

cropping patterns and reduced crop diversity (Rojas, 2021). Hence

climate change poses a serious challenge to the resilience of the

agricultural sector.

Forests, recognized as essential for climate change mitigation

due to their capacity for carbon sequestration, are also at risk

(Kacic et al., 2023; Meng et al., 2023). The sustainability of

forest ecosystems is increasingly compromised by climate change,

particularly rising global temperatures and unsustainable human

activities (Rammer et al., 2021). To combat these challenges,

Climate-Smart Agriculture (CSA) offers an integrated approach

to address climate change while ensuring sustainable agricultural

production, food security, and the wellbeing of rural communities

(Usigbe et al., 2024). Remote Sensing (RS) technologies play a

crucial role in monitoring and managing agricultural systems in

the face of climate change, providing essential data for informed

decision-making (Al-Jabri et al., 2025).

4.1.1 AI applications in agriculture, forestry and
food sector

AI is significantly impacting the agriculture, forestry, and

food sectors through applications such as predictive analytics,

remote sensing, and decision support systems, offering capabilities

in learning, reasoning, and self-correction that are essential for

processing vast amounts of data and extracting actionable insights.

Predictive analytics leverages AI algorithms to analyze historical

data, including weather patterns, soil conditions, and crop

performance, to forecast future agricultural outcomes (Guntuka,

2024). These models enable informed decisions, optimize resource

allocation, and mitigate risks associated with climate change

(Causevic et al., 2024). Machine learning (ML) is used to predict

crop yields, pest outbreaks, andmarket trends, facilitating proactive

measures to minimize losses and maximize productivity (Yadav

et al., 2024). For instance, AI-powered systems can accurately

forecast crop yields by integrating meteorological data, pesticide

records, and historical crop yield data, as demonstrated by the use

of gradient boosting models (Feng et al., 2022).

The Next Generation Agricultural Stress Index System

(ASIS) supports drought management through machine learning,

benefiting parametric crop insurance and early warning systems

(Feng et al., 2022). Remote sensing technologies, such as satellite

imagery and aerial surveys, enhance large-scale assessments of

forests and agricultural lands (Xu et al., 2021) and agricultural

drought modeling (Dadrass Javan et al., 2025). AI analyzes these

images to monitor forest cover changes, biomass estimation, and

illegal logging detection, while in agriculture, it assesses crop

health, soil moisture, and disease outbreaks (Agho et al., 2024). AI-

driven forest monitoring improves biodiversity insights (Causevic

et al., 2024), and its integration with remote sensing strengthens

agricultural resilience and prescriptive decision-making (Feng

et al., 2022). AI-powered decision support systems provide farmers

with real-time insights by integrating data from sensors, weather

forecasts, and markets (Tupalo, 2024). These systems optimize

irrigation, fertilization, and pest control, reducing environmental

impact while increasing efficiency (Ali et al., 2025). AI also aids

in identifying crop diseases and nutrient deficiencies through

image recognition and sensor analysis (Usigbe et al., 2024). ML

models further refine drought response predictions by evaluating

interactions between continuous and categorical variables (Liang

et al., 2024).

Beyond cultivation, AI improves post-harvest logistics and

supply chain management, optimizing solar dryers, cold storage,

and equipment maintenance (Usigbe et al., 2024; Kumar D. et al.,

2024). AI and blockchain enhance transparency, fair pricing, and

efficiency in food distribution (Mu et al., 2024). Additionally,

text mining tools detect chemical hazards and seafood risks by

analyzing scientific and media sources (Mu et al., 2024).

AI also advances crop resilience by identifying stress response

genes linked to heat, drought, and salt stress, supporting the

development of stress-resistant crop varieties (You et al., 2025).

These AI applications contribute to resilience by enabling

early detection of crop stress and pest outbreaks, improving

the timing and precision of interventions. This proactive

capacity reduces vulnerability to climatic variability and promotes

adaptive management. Optimizing water use through AI-driven

irrigation models also enhances robustness against drought and

water scarcity.

4.1.2 Mechanisms for enhancing resilience
AI application is enhancing the resilience of agriculture,

forestry, food safety via a number of methods. Precision farming

improves pest control, harvesting, and resource use (Guntuka,

2024), while predictive analytics aids in forecasting crop yields,

climate conditions, and market trends (Rebez et al., 2024).

Climate-smart agriculture (CSA) benefits from AI-driven climate

monitoring and adaptive strategies (Zidan and Febriyanti, 2024).

AI optimizes supply chains through early pest detection,

logistics forecasting, and risk analytics, mitigating climate-related

threats (Usigbe et al., 2024; Ahvo et al., 2023). In forestry, AI

enhances Earth observation, IoT-enabled monitoring, and remote

sensing, improving conservation and illegal logging detection

(Wang G. G. et al., 2024). AI-powered food safety systems identify

contamination risks in supply chains (Mu et al., 2024).

It also supports renewable energy integration by optimizing

energy use in agriculture (Kumar D. et al., 2024). Machine learning

models help manage drought risks and support crop resilience

by identifying stress response genes (Liang et al., 2024; Na and

Na, 2024; You et al., 2025). In livestock, AI monitors animal

health and behavior, reducing heat stress impacts (Sejian et al.,

2022). AI enhances resilience in agriculture and food systems

through predictive analytics for crop yield, early pest detection,

and real-time climate-smart decision-making. These tools enable

proactive adaptation, reduce crop losses, and optimize irrigation
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and supply chains, increasing robustness against droughts, pests,

and supply shocks.

4.2 Cities and infrastructure

The 21st century is often called the “century of the city”

because more than half of the global population resides in urban

areas (Amen, 2024), making these hubs critical for determining

our resilience. However, cities face escalating threats from floods,

hurricanes, wildfires, and other extreme weather events intensified

by climate change (Wang J. et al., 2024). Climate change

exacerbates urban flooding, leading to overwhelmed drainage

systems and extensive infrastructure damage (Lu et al., 2023).

Coastal cities encounter additional threats from rising sea levels

and storm surges. The “7.20” extreme rainfall event in Zhengzhou,

China, highlights the urgent need for improved emergency and

stormwater management strategies (Lu et al., 2023). Additionally,

the increase in impermeable surfaces due to urbanization reduces

vegetation’s capacity to absorb excess water, further heightening

flood risks (Li et al., 2024). The Urban Heat Island (UHI) effect

intensifies heatwaves, leading to increased energy consumption,

elevated air pollution, and health risks (Wen et al., 2024). For

example, between 2014 and 2023, ∼48,000 heat-related deaths

occur in Germany (Goh et al., 2024). Furthermore, flooding and

extreme weather events disrupt transportation networks, affect the

movement of people and goods, and result in significant economic

consequences (Cassottana et al., 2022).

In sum, cities face escalating threats from climate-induced

hazards. This topic receives substantial attention in the literature,

with over one-fourth of the identified papers (specifically,

98 studies) focusing on the applications of AI in cities

and infrastructure.

4.2.1 AI application for cities and infrastructure
AI emerges as a powerful tool for addressing these complex

issues, offering capabilities to analyze vast datasets, predict future

events, optimize resource allocation, and enhance decision-making

(Yang et al., 2022a). AI plays a critical role in climate resilience

and urban planning by enhancing predictive capabilities, disaster

management, and resource optimization (Chew et al., 2025).

Machine learning algorithms forecast extreme weather events such

as floods, heatwaves, and hurricanes, enabling proactive measures

to mitigate risks (Kumar G. D. et al., 2024; Al-Raeei, 2024; Habib

et al., 2024). AI-powered early warning systems help communities

prepare for disasters, while predictive models assess flood risks,

building damage, and traffic flow to improve emergency response

planning (Lu et al., 2023; Cassottana et al., 2022; Klepac et al., 2022).

Geospatial AI (GeoAI) integrates spatial data with AI methods

to improve flood hazard mapping, urban planning, and disaster

management (Kumaş and Aslan, 2025; Rezvani et al., 2024). The

combination of AI with Geographic Information Systems (GIS) and

Building Information Modeling (BIM) enhances risk assessment,

leading to more resilient infrastructure and sustainable urban

environments (Kopiika et al., 2025).

AI-driven decision support systems (DSS) optimize energy

consumption, traffic management, and waste reduction, helping

cities reduce greenhouse gas emissions and improve air quality

(Al-Raeei, 2024; Cassottana et al., 2022). AI-powered smart

technologies improve heating, ventilation, and transportation

systems, reducing congestion and emissions. Additionally, AI

enhances waste management by identifying recycling opportunities

and streamlining logistics, fostering a circular economy (Al-Raeei,

2024).

4.2.2 Mechanisms for enhancing resilience
AI plays a crucial role in identifying and mitigating climate-

related risks within urban environments (Al-Raeei, 2024).

Predictive modeling allows AI to forecast extreme weather events

with greater accuracy, providing communities valuable time to

prepare (Al-Raeei, 2024; Habib et al., 2024). During extreme

rainfall events, AI proves particularly effective in managing flood

risks by analyzing urban water flows and optimizing drainage

systems, as well as predicting potential water contamination

or infrastructure damage that could disrupt essential services

(Habib et al., 2024). Smart cities harness digital technologies

such as IoT sensors, big data, and AI to improve quality of life

and the efficiency of public services (da Silva et al., 2024). These

interconnected systems not only monitor environmental variables

but also enable rapid interventions during emergencies such as

floods or heatwaves (da Silva et al., 2024).

AI further enhances community resilience against climate

change and pandemic-related challenges. AI-driven platforms

facilitate real-time data sharing among urban planners and

health authorities, improving resource management and response

coordination during crises (Al-Raeei, 2024).

In urban settings, AI strengthens resilience by enabling

smart infrastructure management, predictive maintenance of

critical systems, and optimized traffic and energy flows. AI-

driven modeling also supports climate risk assessment and urban

planning, reducing vulnerability to extremeweather and heat stress.

Moreover, the literature highlights several empirical studies and

case studies; a selection of these is detailed in Table 5.

4.3 Climate and weather monitoring

This category covers studies focusing on climate prediction

models, weather early warning systems, and related monitoring

tools. As the volume and complexity of climate data continue to

grow, there is an increasing need for advanced data infrastructures

and analytical methods, including artificial intelligence (Rahman

et al., 2024). AI offers considerable potential to enhance the

accuracy, speed, and responsiveness of early warning systems,

which are essential for both climate adaptation and risk reduction

(Neset et al., 2024; Jones et al., 2023). Reflecting this growing

interest and importance, 17 papers are classified under the “Climate

and Weather Monitoring” category in our review. Among these

papers, a small fraction include a mitigation component, likely

because they inform long-term climate mitigation strategies (e.g.,

improving climate models for policy or clean energy production).
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TABLE 5 Selected cases of AI applications for enhancing urban resilience.

Area of AI application Description Source

AI-driven urban park design AI optimizes urban park design to improve thermal comfort and air quality through enhanced
shading and vegetation placement.

Chen et al., 2025

AI for flood risk assessment AI assesses flood risks using geospatial technology and deep-learning, integrating local
knowledge to enhance adaptive capacity.

Haripriya et al., 2024

AI in roadway infrastructure AI analyzes vulnerabilities in roadway infrastructure with Climate Impact Vulnerability Scores
(CIVS) and multi-criteria decision analysis.

Chang and Hossain,
2024

Smart sustainable systems enhanced by AI AI enhances flood damage assessments using multi-criteria decision-making computations,
improving accuracy and response strategies.

Habib et al., 2024

Source: Authors.

However, this category primarily focuses on prediction and

monitoring rather than direct mitigation implementation.

4.3.1 AI application in climate and weather
monitoring

AI-driven predictive analytics enhances climate modeling by

improving the accuracy of precipitation and temperature forecasts.

Machine learning techniques, such as random forest algorithms

and seasonal bias correction, refine climate projections, providing

more reliable tools for policymakers and planners (Tang et al.,

2024). AI-powered climate models integrate historical climate data

to simulate interactions between the atmosphere, oceans, land, and

biosphere, supporting decision-making in agriculture and other

climate-sensitive sectors (Gatla, 2019). AI also aids in predicting

extreme weather phenomena, strengthening risk management and

adaptation strategies (Gatla, 2019).

AI strengthens climate adaptation and resilience through early

warning systems, leveraging live data fromweather sensors, satellite

imagery, and social media to detect and predict climate hazards

(Neset et al., 2024). These systems support communities in taking

preventive measures, while also optimizing renewable energy

systems and driving proactive adaptation initiatives.

In remote sensing, AI processes satellite imagery and drone

feeds to enhance impact-based weather warnings, particularly for

urban flooding risk assessment (Neset et al., 2024). AI-powered

tools integrate visual sensing inputs and social media feeds to assess

and adjust warning levels in real time (Neset et al., 2024). AI’s role

in Climate Data Management Systems (CDMS) further strengthens

climate monitoring and predictive capabilities by automating real-

time data processing and risk assessment (Rahman et al., 2024).

In conservation, AI identifies climate-resilient coral reefs by

integrating environmental and ecological data through neural

network models, predicting coral health indices and guiding

conservation efforts (Mayfield et al., 2022). AI also enhances

decision support systems by mapping vulnerabilities to extreme

weather, supporting local adaptation efforts, and improving long-

term climate monitoring (Neset et al., 2024).

4.3.2 Mechanisms for enhancing resilience
AI interventions enhance system resilience by improving

adaptability, managing risks, and supporting strategic decision-

making across diverse sectors, thereby contributing to a

more sustainable and resilient future (Rahman et al., 2024).

Machine learning refines climate models, enabling more

accurate precipitation and temperature forecasts that support

decision-making across sectors (Tang et al., 2024; Gatla, 2019).

AI strengthens risk management by powering early warning

systems that analyze real-time data from sensors, satellite imagery,

and social media, allowing communities to prepare for climate

hazards (Neset et al., 2024). It also enhances Climate Data

Management Systems (CDMS) by automating data analysis and

improving responses to climate variability and extreme events

(Rahman et al., 2024).

In conservation, AI identifies climate-resilient coral reefs by

using neural networks to predict coral health indices based on

environmental data, informing conservation strategies (Mayfield

et al., 2022). By analyzing satellite imagery, drone feeds, and traffic

camera data, AI detects flood risks and processes social media and

sensor inputs to help authorities assess and respond to emergencies

(Neset et al., 2024).

AI improves climate and weather resilience by enhancing

forecasting accuracy and timeliness. Through machine learning,

large-scale environmental data are transformed into actionable

insights, enabling early warning systems, scenario simulations,

and preparedness measures that help communities and sectors

anticipate and adapt to climatic shifts.

4.4 Coastal and marine

The coastal and marine sector represents a confluence of

dynamic ecosystems and substantial socio-economic interests,

rendering it exceptionally vulnerable to the escalating impacts of

climate change (Ayinde et al., 2024). Coral reef ecosystems, often

referred to as the “rainforests of the sea,” serve as biodiversity

hotspots that provide essential habitats for numerous marine

species. Mangrove forests, another critical component of the coastal

and marine sector, offer a range of ecosystem services, including

coastal protection, carbon sequestration, and habitat provision

(Maina et al., 2021). Coastal wetlands, including saltmarshes and

peat swamp forests, also face significant risks due to climate change

(Wen and Hughes, 2022). Sea-level rise poses a direct threat

to these wetlands, leading to habitat loss and altered ecosystem

functions. Changes in disturbance dynamics, such as increased

flooding and erosion, further exacerbate these vulnerabilities.

Understanding the complex interplay of factors affecting coastal

wetland resilience is crucial for assessing our resilience in the

face of climate change. This category covers ocean-related climate
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resilience issues—such as sea-level rise, coastal erosion, and marine

ecosystem degradation—with 46 papers identified under this topic

(representing 11% of the reviewed literature).

4.4.1 AI application in coastal and marine
AI enhances coastal and marine resilience through predictive

analytics, remote sensing, decision support systems, and

ecosystem monitoring.

Predictive analytics

AI models forecast sea-level changes, storm surges, and

precipitation patterns, supporting proactive adaptation (Cheye

et al., 2024; Ian et al., 2023). Advanced neural networks, such as

BALSSA andD-BALSSA, improve storm surge prediction accuracy,

enabling timely disaster warnings (Ayinde et al., 2024; Ian et al.,

2023).

Remote sensing

AI processes satellite and drone data to monitor coastal

ecosystems, mangrove coverage, and coral reef health (Yang

et al., 2022b; Maina et al., 2021; Mayamanikandan et al.,

2024). AI-powered classification models quantify changes in

coastal vegetation, contributing to conservation strategies

(Mayamanikandan et al., 2024).

Decision support systems

AI-driven platforms integrate biodiversity data, climate

projections, and anthropogenic pressures to inform coastal

management decisions and evaluate conservation trade-offs

(Gesami and Nunoo, 2024; Rathoure and Ram, 2024).

Ecosystem monitoring and species identification

AI analyzes sensor, drone, and satellite data to assess ocean

conditions, marine biodiversity, and pollution levels, helping

identify environmental threats and patterns (Gesami and Nunoo,

2024). Convolutional neural networks rapidly identify and count

microfossils, aiding plankton diversity analysis and resilience

assessments (Godbillot et al., 2024).

Coastal flood risk models

GeoAI models, including random forests and artificial neural

networks, predict coastal flood risks by evaluating factors such

as extreme sea levels, elevation, and mangrove proximity, thereby

supporting targeted mitigation strategies (Atmaja et al., 2024).

4.4.2 Mechanisms for enhancing resilience
AI enhances the resilience of coastal and marine systems by

improving predictive capabilities, enabling proactive management,

and supporting adaptive strategies.

Improved adaptability

AI-driven insights help identify vulnerable areas, prioritize

interventions, and assess climate resilience measures (Cheye et al.,

2024). Adaptive management, informed by real-time feedback

and data-driven models, optimizes conservation site selection and

intervention strategies (Gesami and Nunoo, 2024; Maina et al.,

2021).

Coastal flood risk management

GeoAI approaches integrate mangrove proximity and natural

defenses into flood prediction models, emphasizing nature-based

solutions for coastal protection (Atmaja et al., 2024). Studies

highlight mangroves’ role in reducing coastal flood occurrences,

underscoring the need for conservation and restoration (Atmaja

et al., 2024).

Early warning systems

AI processes large datasets to forecast sea-level rise and

precipitation patterns, enhancing early warning systems for timely

evacuations (Cheye et al., 2024). The BALSSA model significantly

improves storm surge predictions, facilitating disaster mitigation

(Ian et al., 2023).

In coastal and marine environments, AI supports resilience

by predicting sea-level rise impacts, mapping vulnerable zones,

and modeling coastal erosion and marine biodiversity shifts. These

applications enable early interventions, better marine resource

management, and adaptation strategies for coastal infrastructure.

Additionally, the literature highlights several empirical studies

and case studies, which are detailed in Table 6.

4.5 Disaster and risk management

The increasing frequency and intensity of climatological and

hydrological hazards, particularly floods, necessitate advanced

disaster and risk management strategies (Abdel-Mooty et al., 2022).

Climate change drives more extreme weather events, intensifying

impacts on urban areas and vulnerable populations (Haggag et al.,

2021; Abdel-Mooty et al., 2022). The anticipated rise in extreme

rainfall events, sea levels, and flood risks underscores the need

for proactive disaster management strategies (Abdel-Mooty et al.,

2022). AI-driven models support long-term adaptation planning

and help policymakers develop resilient communities. AI rapidly

reshapes the landscape of disaster and risk management by

enhancing predictive capabilities, optimizing response strategies,

and improving resource allocation. AI technologies—particularly

machine learning (ML) and deep learning (DL)—are now integral

to various facets of disaster management, from early-stage risk

assessment to post-disaster recovery.

This category refers to applications focused on preparedness,

emergency response, and risk assessment for climate-related

disasters, with 19 papers identified in this field.2

4.5.1 AI application in disaster and risk
management

AI enhances disaster forecasting by analyzing vast datasets to

predict the probability and impact of events (Abdel-Mooty et al.,

2022; Mosavi et al., 2020). Machine learning (ML) models integrate

historical disaster records with climate indices, improving flood

prediction accuracy (Tasnuva et al., 2024). Techniques such as

2 This category should be distinguished from Climate and Weather

Monitoring since the latter is about observing and predicting climate/weather

phenomena, while Disaster and RiskManagement is aboutmanaging the risks

and responses to those phenomena.
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TABLE 6 Examples of AI use for strengthening coastal and marine resilience.

Area of AI application Description Source

Coral reef resilience Machine learning assesses sea surface temperature anomalies and bleaching recovery potential,
guiding conservation efforts.

Novi and Bracco, 2022

Mangrove conservation AI identifies mangrove vulnerability drivers, supporting targeted restoration policies. Amaral et al., 2023

Coastal flood prediction GeoAI models enhance flood risk assessments by integrating factors such as extreme sea levels
and mangrove cover.

Atmaja et al., 2024

Storm surge prediction The BALSSA model improves storm surge forecasts, leveraging machine learning and real-time
data for better preparedness.

Ian et al., 2023

Source: Authors.

Random Forest (RF) models, Support Vector Machines (SVM),

and ensemble models refine flood hazard mapping and support

strategic planning (Cilli et al., 2022; Composto et al., 2025). In

wildfire prediction, AI assesses fire risk based on climate and

vegetation indices, while explainable AI (XAI) enhances model

interpretability for effective resource allocation (Cilli et al., 2022).

AI also contributes to avalanche risk assessment by using intelligent

learning models to improve forecasting accuracy (Mosavi et al.,

2020).

Remote sensing and geospatial analysis

AI processes satellite imagery and remote sensing data

to map disaster impacts and monitor environmental changes

(Composto et al., 2025; Singh and Hoskere, 2023). ML algorithms

analyze Sentinel-1 and Sentinel-2 imagery to enhance flood extent

mapping, leveraging the Normalized Difference Water Index

(NDWI) and Google Earth Engine (GEE) for near-real-time

assessments (Composto et al., 2025). AI also supports wildfire and

landslide vulnerability mapping by integrating topographic and

vegetation data (Fernández-Guisuraga et al., 2024; Kerle et al.,

2019).

Decision support systems (DSS)

AI-driven DSS integrate predictive models, risk assessments,

and real-time data streams to support decision-making in disaster

response (Cilli et al., 2022; Hahn et al., 2024). Early Warning

Systems (EWS) analyze sensor data, weather patterns, and social

media activity to detect hazards and guide evacuation protocols

(Hahn et al., 2024). AI also optimizes resource allocation during

disaster response by forecasting demand and directing aid where

needed (Singh and Hoskere, 2023). Advanced AI techniques, such

as deep reinforcement learning, enable autonomous systems to

adapt to dynamic disaster conditions (Hahn et al., 2024).

Post-disaster damage assessment

AI accelerates damage assessment using deep learning and

Convolutional Neural Networks (CNNs) trained on pre- and

post-disaster imagery (Singh and Hoskere, 2023). AI-driven

Ultra-High-Resolution Aerial (UHRA) imagery analysis refines

damage prediction models, overcoming traditional satellite image

limitations. AI-powered drones assess casualties and structural

damage, enabling comprehensive disaster impact evaluation (Singh

and Hoskere, 2023).

Community resilience and social vulnerability assessment

AI evaluates community resilience and social vulnerability by

analyzing socio-economic variables and social media data (Abdel-

Mooty et al., 2022; Moghadas et al., 2023). Disaster Risk Indices

(DRI) leverageMLmodels to identify high-risk communities, while

text mining and topic modeling extract key insights from disaster-

related discussions (Prakash et al., 2024).

Autonomous recovery robots

AI-powered recovery robots enhance disaster response

operations by executing search and rescue, firefighting, and

infrastructure repairs (Sun L. et al., 2024). These robots integrate

advanced AI algorithms to navigate hazardous environments

and prioritize lifesaving efforts based on ethical decision-making

principles (Sun L. et al., 2024).

4.5.2 Mechanisms for enhancing resilience
AI plays a critical role in enhancing disaster resilience by

mitigating climate risks, improving adaptability, and strengthening

overall disaster management strategies. Its ability to analyze large

datasets, forecast disaster impacts, and optimize resource allocation

supports effective resilience-building efforts (Hossin et al., 2025).

AI enhances predictive accuracy, enabling proactive measures

for disaster mitigation. AI models analyze climate variables

to forecast extreme weather events such as floods, hurricanes,

and wildfires, guiding early warnings and preparedness actions

(Composto et al., 2025; Singh andHoskere, 2023). In wildfire-prone

areas, AI integrates temperature, humidity, and vegetation cover

data to assess fire risks and inform preventive resource deployment

(Cilli et al., 2022).

AI fosters real-time insights and flexible disaster response by

integrating data from sensors, social media, and weather forecasts

(Hahn et al., 2024; Costa et al., 2024). AI-drivenmonitoring enables

decision-makers to dynamically adjust strategies, ensuring more

effective disaster response efforts (Nakhaei et al., 2023).

AI strengthens disaster management across all phases—

prevention, preparedness, response, and recovery (Nakhaei et al.,

2023; Sun L. et al., 2024). AI-driven decision support systems

optimize resource allocation, enhance early warning systems,

and facilitate rapid damage assessment, enabling communities

to recover more efficiently (Hossin et al., 2025). Additionally,

AI supports long-term resilience by guiding sustainable land use

planning and infrastructure development, reducing future climate
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TABLE 7 Selected cases of AI applications in disaster and risk management.

Area of AI application Description Sources

Wildfire risk management AI analyzes wildfire occurrences in Mediterranean landscapes, identifying climate as the
primary driver. Integrated with decision support systems, it aids forest managers in fire
prevention and management.

Cilli et al., 2022

Post-disaster damage assessment AI-driven Ultra-High-Resolution Aerial (UHRA) imagery and transformer models achieve
88% accuracy in multi-class damage predictions, enhancing post-disaster assessments.

Singh and Hoskere, 2023

Disaster response coordination AI processes social media data to identify emerging needs and coordinate disaster responses.
Text mining and topic modeling provide insights into disaster impacts and response
effectiveness.

Moghadas et al., 2023

Pluvial flood risk prediction A machine learning model implements spatio-temporal constraints to improve pluvial flood
risk prediction, identifying vulnerable areas under different climate change scenarios.

Allegri et al., 2024

Disaster risk indices (DRI) Machine learning-based disaster risk indices (DRI) provide localized insights into coastal
vulnerabilities, enabling policymakers to develop targeted interventions and enhance
community preparedness.

Prakash et al., 2024

Critical infrastructure systems (CIS) resilience AI-driven strategies enhance post-shock emergency responses of Critical Infrastructure
Systems (CIS), using deep learning for swift damage assessment and adaptive emergency
responses.

Sun L. et al., 2024

Source: Authors.

vulnerabilities (Sun L. et al., 2024). Table 7 presents selected cases

of AI application in this area.

AI contributes to disaster resilience through rapid risk

assessments, real-time hazard prediction, and optimized

emergency response logistics. By identifying patterns and

predicting impacts, AI empowers authorities and communities

to act faster, mitigate damages, and recover more effectively after

extreme events.

4.6 Ecosystems

Ecosystems are complex networks of living organisms and

their physical environments, yet they face increasing threats from

climate change and human activities (Levy and Shahar, 2024).

Changes in surface roughness, albedo, and seasonal cycles create

intricate climate feedback loops, increasing the risk of abrupt

ecosystem state shifts with ecological, economic, and societal

consequences (Levy and Shahar, 2024).

Dryland ecosystems, such as those in Central Asia, are highly

vulnerable to overgrazing, land use changes, and desertification,

requiring systematic assessment using remote sensing and

GIS-based frameworks like Vigor-Organization-Resilience-Service

(VORS) (Bi et al., 2024).

Climate change forces shifts in animal behaviors, phenology,

and distribution, affecting species survival (Levy and Shahar,

2024). Rising temperatures facilitate the spread of invasive alien

plants (IAPs), reducing native vegetation resilience and increasing

biodiversity loss (Mtengwana et al., 2021). Projected temperature

increases of 3–6◦C, coupled with declining precipitation, further

threaten indigenous species and intensify competition for resources

(Mtengwana et al., 2021).

Changing precipitation patterns and the proliferation of

drought-tolerant invasive species (e.g., Acacia saligna, A. longifolia,

A. cyclops) reduce streamflow and invade riparian zones,

threatening fynbos shrublands and protected areas (Mtengwana

et al., 2021).

Addressing ecosystem challenges necessitates comprehensive

assessment frameworks, predictive modeling, and integrated

conservation strategies. Our review identifies nine papers focused

on ecosystem resilience, proposing AI and machine learning

(ML) tools to analyze ecosystem dynamics, forecast climate-driven

changes, and enhance conservation efforts to ensure the protection

and sustainability of these vital systems. While ecosystem-based

approaches offer dual adaptation–mitigation benefits, we find that

AI applications in this sector are primarily described in the context

of adaptation. None of the reviewed studies in this category

explicitly target mitigation, which is why Figure 5 shows 0%

mitigation for Ecosystems. This highlights a gap in the literature: AI

is not yet widely applied to ecosystem-based mitigation, presenting

an opportunity for future research.

4.6.1 AI application in ecosystems
AI-driven predictive analytics improve ecosystem forecasting

by modeling species distribution, invasive species spread, and

soil erosion susceptibility. Techniques like Random Forest (RF),

Maximum Entropy (MaxEnt), and Boosted Regression Trees (BRT)

predict species distribution under changing climatic conditions,

aiding conservation planning (Mtengwana et al., 2021). AI models

also assess soil erosion risks using the Revised Universal Soil

Loss Equation (RUSLE), Artificial Neural Networks (ANN), and

Support Vector Machines (SVM), informing climate-resilient land

management strategies (Senanayake and Pradhan, 2022).

Remote sensing technologies combined with AI offer real-time

insights into ecosystem health, land cover changes, and biodiversity

patterns. AI enhances the analysis of high-resolution satellite

imagery, sensor networks, and camera trap data, translating raw

environmental data into actionable ecological insights (Levy and

Shahar, 2024). Convolutional Neural Networks (CNNs) automate

land use classification, improving ecosystem monitoring, while

the Vigor-Organization-Resilience-Service (VORS) framework

integrates remote sensing and deep learning to assess desertification

risks and ecosystem responses (Bi et al., 2024).
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FIGURE 5

Share of mitigation and adaptation actions by sector (%).

Decision support systems (DSS) powered by AI integrate

predictive analytics and remote sensing data to guide conservation

strategies. These systems optimize resource allocation, identify

priority areas for conservation, and evaluate management

interventions (Levy and Shahar, 2024). AI refines microclimate

modeling, improving bias correction and downscaling techniques,

enhancing habitat suitability assessments under different climate

scenarios (Levy and Shahar, 2024). AI also helps control invasive

alien plants (IAPs) by identifying high-risk areas and informing

targeted management efforts (Mtengwana et al., 2021).

4.6.2 Mechanisms for enhancing resilience
AI strengthens ecosystem resilience by addressing climate risks,

improving adaptability, and bolstering overall ecosystem health.

AI predictive models forecast climate change impacts, enabling

proactive measures to mitigate damage (Yu R. et al., 2019). AI

analyzes climate datasets to predict future risks—such as increased

soil erosion vulnerability—and informs targeted climate resilience

strategies (Bi et al., 2024). It also models the distribution of invasive

species, assisting in effective management (Mtengwana et al.,

2021). Early warning systems monitor environmental indicators

to detect ecological stress, such as declining grassland resilience,

allowing timely intervention (Wu et al., 2023). Risk assessment

frameworks, like the VORS system, integrate diverse datasets to

evaluate vulnerability in arid pastoral ecosystems (Bi et al., 2024).

AI enhances adaptability by supporting ecosystem responses

to environmental changes. AI-driven species distribution models

(SDMs) predict shifts in species ranges under climate change,

informing conservation planning (Dutra Silva et al., 2019). AI

refines microclimate modeling, improving bias correction and

habitat suitability assessments, and enables targeted conservation

strategies (Levy and Shahar, 2024). It also supports adaptive

management by continuously evaluating conservation effectiveness

and adjusting strategies using real-time sensor and camera trap data

(Levy and Shahar, 2024).

AI strengthens resilience by enabling comprehensive ecosystem

health assessments. Remote sensing and deep learning analyze

spatiotemporal patterns to identify areas needing intervention (Bi

et al., 2024). AI assists in biodiversity conservation by determining

priority protection areas and informing strategies for mitigating

climate impacts (Levy and Shahar, 2024). It also supports the

control of invasive species and guides ecosystem restoration by

identifying optimal recovery strategies (Mtengwana et al., 2021).

In coastal environments, AI tracks kelp forest trends, guiding

resilience-building measures (Nicholson et al., 2024).

AI aids ecosystem resilience by monitoring biodiversity,

modeling habitat changes, and detecting deforestation or ecosystem

degradation in real-time. These tools facilitate timely conservation

actions, improve ecosystem service management, and support

adaptive strategies under environmental stress.

4.7 Energy and industry

The energy and industrial sectors are fundamental to economic

development but are also among the most vulnerable to climate

change. These sectors face significant challenges in maintaining

operational stability while transitioning toward low-carbon and

climate-resilient systems.

Climate change directly affects energy generation, transmission,

and distribution, increasing the risk of system failures and energy
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shortages. Extreme weather events—such as hurricanes, heatwaves,

and winter storms—cause physical damage to power infrastructure,

disrupting supply chains and grid operations (Nyangon, 2024).

Events such as Hurricane Maria in 2017 and Winter Storm Uri

in 2021 demonstrate the fragility of energy infrastructure, with

transmission and distribution networks particularly vulnerable to

high winds, flooding, and prolonged extreme temperatures (Nyame

et al., 2024). Hydropower generation declines due to shifting

precipitation patterns and reduced river runoff, while solar and

wind energy outputs becomemore variable under changing climate

conditions (Nyangon, 2024). Additionally, thermoelectric plants

reliant on cooling water—such as fossil fuel, biomass, and nuclear

facilities—face increasing risks of efficiency losses and operational

shutdowns due to water scarcity and rising temperatures (Nyangon,

2024).

Given these vulnerabilities, strengthening resilience in the

energy and industrial sectors is essential. This need is widely

recognized in the literature. This systematic review identifies

46 papers focused on these sectors, accounting for 12% of all

reviewed studies.

4.7.1 AI application in energy and industry
Artificial Intelligence (AI) is transforming the energy and

industrial sectors by improving efficiency, sustainability, and

resilience in response to climate change and growing resource

demands (Babiarz et al., 2024). Through predictive analytics,

remote sensing, decision support systems, and optimization

algorithms, AI enables smarter energy management, enhances

industrial operations, and reduces environmental impacts

(Mohammadi Lanbaran et al., 2024).

AI-driven predictive analytics play a crucial role in forecasting

energy demand, preventing equipment failures, and optimizing

resource distribution (Mugalakhod and Nirmanik, 2022). Machine

learning models analyze historical and real-time data from smart

meters, weather stations, and IoT devices to anticipate energy

consumption patterns, allowing for real-time grid adjustments and

efficient integration of renewable energy sources (Zhang et al.,

2025). AI also enhances predictive maintenance by identifying

anomalies in sensor data to prevent costly equipment failures,

particularly in offshore wind farms where maintenance operations

are logistically challenging (Yu Q. et al., 2024). Additionally,

AI-powered weather forecasting improves renewable energy

management by predicting fluctuations in solar and wind power

generation, ensuring better grid stability and resource allocation

(Inderwildi et al., 2020).

In remote sensing, AI enhances monitoring capabilities

by processing satellite imagery and sensor data to assess

infrastructure conditions, environmental changes, and disaster

impacts (Ghasemkhani et al., 2024). AI algorithms analyze images

to detect damage to power lines and substations, enabling rapid

assessment and prioritization of repairs, thereby strengthening

system resilience (Nyame et al., 2024). AI-driven remote sensing

also supports environmental monitoring by tracking deforestation,

pollution levels, and illegal land use changes, while facilitating

disaster response through rapid damage assessment and targeted

resource allocation in affected areas (Inderwildi et al., 2020).

Decision support systems (DSS) powered by AI integrate

data from multiple sources to provide actionable insights for

strategic planning, risk management, and operational efficiency.

In smart grids, AI optimizes energy flow, reduces waste, and

enhances reliability through real-time management of electricity

distribution. AI-driven energy management systems in buildings

and industries analyze renewable energy supply and consumer

behavior to optimize appliance operations and reduce energy costs.

AI also strengthens industrial risk management by identifying

potential hazards and improving safety measures in manufacturing

and resource extraction operations.

AI revolutionizes renewable energy by enhancing efficiency,

detecting energy patterns, optimizing supply, and supporting

autonomous energy management (Adul et al., 2025). AI-powered

smart homes use real-time energy optimization to reduce

consumption and store surplus energy for later use, contributing

to more sustainable energy systems (Mugalakhod and Nirmanik,

2022). Digital twin technology, which enables 3D modeling, real-

time monitoring, and visualization, improves grid management,

facilitates predictive maintenance, and enhances industrial process

efficiency (Zhou and Liu, 2024). In the industrial sector, AI

optimizes resource utilization, reduces waste, and advances

sustainable business models by incorporating environmental

impact assessments into decision-making (Alahmadi, 2025).

4.7.2 Mechanisms for enhancing resilience
AI-driven climate modeling and early warning systems

improve risk management by analyzing vast datasets to forecast

extreme weather events and energy demand fluctuations (Nyangon,

2024; Sarosh et al., 2024). Machine learning enhances predictive

analytics by integrating real-time sensor data with historical climate

patterns to identify vulnerabilities and optimize response strategies

(Nyame et al., 2024). AI-powered risk assessments combine

climate, operational, and financial data to inform mitigation

strategies and improve energy system reliability (Carannante et al.,

2024).

AI optimizes energy systems through smart grids, microgrids,

and dynamic line rating (DLR) (Yang W. et al., 2024). Smart

grids enhance energy distribution by adjusting power flow

in real time, reducing waste, and improving stability (Zhang

et al., 2025). Microgrids increase resilience by maintaining an

independent energy supply during disruptions, while DLR systems

optimize transmission efficiency by adapting to environmental

conditions (Nyame et al., 2024). AI also facilitates demand-

side management (DSM) through dynamic pricing and energy

consumption forecasting, improving grid flexibility and efficiency

(Mohammadi Lanbaran et al., 2024). Additionally, some AI

applications enhance model interpretability, which is crucial

for building trust and ensuring that AI-driven decisions are

transparent, accountable, and more equitable (Awijen et al., 2024;

Akter et al., 2024).

Predictive maintenance powered by AI reduces infrastructure

failures and operational downtime (Yu Q. et al., 2024). Machine

learning detects anomalies in energy systems, enabling proactive

maintenance and preventing costly outages (Ghasemkhani et al.,

2024). AI-driven management of distributed energy resources
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(DERs), such as solar and wind power, enhances energy

security and grid flexibility (Bulut et al., 2025). Grid-Enhancing

Technologies (GETs) leverage AI for real-time monitoring and

adaptive solutions to improve resilience (Mohammadi Lanbaran

et al., 2024; Nyame et al., 2024).

Case studies illustrate AI’s effectiveness. In Texas, AI-enabled

DERs played an important role in managing extreme conditions

during the 2021 energy crisis (Nyangon, 2024). In Tokyo,

microgrids maintain power supply during the 2011 earthquake

(Nyame et al., 2024). In China, AI minimizes disruptions

during Super Typhoon Lekima by dynamically adapting power

transmission systems (Nyame et al., 2024). In California, deep

learning algorithms optimize electricity demand responses during

extreme heat events (Nyame et al., 2024).

AI enhances energy and industrial resilience by managing

demand-supply imbalances in smart grids, optimizing renewable

energy integration, and ensuring operational continuity through

predictive maintenance. These capabilities reduce system fragility

and adapt operations to climate variability and disruptions.

4.8 Health

The health outcomes associated with climate change,

particularly extreme heat, are diverse and far-reaching. They

include not only direct heat-related illnesses such as heatstroke

and dehydration but also the exacerbation of chronic conditions

like cardiovascular and respiratory diseases, kidney dysfunction,

and mental health disorders (Jack et al., 2024). The elderly, due to

their reduced physiological capacity to regulate body temperature,

are particularly vulnerable to these effects (Boudreault et al.,

2024). Similarly, individuals with pre-existing cardiovascular

or respiratory conditions face heightened risks, as their bodies

are less able to cope with the physiological stress induced by

high temperatures. There is a substantial body of literature

examining the various pathways through which climate change

adversely affects human health, primarily by exacerbating

existing health conditions. Rocque et al. (2021), for instance,

conducted a systematic review of this growing field, and the

World Health Organization (WHO) has also placed strong

emphasis on the health impacts of climate change.3 Despite

this recognized importance, our review identified only two

studies that specifically address the resilience of health systems

to climate-related risks, revealing a significant gap in the

literature and underscoring the need for further research in

this area.

4.8.1 AI application in health
At the macro level, AI-driven predictive analytics forecast

heat-related illnesses by integrating meteorological, regional,

and demographic data. Multi-region models improve accuracy in

identifying high-risk areas, enabling proactive health interventions.

Deep learning models—particularly ensemble tree-based and

3 https://www.who.int/news-room/fact-sheets/detail/climate-change-

and-health

neural network algorithms—outperform traditional statistical

approaches in predicting morbidity and mortality trends

(Boudreault et al., 2024).

Decision support systems (DSS) powered by AI improve

resource allocation and emergency preparedness by identifying

vulnerable populations and optimizing medical response strategies.

AI-driven DSS direct healthcare resources where they are needed

most and support personalized interventions for individuals at

high risk of climate-related health issues (Boudreault et al., 2024).

Additionally, remote sensing technologies combined with AI

provide high-resolution heat hazard mapping by analyzing satellite

imagery, land surface temperature (LST), and vegetation indices.

These insights inform urban planning strategies, such as increasing

green spaces, improving cooling infrastructure, and implementing

zoning policies that mitigate the urban heat island (UHI) effect

(Jack et al., 2024).

Early warning systems (EWS) leverage AI to integrate real-

time data from weather forecasts, health surveillance systems,

and socioeconomic indicators, delivering timely alerts for extreme

heat events. These systems facilitate targeted public health

interventions—such as cooling centers and early response plans—

thereby improving community resilience (Jack et al., 2024).

4.8.2 Mechanisms for enhancing resilience
AI enhances climate risk management by predicting both

short- and long-term health impacts of extreme heat, allowing

for proactive planning and resource allocation (Boudreault et al.,

2024). By integrating weather forecasts and climate projections,

AI models forecast heat-related health risks, enabling timely

preventive measures such as activating emergency response plans,

issuing public health advisories, and mobilizing resources to

protect vulnerable populations. In the long term, AI supports

climate adaptation by assessing the projected burden of heat-related

illnesses, helping policymakers design more effective mitigation

strategies (Boudreault et al., 2024).

AI improves adaptability by identifying population-specific

vulnerabilities and tailoring interventions accordingly (Boudreault

et al., 2024). By analyzing the differential impacts of heat on

various demographic groups, AI facilitates targeted public health

messaging and interventions. For instance, if AI models detect that

short-term heat exposure significantly affects a specific population,

authorities can implement tailored outreach programs emphasizing

hydration and early medical intervention.

In the health sector, AI supports resilience by forecasting

disease outbreaks, improving healthcare logistics, and

enabling personalized interventions. These systems strengthen

preparedness, ensure continuity of care during climate-induced

stresses, and reduce health vulnerabilities in at-risk populations.

Table 8 presents selected case studies and empirical evidence

supporting these findings.

4.9 Water resources

Water resources are fundamental to human societies and

ecosystem resilience, yet climate change poses severe and escalating
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TABLE 8 Examples of artificial intelligence applications in health.

Location AI application Source

Quebec, Canada Machine learning models predict heat-related health outcomes across multiple regions, with
deep learning models achieving high accuracy.

Boudreault et al., 2024

Abidjan and Johannesburg AI-powered early warning system using clinical, socioeconomic, and remote sensing data to
analyze heat-health impacts.

Jack et al., 2024

Ahmedabad Heat Action Plan AI-supported early warning system enhances coordination and community outreach to mitigate
heat-related mortality and morbidity.

Jack et al., 2024

Source: Authors.

TABLE 9 AI tools for enhancing water resource resilience.

Mechanism Description Source

Enhanced predictive modeling AI-driven models forecast rainfall, streamflow, and groundwater recharge to support
proactive planning and resource allocation.

Banerjee et al., 2024;
Bizimana et al., 2024;
Kartal, 2024

Data-driven decision support systems AI integrates diverse data sources into decision-making tools for water management,
improving climate adaptation and disaster risk reduction.

Henriksen et al., 2022

Optimized water allocation strategies AI-driven deep learning methods allocate water efficiently among sectors, minimizing
economic losses and promoting sustainability.

Zhang et al., 2022

AI-enhanced early warning systems AI analyzes real-time data to improve flood and drought early warnings, enabling
timely response and risk mitigation.

Bizimana et al., 2024;
Ghaith et al., 2022;
Koutsovili et al., 2023

Infrastructure resilience & predictive maintenance AI assesses risks to water infrastructure, optimizing predictive maintenance and flood
management strategies.

Barman et al., 2024; Liu
and Zhao, 2024

Source: Authors.

risks to their availability, quality, and infrastructure. In this review,

31 papers address water resources, representing 15.8% of the

reviewed literature—highlighting the extensive body of work in

this area.

Climate change threatens water security by intensifying

extreme hydrological events, exacerbating scarcity, degrading

water quality, and straining infrastructure (Granata and

Di Nunno, 2025; Kartal, 2024; Zhang et al., 2022). Rising

temperatures and shifting precipitation patterns increase the

frequency of floods and droughts, disrupting water availability

and infrastructure reliability. Snowmelt-dependent regions

experience increasingly erratic runoff, heightening the risk of

winter floods and summer shortages (Granata and Di Nunno,

2025).

Water scarcity worsens, particularly in arid regions, due

to increased evaporation and reduced groundwater recharge,

intensifying competition among agricultural, industrial, and

domestic users (Henriksen et al., 2022). Sea-level rise further

threatens coastal freshwater supplies by increasing saltwater

intrusion into aquifers (Nikoo et al., 2024).

Water quality also deteriorates. Higher temperatures promote

algal blooms in lakes and reservoirs, while intense rainfall

increases runoff of pollutants—such as sediments and pesticides—

contaminating freshwater sources (Henriksen et al., 2022). Many

water treatment facilities, designed for past climate conditions, now

struggle to manage these evolving challenges (Xiong et al., 2024).

Infrastructure resilience is at risk, as dams, reservoirs, and

treatment plants become increasingly inadequate to handle shifting

water volumes. Climate-induced fluctuations in groundwater levels

disrupt agricultural and urban water supply systems, underscoring

the need for integrated water resource management (Henriksen

et al., 2022). The most vulnerable populations, particularly in the

Global South, face the greatest risks as water sustainability becomes

increasingly uncertain (Lawal et al., 2023). Urgent adaptation

strategies and resilient infrastructure are critical to addressing

these challenges.

4.9.1 AI application in water resources
AI offers a suite of powerful tools that transform the

management and protection of water resources (Bizimana et al.,

2024; Sarwar et al., 2025). One key area of application is predictive

analytics, where machine learning models forecast rainfall patterns,

streamflow, and groundwater levels. These models integrate diverse

data sources—including weather forecasts, historical hydrological

data, and remote sensing observations—to deliver accurate and

timely predictions. For instance, Long Short-Term Memory

(LSTM) networks are used for both short-term and long-term

flood forecasting by processing time series of temperature and

rainfall data (Dtissibe et al., 2024). AI also predicts future water

demand by analyzing factors such as population growth, economic

activity, and climate conditions, thereby guiding efficient and

sustainable water allocation (Johnson et al., 2024). In addition,

machine learning models forecast water quality parameters—such

as nutrient levels, sediment concentrations, and pollutants—based

on land use, climate, and industrial activity, enabling proactive

water quality management and pollution prevention (Mallya et al.,

2023).

In remote sensing, AI algorithms analyze satellite imagery

to identify and monitor water bodies—including lakes, rivers,
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and wetlands—thereby tracking changes in water availability and

assessing climate impacts on aquatic ecosystems (Mallya et al.,

2023). AI models also perform land use and land cover mapping

from satellite data, which is crucial for hydrological modeling and

water resource management. For example, the Cellular Automata

Markov model projects future land use changes, which are then

integrated into hydrological models to evaluate their impact on

water resources (Barman et al., 2024). Furthermore, AI-driven

algorithms map flood extents from satellite imagery, providing

near-real-time information essential for disaster response and

recovery (Sarwar et al., 2025).

Decision support systems powered by AI further enhance water

management by integrating diverse data sources and models to

inform strategies for Integrated Water Resources Management

(Henriksen et al., 2022). These systems help decision-makers

evaluate trade-offs between various water uses and determine

the most sustainable and equitable allocation strategies. Real-time

monitoring and control of water infrastructure—such as dams,

canals, and treatment plants—are also enabled by AI, optimizing

operations to reduce water losses and improve quality (Johnson

et al., 2024).

An emerging application in this realm is the use of digital

twins, which combine real-time sensor data with hydrological

models to enhance risk knowledge and support decision-making

(Henriksen et al., 2022). These digital twins predict and monitor

physical conditions on a daily basis, including wetness and

drought indices, and are integral to early warning systems for

extreme events (Ghaith et al., 2022). In wastewater treatment,

AI optimizes processes to enhance pollutant removal and reduce

energy consumption; machine learning algorithms, for example,

optimize incineration processes at treatment plants to achieve

significant energy savings (Xu et al., 2024).

4.9.2 Mechanisms for enhancing resilience
AI interventions significantly enhance climate risk

management, adaptability, and resilience in the water resources

sector through several concrete mechanisms. Enhanced predictive

modeling enables proactive planning by forecasting rainfall

patterns, streamflow, and groundwater recharge under various

climate change scenarios (Banerjee et al., 2024). These AI-driven

models support timely resource allocation and are recommended

for climate adaptation efforts in places like Kigali, Rwanda

(Banerjee et al., 2024; Bizimana et al., 2024; Kartal, 2024).

Data-driven decision support systems further empower water

management strategies by integrating diverse data sources (Heo

et al., 2024). For example, the HIP digital twin in Denmark

leverages real-time data and hydrological models to support

climate adaptation, water management, and disaster risk reduction,

providing critical insights into water-related risks (Henriksen et al.,

2022).

Optimized water allocation strategies driven by AI ensure

efficient distribution of water among various sectors. In China,

deep learning methods allocate flood drainage rights in the Yellow

River Watershed, protecting public health, minimizing economic

losses, and promoting sustainable development (Zhang et al.,

2022). AI also strengthens early warning systems for floods and

droughts by analyzing real-time data to provide timely alerts

that enable rapid response and damage mitigation. A flood

prediction methodology that integrates synchronization analysis

with deep learning exemplifies how early warnings effectively

identify vulnerable areas (Bizimana et al., 2024; Ghaith et al., 2022;

Koutsovili et al., 2023).

Furthermore, AI contributes to water infrastructure resilience

through predictive maintenance. For instance, a hybrid SWAT-

ANN model assesses the impacts of climate change on sediment

yield in an Eastern Himalayan sub-watershed, informing proactive

flood and erosion management strategies that strengthen

infrastructure resilience (Barman et al., 2024; Liu and Zhao, 2024).

AI improves water resource resilience through precision

forecasting of floods and droughts, real-time management of

water distribution, and anomaly detection in water systems.

These applications support adaptive water governance and reduce

exposure to hydrological extremes (Table 9).

5 Limits, gaps and future directions

While AI presents transformative opportunities for enhancing

climate resilience across multiple sectors, several limitations,

research gaps, and challenges must be addressed to ensure

its effective and equitable deployment. Key concerns include

scalability, data availability, interpretability, ethical considerations,

and the need for interdisciplinary collaboration.

This review is limited to English-language studies, which

may bias the findings geographically. Research published in other

languages—potentially covering regions like Latin America or

East Asia in more detail—is not captured, meaning our regional

analysis may underestimate activity in those areas. Future reviews

benefit from multilingual searches or international collaborations

to incorporate non-English literature.

Although this review focuses specifically on system resilience,

we acknowledge that the concept of climate risk is closely linked

and often complementary. Future research could explore this

adjacent dimension more directly—for instance, by examining how

AI applications contribute both to the reduction of climate risks

and to the enhancement of resilience across sectors.

A notable limitation of this review is its exclusive focus

on macro-level (systemic) resilience. While individual and

community-level (micro-level) resilience—such as household

adaptive behaviors or psychological resilience—is undeniably

important and contributes meaningfully to overall system

resilience, this level remains outside our defined scope. Our aim

is to investigate how large-scale systems and sectors (e.g., energy

grids, agricultural systems, urban infrastructures) withstand and

adapt to climate shocks, which aligns more directly with the

types of AI interventions that influence policy, infrastructure, and

governance. Including both micro- and macro-level studies would

significantly broaden the review’s scope beyond a manageable

range. Nonetheless, we recognize this as a limitation and encourage

future research to explore how AI supports micro-level resilience.

Such work may yield valuable insights into how AI technologies

enhance individual and community adaptation and, in turn,

strengthen systemic resilience.
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While our review identifies numerous studies that report

positive outcomes of AI applications—such as improved crop

yields, better resource allocation, or enhanced forecasting

accuracy—it is equally important to acknowledge studies that

highlight barriers, trade-offs, or mixed results. For instance, in

the agriculture sector, AI-powered decision support systems may

demonstrate high performance in data-rich, technologically

advanced regions, but their scalability in low-income or

resource-constrained settings is limited by factors such as

digital infrastructure gaps, cost barriers, and limited technical

capacity. Some studies explicitly note that AI tools are often

designed without considering the needs or constraints of

smallholder farmers, leading to limited adoption. Similarly, climate

information systems that rely on mobile apps or online platforms

may perform well where digital literacy is high but fail to reach

marginalized communities with limited connectivity. These

contrasting findings underscore that AI’s effectiveness is highly

context-dependent and that equity, scalability, and local capacity

are essential considerations in designing and deploying AI for

climate resilience. By engaging with these conflicting perspectives,

we aim to present a more balanced and critical synthesis of

the literature.

5.1 Overall limitations

5.1.1 Scalability and accessibility
A critical limitation of AI adoption, particularly in sectors such

as agriculture and water management, is the cost and accessibility

of advanced AI solutions (Choudhary et al., 2024). Many small-

scale farmers and water-stressed communities lack the resources

to implement high-tech solutions, necessitating affordable, open-

source AI platforms and low-cost sensor technologies—such as

geo-sensing—to broaden accessibility. Future research supports

the development of open-access AI tools and incentivizes public-

private partnerships that enable resource-constrained users to

access affordable, context-specific technologies. Initiatives that

standardize and disseminate low-cost, scalable solutions across

regions play a pivotal role in reducing this accessibility gap.

5.1.2 Data availability, quality, and integration
AI’s effectiveness relies heavily on high-quality, diverse datasets,

yet many regions—especially in the Global South—face data

scarcity and inconsistencies (Henriksen et al., 2022; Lawal et al.,

2023). A key challenge noted is data scarcity in climate-vulnerable

regions or for rare extreme events. To address this, future research

can employ techniques such as transfer learning—leveraging

models trained on data-rich regions and fine-tuning them on

data-poor contexts—and synthetic data generation (e.g., using

simulation or GANs to create plausible data for training). These

approaches can help overcome data limitations. For instance, Maity

et al. (2024) demonstrate the use of transfer learning in a climate

context, indicating its promise in improving model performance

where local data are limited.

In climate modeling, AI-based simulations demand

extensive computational resources, making them less feasible

for resource-constrained institutions (Gatla, 2019). AI-driven

climate projections must integrate historical extreme weather

events with localized adaptation strategies (Neset et al., 2024).

Similarly, in marine science, integrating satellite imagery, in-situ

sensor data, and citizen science contributions could provide a more

holistic understanding of oceanic and coastal systems (Yang et al.,

2022b).

To address these challenges, we recommend expanding open

climate data repositories, improving cross-border data-sharing

frameworks, and employing techniques such as transfer learning

and synthetic data generation to maximize the value of limited

datasets. Enhanced interoperability standards across data sources

also foster more integrated and reliable AI models.

5.1.3 Model interpretability and trust
One of the most pressing gaps across sectors is AI model

interpretability and transparency (Gatla, 2019; Awijen et al.,

2024). Many AI models—particularly deep learning algorithms—

function as “black boxes,” making it difficult for policymakers

and practitioners to understand or trust their predictions

(Boudreault et al., 2024). In disaster risk assessment, limited

model transparency reduces adoption among decision-makers and

emergency responders (Abdel-Mooty et al., 2022). Explainable AI

(XAI) methods—such as SHapley Additive exPlanations (SHAP)

and Local Interpretable Model-agnostic Explanations (LIME)—

require further development to enhance interpretability and trust

(Singha et al., 2024).

Recent advances introduce techniques to improve

transparency, including activation visualization (e.g., saliency

maps, Grad-CAM), feature importance analysis, and sensitivity

analysis. These methods provide insights into which input features

most influence a model’s predictions, helping stakeholders trust

AI-based recommendations. Future studies should prioritize

embedding AI into practical applications, particularly in high-

stakes decision contexts such as infrastructure planning and

emergency response. Integrating human-in-the-loop approaches

also supports more transparent and collaborative decision-making.

5.1.4 Ethical considerations and equity
AI’s deployment raises critical ethical concerns, including

algorithmic bias, data privacy, and social inequality (Galaz et al.,

2021; Mmbando, 2025). AI models are not neutral—they often

reflect the assumptions and limitations of the data and developers

behind them. As a result, these systems can reinforce or even

amplify existing societal disparities. For example, in disaster

management, AI-driven tools such as flood prediction models or

evacuation planning systems may rely on datasets that overlook

informal settlements or lack data on marginalized populations.

Consequently, vulnerable communities risk being excluded from

early warning systems or emergency services, despite being among

the most at risk (Tasnuva et al., 2024). This not only reduces the

effectiveness of AI interventions but also exacerbates inequalities in

disaster outcomes.

To address these issues, there is a growing call for equity-

centered AI research and governance frameworks that promote

inclusive design, participatory data collection, and transparent

decision-making. For instance, Cheye et al. (2024) emphasize

the importance of involving local communities in developing
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AI tools for climate resilience to ensure that solutions are both

context-sensitive and socially just. We recommend that future

research embed interdisciplinary teams—including ethicists and

social scientists—into the AI development process. Furthermore,

equity impact assessments and bias audits should become standard

practice in climate-related AI applications. Targeted funding and

research support for underrepresented regions, such as Africa and

South America, help address systemic disparities in research output

and technology access.

To mitigate algorithmic bias and promote equity, we propose

integrating established AI governance frameworks such as the

Organisation for Economic Co-operation and Development

(OECD) (2019)—which emphasize fairness, transparency,

accountability, and robustness—and the IEEE Ethically Aligned

Design framework (Chatila et al., 2018). These provide actionable

guidance for responsible AI development in climate resilience

applications. Researchers and practitioners should conduct bias

audits to evaluate whether AI models systematically underperform

for marginalized groups, use datasets that reflect demographic and

regional diversity, and incorporate participatory design practices

to engage local communities in AI tool development. Galaz et al.

(2021) underscore the importance of governance mechanisms that

prevent “data colonialism”—the imposition of models developed

in the Global North onto data-sparse regions in the Global South.

5.1.5 Algorithmic bias and data colonialism risks
in underrepresented regions

A significant ethical concern that emerges from our review

is the risk of algorithmic bias and data colonialism, particularly

in underrepresented and resource-constrained regions. Most

studies originate from high-income contexts (e.g., Europe, North

America, and East Asia), often using datasets, assumptions,

and models tailored to those settings. When such AI tools are

applied in the Global South without adequate adaptation or local

involvement, they may misrepresent realities, deliver inaccurate

predictions, or overlook key socio-environmental dynamics. This

can lead to ineffective or even harmful decision-making. For

example, an AI model trained on European agricultural data

may underperform when applied to Sub-Saharan climates, yet

still be promoted due to lack of alternatives. Moreover, these

communities are often excluded from the design, training, and

governance of these technologies, further reinforcing asymmetries

of power and knowledge production. To mitigate these risks,

future AI development for climate resilience must prioritize equity-

centered design, local data sovereignty, and participatory methods.

Frameworks such as theOECDAI Principles and the IEEE Ethically

Aligned Design can help operationalize these goals. Additionally,

investment in regional AI infrastructure, capacity building, and

context-sensitive datasets is critical to avoid repeating historical

patterns of marginalization in a new digital form.

5.2 Sector-specific gaps and research
directions

Each sector faces distinct challenges that require targeted

AI advancements.

5.2.1 Agriculture, forestry and food
Current AI models lack regional customization, which limits

their ability to account for soil conditions, market dynamics, and

climate variability (Choudhary et al., 2024). Future research focuses

on developing localized datasets, incorporating participatory AI

design, and integrating AI tools with genomic resources to enhance

crop climate resilience (Taloba and Rayan, 2025).

5.2.2 Cities and infrastructure
Key challenges include inadequate real-time flood forecasting

(Chitwatkulsiri and Miyamoto, 2023), limited AI-driven

infrastructure monitoring (Chew et al., 2025), and the scarcity

of high-quality data for predictive maintenance (Habib et al.,

2024). Future work should integrate AI with geospatial analysis

for improved risk assessment, strengthen real-time monitoring

systems, and develop physics-informed AI models to support

infrastructure sustainability (Yang et al., 2022a).

5.2.3 Climate and weather monitoring
AI-enhanced climate models must improve forecast precision

and scalability while addressing data gaps in extreme weather

events (Rahman et al., 2024). Future research explores hybrid

models that combine AI with physics-based approaches to improve

long-term climate projections (Ayinde et al., 2024).

5.2.4 Marine and coastal systems
Current AI models lack generalizability across different

geographic regions (Yang et al., 2022b). Future research focuses on

integrating AI with Earth system models to better predict coastal

flooding, erosion, and sea-level rise (Sun H. et al., 2024).

5.2.5 Disaster and risk management
This sector faces critical gaps in predictive accuracy, real-time

data integration, and decision-making frameworks. Current flood

forecasting models struggle with limited sensor coverage, reducing

predictive reliability (Hahn et al., 2024). AI-driven emergency

response systems operate without standardized frameworks, which

hinders large-scale deployment (Sun L. et al., 2024). Moreover,

existing risk assessments often overlook long-term resilience,

focusing primarily on immediate hazard response (Abdel-Mooty

et al., 2022). Future research should improve AI interpretability,

enhance multi-hazard risk modeling, and integrate socio-technical

resilience strategies.

5.2.6 Energy and industry
The sector encounters major challenges in grid resilience,

energy efficiency, and decarbonization. Climate-induced

variability, outdated grid infrastructure, and financial risks

for investors hinder the integration of renewable energy (Yang

H. et al., 2024). While AI-driven energy management and

predictive analytics improve system efficiency, gaps remain in

cross-regional energy trade and regulatory frameworks for long-

term sustainability (Babiarz et al., 2024). Future research should

enhance real-time adaptive grid management, improve energy
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storage solutions, and leverage AI for dynamic industrial efficiency

and emissions reduction (Mugalakhod and Nirmanik, 2022).

5.2.7 Water resources
AI models must become more scalable and transferable across

different watersheds and hydrological contexts (Mallya et al., 2023).

Current research focuses on developing AI-driven digital twins for

real-time water monitoring and integrating socio-economic factors

into water allocation models to enhance equity and efficiency

(Henriksen et al., 2022).

5.2.8 Health
Many AI-based health surveillance systems do not differentiate

between all-cause and climate-specific mortality trends, which

limits their ability to pinpoint heat-related illnesses, respiratory

diseases, or vector-borne outbreaks (Boudreault et al., 2024).

Future research should refine AI models to deliver cause-specific

health risk predictions and incorporate multiple interacting climate

stressors for improved public health planning (Jack et al., 2024).

Beyond these sector-specific observations, it is also important

to highlight a broader methodological gap that cuts across

domains—namely, the underutilization of certain advanced AI

techniques such as reinforcement learning. Despite its theoretical

relevance to dynamic climate adaptation, Reinforcement Learning

(RL) was found in only 1.04% of the studies reviewed. This is

surprising given RL’s strengths in sequential decision-making under

uncertainty—an essential requirement in adaptive systems such as

energy grid management, real-time irrigation control, or floodgate

operation. Several reasons may explain this underutilization. First,

RL often requires extensive training environments or simulation-

based data, which may not be readily available or realistic for

many climate-related applications. Second, the integration of

RL into physical or policy systems is complex due to high

stakes, safety concerns, and limited interpretability. Lastly, RL

remains a relatively new technique in environmental and climate

sciences, where uptake often lags behind more established machine

learning methods. Nonetheless, the potential of RL remains

strong. We encourage future research to explore its use in

autonomous adaptation systems, real-time climate response, and

multi-agent coordination, especially in sectors like water, energy,

and infrastructure where dynamic control is key.

5.3 AI, resilience, and the sustainable
development goals

The role of AI in enhancing climate resilience intersects

closely with the broader global development agenda, particularly

the United Nations Sustainable Development Goals (SDGs). Our

findings align most directly with SDG 13 (Climate Action), as

many AI applications examined support adaptation planning,

disaster risk reduction, and emissions monitoring (United Nations,

2015; Vinuesa et al., 2020). However, the implications extend

further. SDG 2 (Zero Hunger) is addressed through AI-enhanced

agricultural systems that improve crop forecasting, reduce input

waste, and promote food security (Sachs et al., 2019). SDG 9

(Industry, Innovation and Infrastructure) is advanced by AI-

supported infrastructure monitoring, predictive maintenance, and

smart grid technologies (Vinuesa et al., 2020). SDG 11 (Sustainable

Cities and Communities) is promoted through AI-driven urban

resilience strategies such as flood prediction, traffic optimization,

and energy efficiency improvements. At the same time, we caution

that AI must be deployed equitably to avoid reinforcing existing

disparities—thus connecting to SDG 10 (Reduced Inequalities) and

the overarching SDG principle of “leaving no one behind” (Galaz

et al., 2021). By embedding ethical, participatory, and context-

aware approaches in AI development, researchers and practitioners

can ensure that AI contributes meaningfully to a more resilient and

sustainable future.

5.4 A framework for equitable AI
deployment in low-resource regions

To make these recommendations actionable, we propose

several concrete steps. First, interdisciplinary collaboration

should be operationalized through the creation of funded

research consortia that bring together AI scientists, climate

experts, local governments, and civil society. Programs

like Horizon Europe, the Green Climate Fund, or regional

development banks can earmark specific calls for such joint

efforts. Second, national governments and development

partners should co-develop open-access, regionally tailored

data platforms—co-managed by national meteorological services

and academic institutions—to enhance local AI capacity.

Third, technical training programs on explainable AI and

ethical data governance should be embedded into climate

adaptation strategies, targeting local practitioners, not just

researchers. Lastly, we recommend embedding participatory AI

design practices into public procurement criteria, ensuring that

solutions funded or adopted by public actors are inclusive and

socially grounded.

To support just and context-aware AI deployment in climate

resilience, we propose a framework inspired by recent work from

Jain et al. (2024a,b). Their studies demonstrate that equitable AI

implementation requires not only technical innovation but deep

engagement with local realities, especially in climate-vulnerable and

resource-constrained regions.

Jain et al. (2024a) highlight how embedding AI and machine

learning in South Asia’s water-energy-food systems succeeds only

when local capacity is developed and interdisciplinary collaboration

is fostered. Similarly, Jain et al. (2024b) emphasize that inclusive

design—drawing on indigenous and local knowledge—and strong

policy alignment are essential to ensure AI solutions are ethically

grounded and responsive to local needs. These studies underline

the risks of data colonialism, where externally developed models

may be applied without adaptation, reinforcing inequality and

eroding trust.

Our proposed framework calls for the integration of local

expertise, participatory design, data sovereignty, and governance

mechanisms that align AI deployment with development goals such

as the SDGs. Doing so can help ensure AI serves as a tool for
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resilience, not exclusion, and supports climate adaptation efforts

that are effective, inclusive, and sustainable.

One concrete path toward regionally tailored AI models

is through participatory design frameworks, which engage

local stakeholders—such as community groups, NGOs, and

government agencies—throughout the AI development cycle.

This process ensures that both the problems addressed and the

resulting solutions are grounded in local priorities, values, and

infrastructural realities. Participatory design not only improves the

relevance and cultural acceptability of AI tools, but also supports

better data integration by leveraging indigenous knowledge

systems and community-sourced datasets. In regions with

limited computational infrastructure, tailoring might also involve

simplifying models or deploying them through mobile-friendly

or offline platforms. Srivastava and Maity (2023) provide a

compelling example of such approaches in action, demonstrating

how locally co-developed models yielded more sustainable and

trusted applications in low-resource settings. Future research

should document participatory methodologies explicitly, helping

establish best practices for inclusive and context-sensitive

AI deployment.

6 Conclusion

This systematic literature review highlights the critical role

of Artificial Intelligence (AI) in enhancing resilience against

climate-related challenges across various sectors. The analysis

of 385 peer-reviewed studies reveals a predominant focus on

adaptation strategies (64.4%), with relatively less emphasis on

mitigation (16%) and integrated adaptation–mitigation approaches

(19.4%). These findings suggest that AI applications are primarily

leveraged to support climate adaptation efforts rather than directly

reducing emissions.

The review further categorizes AI applications by sector,

identifying Agriculture, Forestry, and Food (30.39%) and Cities

and Infrastructure (25.45%) as the most extensively studied areas.

In contrast, sectors such as Health (0.52%) and Ecosystems

(2.34%) remain significantly underrepresented. In terms of

AI methodologies, Classical Machine Learning/General ML

dominate (51.43%), followed by Deep Learning techniques

(22.34%). However, emerging approaches—such as Reinforcement

Learning (1.04%) and Remote Sensing & GeoAI (2.08%)—remain

underexplored, presenting opportunities for future research.

The rapid and exponential growth in AI applications for climate

resilience is evident in publication trends. Research output remains

limited before 2018, followed by a sharp acceleration from 2020

onward. In 2024 alone, over half (51.69%) of the reviewed studies

appear, reflecting a surge in academic and policy interest in AI-

driven climate solutions. Notably, despite the review covering only

until early 2025, 10.65% of the studies already originate from this

year, indicating sustained momentum and an expanding research

agenda in this critical field.

From a regional perspective, AI applications in climate

resilience exhibit uneven distribution, with Asia (31.9%) andGlobal

studies (34.3%) receiving the most attention, while regions such

as South America (1.8%) and Oceania (2.3%) remain critically

understudied. Africa accounts for 7.5% of studies, highlighting

the need for increased AI-driven climate resilience research in

vulnerable regions. Europe (11.7%) and North America (10.4%)

have moderate representation but remain underexplored in certain

sectors, particularly in the contexts of climate and weather

monitoring and agriculture. Addressing these disparities is crucial

to ensuring that AI-driven climate adaptation strategies are

contextually relevant and equitably distributed.

Despite AI’s growing importance in resilience-building,

several limitations persist, including challenges related to data

availability and quality, scalability, model interpretability,

and ethical considerations. Addressing these issues requires

interdisciplinary collaboration, improved access to high-quality

datasets, and the development of explainable AI models to

enhance trust and adoption. Additionally, sector-specific research

gaps—such as AI-driven health resilience and integrated AI

frameworks for water management—demand attention to ensure

that AI solutions remain inclusive, equitable, and effective across

diverse contexts.

Future research should expand AI applications beyond well-

studied areas, integrate AI with emerging technologies such as

digital twins, and ensure that AI-driven climate resilience strategies

remain accessible to vulnerable communities. By addressing these

gaps, AI plays a pivotal role in fostering sustainable, adaptive,

and resilient systems capable of mitigating the growing threats of

climate change
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