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In Kenya’s dairy sector, climate change mitigation focuses on sustainable milk 
production. However, dairy producers often overlook emission reduction, creating 
a gap between national policies and local practices. This paper aims to identify 
the factors, including smallholder entrepreneurial orientation, socio-economic 
characteristics, and institutional influences, that drive the adoption and uptake 
intensity of on-farm greenhouse gas reduction measures in the dairy sector, 
particularly among smallholder producers in Nyandarua County, Kenya. The study 
uses a fractional response model to examine factors influencing greenhouse 
gas reduction at the farm level based on survey data from 385 dairy farmers. 
Greenhouse gas reduction was measured using a composite index, with proxies 
drawn from the literature. Key factors influencing greenhouse gas reduction 
include education, social capital, entrepreneurial orientation, awareness, and risk 
perception. The study recommends that the national and county governments 
promote and support the adoption of climate-smart dairy strategies that increase 
milk production while simultaneously reducing greenhouse gas emissions. This 
support could include technical assistance, financial support and educational 
programs to encourage complementary adoption by dairy farmers.
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1 Introduction

Dairy production faces a critical challenge: balancing the need to increase output to meet 
rising milk demand with the imperative to reduce greenhouse gas (GHG) emissions (O'Hara, 
2023). Meeting this growing demand has advantages and drawbacks (Graham et al., 2022). 
On the positive side, increasing production ensures an adequate supply of dairy products, 
supporting food security and contributing to economic growth for dairy farmers. However, it 
also risks exacerbating climate change through higher GHG emissions (Vernooij et al., 2024). 
Globally, agriculture contributes approximately 17% of total greenhouse gas emissions, with 
the livestock sector responsible for nearly two-thirds of these emissions. The dominant 
greenhouse gas emissions in the dairy sector are methane, accounting for 96%, nitrous oxide 
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at 3%, and carbon dioxide at 1% (FAO, 2017). A significant portion of 
these emissions, particularly in African agriculture, arises from enteric 
fermentation, which accounts for half of the sector’s GHG emissions 
(Ntinyari and Gweyi-Onyango, 2020). This issue has prompted a 
growing body of literature on low-emission development strategies in 
developing countries (Kihoro et  al., 2021; Vernooij et  al., 2024). 
Factors such as breed composition, poor-quality feeds, and inadequate 
manure management significantly influence the amount of GHG 
emissions (Rotz, 2018; Pinto et  al., 2020a, 2020b). However, 
discrepancies remain in the reported emissions by smallholder 
farmers. While some studies argue that smallholding agricultural 
production is a major contributor to climate change (Vernooij et al., 
2024), others contend that their emissions per capita are negligible 
(Mwaura et al., 2024).

Despite the dairy sector’s contribution to GHG emissions, it is also 
heavily affected by climate change. Challenges such as rising 
temperatures, water scarcity, declining feed quality and quantity, and 
the emergence of new pests and diseases threaten its sustainability 
(Graham et al., 2022).

Recognising this twofold challenge, numerous Sub-Saharan 
African nations have incorporated climate change policies into their 
national frameworks by participating in the United Nations 
Framework Convention on Climate Change and the Paris Climate 
Agreement (Mwaura et al., 2024). Many countries mention livestock 
in their Nationally Determined Contributions and/or Adaptation 
Plans or outline large-scale low-emissions development initiatives 
(Graham et al., 2022).

The literature focused on the dairy sector suggests that changes 
should be made to production practices at the farm level to reduce 
GHG emissions. These changes include implementing improved 
feeding strategies, better management of manure and herds, 
conserving feed, and treating crop residues (Maindi et  al., 2020; 
Kihoro et al., 2021). Studies have used life cycle assessment to measure 
GHG reduction at the farm level (Zhao et al., 2017; Xu et al., 2023). 
However, using this approach is complicated, resource-intensive, and 
time-consuming, with limitations that can affect its feasibility and 
effectiveness. To this purpose, Mwaura et  al. (2024) recommend 
simpler and easily monitored techniques to tackle the current 
emission trend among smallholder farmers. Collectively, these studies 
have provided insights into how various climate-smart dairy strategies 
(CSDS) reduce GHG emissions. The available literature lacks an 
empirical model to assess how farm and farmer characteristics 
influence the uptake intensity of GHG emissions reduction strategies. 
Addressing this gap is crucial because this information provides 
critical insights for designing targeted, effective interventions.

The present paper addresses these aspects using the Fractional 
Response Model (FRM) to assess the factors influencing the adoption of 
on-farm GHG reduction measures in the dairy sector. Employing a 
different approach to studying the determinants of GHG emissions 
reduction contributes to enhancing the depth, breadth, and robustness 
of the analysis conducted in the literature. This information is essential 
for tailoring policies, programs, and technologies to specific contexts, 
thereby increasing the feasibility and scalability of GHG reduction 
initiatives. Furthermore, such a model could help bridge the gap between 
high-level theoretical frameworks and on-the-ground implementation, 
ensuring that proposed solutions are practical and impactful.

Building on the work of Kihoro et al. (2021) and Vernooij et al. 
(2024), this study introduces a novel approach by utilising proxies as 

indicators of GHG reduction to compute a comprehensive index. The 
selected CSDS are grounded in robust evidence from the literature, 
which demonstrates their effectiveness in reducing GHG emissions 
(Ericksen and Crane, 2018; Wilkes et al., 2020; Kihoro et al., 2021; 
Mburu et al., 2024; Vernooij et al., 2024).

What sets this study apart is the integration of smallholder 
entrepreneurial orientation alongside socio-economic and 
institutional factors to investigate the drivers of adopting various 
GHG reduction measures among farmers. This multidimensional 
approach provides added value by offering a more comprehensive and 
nuanced understanding of the decision-making processes and 
constraints at the farm level. Unlike previous studies, which primarily 
focus on the technical efficacy of CSDS, this research delves into the 
interplay of individual, economic, and institutional influences, 
shedding light on the conditions necessary for successful adoption.

This research is particularly important for informing policies and 
interventions tailored to regions facing similar climate-related 
challenges, ensuring that agricultural practices are both productive 
and environmentally sustainable. This study, therefore, assesses the 
factors that influence the reduction of greenhouse gas emissions at the 
farm level. The study hypothesised that farmer demographic, socio-
economic, institutional, entrepreneurial, and behavioral factors 
significantly influence the level of greenhouse gas emissions reduction.

2 Methodology

2.1 Description of the study area

This study was conducted in Nyandarua County, located between 
Mount Kenya and Aberdare areas in Central Kenya. The County 
between latitude 0°8’ North and 0°50’ South and between longitude 
35°13’ East and 36°42’ West (Figure 1). The area receives long rains in 
March and May, with an annual rainfall of 1700 mm. Short rains are 
recorded from September to December, with an annual rainfall of 
700 mm. The temperatures are considered moderate, ranging between 
120\u00B0C and 250\u00B0C. Agriculture is the primary economic 
activity in the region, contributing approximately 3.9% to the national 
gross domestic product. The major agricultural produce includes 
dairy, poultry, Irish potatoes, floriculture, cabbages, carrots, peas, 
pyrethrum, sugar beet, and cereals. However, the county has 
experienced decreased agricultural productivity due to its increasingly 
semi-arid conditions, which have led to frequent food and water 
shortages for both households and livestock. In response, the County, 
in collaboration with the World Bank, has implemented climate-smart 
agriculture interventions to improve livelihoods while simultaneously 
reducing GHG emissions (County Government of Nyandarua, 2023).

The proposed study in this area is crucial as it addresses the dual 
challenge of adapting to climate change while promoting sustainable 
agricultural practices. Focusing on Nyandarua County provides 
valuable insights into how smallholder farmers can adopt climate-smart 
strategies to mitigate the impacts of climate change and reduce emissions.

2.2 Data and sampling procedure

The study employed a cross-sectional research design, utilizing a 
multi-stage sampling technique to select Kipipiri and Kinangop 
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Sub-Counties of Nyandarua County based on their favourable 
conditions for milk production and climatic conditions that favour 
agriculture. In this area, six wards namely Engineer, Gathara, Njabini, 
Kipipiri, Wanjohi, and Githioro, were selected because their relevance 
to the dairy sector and their vulnerability to climate impacts make 
them ideal for investigating the adoption of CSDS. In Kenya, a ward 
is a smaller administrative unit within a sub-county, typically 
representing a community or village. Given the known target 
population size of the study area, it used the Yamane (1967) formula 
to estimate a minimum sample size of 384 dairy farmers from a 
population of 9,049 to achieve a 5% margin of error. Smallholder dairy 
farmers were randomly selected from the six wards considered using 
a systematic random sampling at intervals of five from the list of dairy 

producers. To distribute the sample across the wards, the study used 
the target population data at the ward level provided by the Ministry 
of Agriculture Livestock and Fisheries, County Government of 
Nyandarua (2023). The proportion of the target population was 
calculated in each ward relative to the total target population and then 
used these proportions to allocate the sample accordingly (Table 1).

This study used primary data collected through a semi-structured 
questionnaire with a mix of open and closed-ended questions chosen 
based on relevant literature and validated through focus group 
discussion and key informant interviews. Altogether, 8 dairy farmers 
engaged in the focus group discussion, encompassing 2 youths, 2 
females, and 4 males. Likewise, 8 experts were interviewed for the key 
informant interviews, representing a diverse range of perspectives: 2 

FIGURE 1

Map of the study area.
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Sub-County dairy board members, 2 dairy cooperative leaders, 2 
extension officers, and 2 officers from the Kenya Climate Smart 
Agriculture Project with each interview taking about forty minutes. 
In addition, a questionnaire pre-test was carried out to assess the 
questions’ effectiveness, sufficiency, and suitability in obtaining the 
necessary data. The pilot study also evaluated the time needed to 
complete the questionnaire and the respondents’ sensitivity to the 
questions. The pilot study involved respondents representing 10% of 
the actual sample size (Abegunde et al., 2020). Data was collected 
through face-to-face interviews conducted by a team of properly 
trained enumerators chosen for their data collection skills and 
knowledge of the local language.

2.3 Outcome variable selection

The outcome variable in this study is the Composite Greenhouse 
Gas Reduction Index (CGHGRI), which was developed using the 
following steps:

 i Identification of GHG reduction strategies: Based on a review 
of relevant literature, the study identified strategies that reduce 
GHG emissions (methane, nitrous oxide and carbon dioxide) 
to form the basis of the index.

 ii Data collection using yes/no questions: the study designed a 
series of yes/no questions to assess whether smallholder dairy 
producers in our sample implemented these strategies.

 iii Scoring and aggregation: The responses to these questions were 
aggregated to calculate a score for each CGHG reduction 
indicator, contributing to the final CGHG reduction index.

The GHG reduction strategies considered are listed in Table 2 with 
the supporting literature.

Given each indicator’s varying number of attribute levels, the 
study normalised them to ensure comparability. The literature suggests 
normalising variables within a range of 0 to 1 (Kumar et al., 2016; 
Sendhil et al., 2018; Balaganesh et al., 2020). Accordingly, the study 
employed minimum-maximum normalisation, a straightforward 
method commonly used to standardise various indicators before 
amalgamating them into a single index (Shahbaz et al., 2023).

After getting the normalised values for each indicator, the next 
step was to assign weights to indicators. There are various ways of 
assigning weights to indicators, including equal weights, expert 
opinion, and principal component analysis. The equal weights method 
removes the influence of certain variables but may oversimplify the 

index, while expert opinion can be  subjective depending on the 
expert’s knowledge (Kumar et  al., 2016; Dabkiene et  al., 2021). 
Principal Component Analysis (PCA) assumes a linear relationship 
among variables and uses their correlations, but it may assign low 
weights to important indicators with weak correlations, leading to 
potentially invalid results. Additionally, PCA requires a sufficient 
number of indicators with a moderate correlation to be  effective 
(Greco et al., 2019).

To avoid the above biases, the following formula was employed to 
assign weights to indicators as suggested by Shahbaz et al. (2023). 
First, the study normalised each indicator of the GHG emissions 
reduction as shown in Equation 1:

 
−

=
−ik

AS LSJ
MS LS  

(1)

where ikJ  represents the normalised value of the indicator i for 
household ,k  AS  represents its actual score, LS is the lowest score in 
the sample and MS the maximum score. The weights were computed 
as shown in Equation 2:

 
= = … = …
∑

; 1 .4; 1 .385ik
i

ik

JW i k
J  

(2)

where iW  represents the weight of the thi  indicator; ∑ ikJ  denotes 
the sum of normalised values of four indicators for household k. This 
weight estimation formula offers the advantage of distributing 
weight to each indicator according to its contributing share. 
According to the results, animal health management, improved 
breeding, feeding and manure management received the highest 
weights, respectively.

Finally, a combined GHG emissions reduction index was 
computed using indicators and their respective weights as per Shahbaz 
et al. (2023). For each of the N = 4 indicators in Table 2, the study 
computed the weighted index (Index) as follows:

 = ∗∑1
N

i ikIndex W J  (3)

Afterwards, the study computed the GHGRI as a sum of the 
indices computed with Equation 3 as shown in Equation 4:

 ( )= ∑ + + +1 2 3 4CGHGRI Index  (4)

Where CGHGRI  denotes composite greenhouse gas emissions 
reduction index for the four indicators. Higher values of CGHGRI  
indicate a reduction of GHG emissions by a household. As suggested 
by the literature, the study utilised a set of characteristics of farms and 
farmers to explain the dependent variable.

This study uses a FRM to assess the factors influencing the 
adoption of GHG emission reduction levels. Since the FRM effectively 
captures nonlinear relationships, it is particularly suitable for our 
analysis where the dependent variable, the CGHGRI, is an index 
ranging between 0 and 1. As noted by Wamuyu et al. (2023), FRM 
provides reliable estimates of regression coefficients regardless of the 
dependent variable’s distribution. Additionally, it accounts for 

TABLE 1 Sample size distribution in each ward.

Sub-
county

Ward Sample Share of the target 
population

Kinangop Gathara 69 0.18

Engineer 77 0.2

Njabini 75 0.19

Kipipiri Githioro 48 0.13

Wanjohi 54 0.14

Kipipiri 61 0.16

Total 384 1.00
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nonlinearity arising from data censoring without the need for 
transformations or corrections for observations at the data’s upper or 
lower bounds. Under the assumptions of a Generalized Linear Model, 
FRM is both robust and efficient (Wamuyu et  al., 2023). The 
specification equation is as follows:

 ( ) ( )β−= 1
iE GHGRI g X  (5)

where:

 • GHGRI : The dependent variable and ( )E GHGRI  is its expected 
value given the independent variables ( βiX )

 • iX : A set of independent variables
 • β : A vector of coefficients that measure the effect of each 

independent variable.
 • −1g : The inverse of a link function ( ) ,g  which ensures the 

predicted GHGRI  stays between 0 and 1.

3 Results

3.1 Farm and farm producers’ 
characteristics

Table 3 presents the descriptive statistics of the variables used in 
the analysis. The average age of the farmers was 51 years. A majority 
(56.6%) of the households were male-headed. The mean household 
size was about 5 members, indicating moderate household sizes 
among the sampled farmers.

In terms of socio-economic characteristics, respondents had an 
average of 9 years of formal education, suggesting that most had 
completed at least primary schooling, with others progressing to 
secondary level. The average farm size allocated to dairy production 
was 1.3 acres, and the mean herd size was about 2 cows. The land 
allocated to dairy emphasizes the significance of dairy farming as a 
primary income source for a majority of households, considering 
smallholder dairy production. Approximately 44% of the respondents 
reported having off-farm income sources.

Regarding social capital and institutional factors, the survey 
findings indicated that the sampled farmers had extensive experience 

in dairy production, with many having more than 15 years of 
experience in the field. Group membership was relatively common, 
with 62% of farmers participating in groups and 35% being members 
of cooperatives. Access to extension services was reported by 43% of 

TABLE 3 Summary statistics of the variables used in the study.

Variables Mean Standard 
deviation

Demographic factors

Age 51.04 12.33

Gender of the household head (male = 1) 56.62

Household size 4.71 2.18

Socio-economic factors

Education 9.23 3.92

Farm size 1.34 1.45

Herd size 1.97 0.95

Farmers with Off-farm income (%) (Yes = 1) 43.64

Social capital and institutional factors

Farming experience 15.11 10.39

Farmers in groups (%) (yes = 1) 61.82

Cooperative Member (%) (yes = 1) 35.06

Extension access (%) (yes = 1) 43.12

Amount of credit 15496.10 44370.07

Distance to market 2.48 1.76

Training 1.57 1.95

Entrepreneurial and behavioral factors

Entrepreneurial orientation 64.48 18.90

Risk perception 3.63 0.68

Awareness 2.85 0.91

Behavioral intention 3.92 0.77

Perceived behavioral control 2.86 1.10

Milk yield/cow/year 2724.06 1607.2

GHG reduction index 0.682 0.15

The overall farmer entrepreneurial orientation index was used to measure respondents’ 
entrepreneurial orientation (Sambrumo et al., 2022).

TABLE 2 GHG emissions reduction indicators.

GHG reduction indicators Strategy Reference

Animal health management Deworming after every three months, weekly tick control, vaccination and 

treatment of East Coast Fever control, Rift Valley Fever, foot and mouth 

disease and trypanosomiasis which were used as a proxy for animal health 

management

FAO (2017), Ericksen and Crane (2018), FAO 

(2019), and Kihoro et al. (2021)

Improved breeding Calving interval below 14 months, use of improved bulls, artificial 

insemination, and sexed semen

FAO (2016), Kihoro et al. (2021), Aguirre-Villegas 

et al. (2022), and Hawkins et al. (2022)

Improved feeds and feeding Concentrates or dairy meal, feed additives, weaning diets, sweet potato vines, 

sweet lupin seeds, Desmodium, production of improved fodder varieties, use of 

treated crop residue, hay and silage making, intercropping legume with grass 

fodder and full water access, zero grazing and use of stall feeding

FAO (2016), FAO (2017), Ericksen and Crane 

(2018), FAO (2019), Ibidhi and Calsamiglia (2020), 

Wilkes et al. (2020), Kihoro et al. (2021), and 

Aguirre-Villegas et al. (2022)

Manure management At least 3 months of composting before manure use, and use of biogas Chand et al. (2015), Herrero et al. (2016), Ericksen 

and Crane (2018), and Kandulu et al. (2024)
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respondents. On average, farmers accessed KES 15,496.1 in credit and 
lived 2.5 km from the nearest market. The average number of training 
sessions attended was 1.6.

In terms of entrepreneurial and behavioral factors, the average 
entrepreneurial orientation score was 64.5. Risk perception had a 
mean score of 3.6, while awareness and perceived behavioral control 
had average scores of 2.9 and 2.8, respectively. The average behavioral 
intention score was 3.9. On average, milk yield per cow per year was 
2,724.1 litres. The mean greenhouse gas (GHG) reduction index was 
0.7, reflecting moderate adoption of GHG-reducing practices among 
dairy producers.

3.2 Diagnostic tests

Before estimating the probit model, diagnostic states were 
conducted to determine multicollinearity in the explanatory 
variables, heteroscedasticity, and normality of the residuals. The 
results indicated that the Variance Inflation Factor (VIF) was 1.31, 
below the recommended threshold of 5 (Table  4). The Breusch-
Pagan test (p-value = 0.000) showed that the variance of the error 
terms is not constant across the observations thus heteroscedasticity 
was a problem. This study accounted for heteroscedasticity by 
running robust standard errors. Finally, the Shapiro–Wilk test 
(p-value = 0.037) depicted that the residuals were 
normally distributed.

When choosing between the logit and probit models for the 
fractional response model, the study evaluated key model fit statistics, 
including Akaike Information Criteria (AIC), Bayesian Information 
Criteria (BIC), and log-likelihood (Table 5). The logit model had a 
slightly higher log-likelihood compared to the probit model, which 
suggested that the logit model fitted the data reasonably well. 
Additionally, the logit model exhibited lower AIC and BIC values 
compared to the probit model’s AIC and BIC values. Since lower AIC 
and BIC values indicate a better model, the logit model emerged as 
the most suitable model for this analysis.

3.3 Determinants of greenhouse gas 
emissions reduction level among 
smallholder dairy farmers

Table 6 shows the factors influencing the GHG reduction level 
among smallholder farmers. A total of 19 explanatory variables were 
included in the model. The model’s strong statistical significance 
(Prob>χ2 = 0.0000) and the pseudolikelihood value (269.3741) 
indicate robust model performance, implying that at least a subset of 
the explanatory variables has non-zero effects. The results highlight 
several key determinants across demographic, socio-economic, social 
capital, institutional, entrepreneurial, and behavioral factors. 
Specifically, nine variables (education, off-farm income, proportion 
of cows milked, farmer group and cooperative membership, 
entrepreneurial orientation, perceived behavioral control, awareness, 
behavioral intention and risk perception) were statistically significant 
in explaining GHG reduction levels among farmers. Specifically, 
education level, proportion of cows milked, group and cooperative 
membership, and perceived behavioral control were positive and 
statistically significant at the 1% level, indicating a strong association 

with GHG reduction levels. Entrepreneurial orientation, awareness, 
and risk perception were all significant at the 5% level, while 
behavioral control was negative and statistically significant at the 
10% level.

4 Discussion

Among the socio-economic factors, education exhibited a 
positive and highly statistically significant effect, indicating that 
higher educational attainment is strongly associated with increased 
GHG reduction levels. The knowledge gained through education 
increases the likelihood of adopting climate CSDS since individual 
farmers can fully understand the benefits of the specific strategies. 
This finding aligns with the conclusions drawn by Brody and Ryu 
(2006), Ongare et al. (2016), Alsayed and Malik (2020) and Bohvalovs 
et al. (2023). Additionally, higher levels of education may enhance 
farmers’ ability to comprehend the synergies between various 
mitigation strategies, thereby facilitating the adoption of multiple 
GHG-reducing practices, as supported by Gebre et al. (2023), Korir 
et al. (2023) and Asante et al. (2024).

The proportion of dairy animals milked was positively associated 
with reduced GHG emissions, confirming the studies by Zehetmeier 
et al. (2012) and Kashangaki and Ericksen (2018). Milking a higher 
proportion of dairy animals is associated with lowering GHG 
emissions due to several climate-smart strategies. These include 
improved feed efficiency, where lactating cows are provided with 
nutrient-dense feed, resulting in higher milk production (Ericksen 
and Crane, 2018). Further, there might be an element of efficiency 

TABLE 4 Multicollinearity test for explanatory variables.

Variable VIF 1/VIF

Education 2.279 0.439

Cooperative membership 1.325 0.754

Herd size 1.233 0.811

Gender 1.23 0.813

Land size 1.229 0.814

Awareness 1.161 0.861

Behavioral intention 1.15 0.869

Extension access 1.123 0.891

Group membership 1.088 0.919

Age 1.069 0.936

Training 1.056 0.947

Household size 1.049 0.953

Distance 1.048 0.954

Mean VIF 1.308 .

TABLE 5 Tests for the choice between logit and probit model in FRM 
model.

Fractional 
response model

AIC BIC Pseudo-
likelihood

Logit −496.748 −413.730 269.374

Probit −496.559 −413.541 269.280
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where if a larger proportion of the herd is productive, the overall 
emissions per unit of milk produced could be lower (Vernooij et al., 
2024). These results suggest conducting further studies to determine 
whether this relationship holds in other regions or with different 
livestock types. Selective breeding and enhanced animal health 
contribute to fewer emissions, as healthier, more productive animals 
emit less methane per unit of milk (Kihoro et al., 2021). Additionally, 
proper manure management and the adoption of renewable energy, 
such as bio-digesters, reduce methane and nitrous oxide emissions 
(Kandulu et al., 2024).

Cooperative and other farmers’ group membership had a 
significant positive effect on the GHG reduction level. Agricultural 
groups play a crucial role in disseminating knowledge, and by 
actively engaging in these groups, smallholder farmers gain a better 
understanding of the benefits of adopting multiple GHG-reducing 
strategies. Participation in social and institutional networks, such 
as group and cooperative memberships, has been shown to enhance 
the adoption of climate-smart practices (Nganga et al., 2019). This 
observation aligns with Akzar et al. (2023), who emphasised the 

importance of cooperative membership in embracing 
complementary dairy feed technologies. This pattern is also 
consistent with the findings of Bacon et  al. (2012), Pinto et  al. 
(2020a, 2020b), Chong et al. (2023), and Guo et al. (2023), who 
discovered that substantial social capital promotes the adoption of 
key climate-smart strategies, including improved breeds, fodder 
production, irrigation, and livestock manure management. The 
literature also suggests that agricultural cooperatives can play a 
significant role in promoting the adoption of green technologies 
among farmers. Cooperatives can facilitate the diffusion of green 
technologies through technical training, breaking down the 
knowledge barriers that may hinder farmers from adopting these 
practices (Chong et al., 2023). Additionally, cooperatives can help 
establish market-based incentives for the adoption of green 
technologies, as the social benefits generated by their use can 
be  transformed into tangible benefits for the adopters through 
market transactions (Guo et al., 2023).

Entrepreneurial orientation was positively and significantly 
associated with GHG reduction, highlighting the importance of 
proactive and informed decision-making. This finding implies that 
farmers with higher entrepreneurial orientation were slightly more 
likely to adopt GHG-reducing strategies. This tendency is supported 
by research emphasizing the role of entrepreneurial spirit in 
embracing sustainable agricultural technologies, as reported by 
Barzola Iza and Dentoni (2020), Daneluz et al. (2021), and Wang 
et al. (2023). Entrepreneurial orientation constructs such as risk-
taking, innovativeness, and proactiveness enable farmers to 
implement innovative climate-smart practices (Kangogo 
et al., 2021).

Perceived behavioral control was positively associated with a 
reduction in GHG emissions. Perceived behavioral control reflects 
farmers’ confidence in their ability to perform specific behaviors. 
When farmers believe they have the necessary skills and resources, 
they are more likely to adopt GHG-reducing practices. This sense of 
control can stem from access to information, extension services, and 
supportive networks. According to Ngigi et al. (2018) and Kirungi 
et al. (2023), farmers require support such as technical training and 
resources from the government and other actors to implement 
climate-smart agricultural technologies. This finding also aligns with 
Li et al. (2020) and Elahi et al. (2021), who demonstrated a correlation 
between farmers who perceive themselves as possessing adequate 
skills and their increased propensity to adopt sustainable production 
practices in cattle production.

Awareness of CSDS was another significant factor in explaining 
the uptake of GHG reduction strategies. Access to information on the 
benefits of CSDS such as increased milk production, and reduced cost 
of production increased the uptake of GHG reduction measures. 
Maina et al. (2020), Li et al. (2023), and Mburu et al. (2024) suggest 
that a comprehensive understanding of CSDS encourages the 
adoption of a wide range of practices, particularly when farmers 
recognise the potential for increased production and reducing 
GHG emissions.

Behavioral intention and risk perception negatively affected 
GHG reduction supporting studies such as (Gebre et  al., 2023). 
Although farmers recognise the risks of climate change, factors like 
uncertainty about the effectiveness of new practices, fear of potential 
losses, and lack of immediate benefits can lead to inaction (Wossen 
et al., 2019). This finding potentially reflects hesitation or aversion to 

TABLE 6 Analytical results for the drivers of GHG emissions reduction 
using fractional response model.

GHG reduction level dy/dx Standard errors

Demographic factors

Age 0.000 0.001

Gender 0.013 0.014

Household size 0.001 0.003

Socio-economic factors

Education 0.011*** 0.002

Land size 0.003 0.004

Off-farm income 0.003 0.013

Proportion of cows milked 0.195*** 0.065

Social capital and institutional factors

Experience 0.001 0.001

Extension access 0.001 0.014

Group membership 0.051*** 0.013

Cooperative membership 0.042*** 0.013

Training 0.002 0.003

Distance to input market 0.004 0.004

Credit access 0.000 0.000

Entrepreneurial and behavioral factors

Entrepreneurial orientation 0.031** 0.013

Perceived behavioral control 0.016*** 0.006

Awareness 0.014** 0.007

Behavioral intention −0.016* 0.009

Risk perception −0.023** 0.010

Constant −1.386*** 0.386

Number of observations 385

Prob > χ2 = 0.0000

Pseudolikelihood = 269.3741

***, **, * denotes statistical significance at 1, 5 and 10%, respectively.
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adopting mitigation practices due to perceived risks or uncertainties. 
A possible explanation for this evidence is that farmers tend to 
prioritise strategies that enhance milk production, often overlooking 
those that do not contribute directly to increased output (Kogo et al., 
2022). This finding appears to contradict Amamou et al. (2018), who 
found that climate change risks such as new diseases, reduced animal 
fertility, decreased milk production, reduced longevity, and feed 
unavailability increased the likelihood of adopting climate-smart 
practices (Gebre et al., 2023). Likewise, the intention to adopt GHG 
reduction measures was negatively related to GHG emissions 
reduction. A possible explanation could be  that factors such as 
limited resources, lack of immediate benefits, and socio-cultural 
barriers can impede the realisation of intentions. For instance, a study 
by Gikunda et al. (2022) reported that communication barriers with 
extension agents reduced the intentions to adopt climate-smart 
practices. Similar findings were reported by Kashangaki and Ericksen 
(2018). This study’s finding contradicts the result of Kirungi et al. 
(2023), who found that intention to adopt significantly influenced the 
uptake of climate-smart technologies among farmers. These results 
highlight the complexity of the decision-making process in adopting 
sustainable dairy practices.

This study relied on the self-reported adoption status of the 
surveyed households. The self-reporting method may introduce 
response bias, as respondents may try to present certain images of 
themselves to the researcher. Literature indicates that self-reported 
data can be prone to misclassification, leading to biased estimates of 
adoption rates and associated outcomes (Wossen et al., 2019). To 
overcome response distortion, this study explained to the respondents 
the importance of the exercise and its contents in informing policy 
decisions. Future studies could consider cross-validating self-
reported data with observational methods to address measurement 
errors in the self-reported adoption status. Moreover, a detailed 
analysis of external factors influencing adoption beyond farmers’ 
characteristics would enhance the understanding of the drivers of 
GHG reduction measures.

5 Conclusion

This study reveals several critical determinants of GHG reduction 
practices among farmers, encompassing demographic, socio-
economic, social capital, institutional, entrepreneurial, and behavioral 
factors. These findings offer significant insights into areas where 
targeted policies and interventions could promote climate-smart 
agricultural practices. Policies should prioritise enhancing farmers’ 
knowledge through educational initiatives, as higher educational 
attainment strongly correlates with adopting GHG-reducing 
strategies. Promoting advanced livestock management practices can 
also play a significant role in climate change mitigation. Strengthening 
social capital by supporting agricultural groups and networks is 
essential for facilitating knowledge sharing, peer learning, and 
resource access, as well as encouraging sustainable practices. 
Addressing behavioral barriers such as risk aversion and resource 
constraints through targeted interventions, including risk mitigation 
strategies and financial support, is critical for the broader adoption 
of climate-smart agriculture.

To translate these insights into action, several stakeholders must 
play a role. Agricultural extension officers should focus on delivering 

localized training on GHG-reducing practices, particularly those tied 
to improved livestock feeding, manure management, and animal 
health management. Regular on-farm demonstrations and follow-up 
visits can enhance practical adoption and confidence among farmers, 
especially those with limited formal education.

Dairy cooperatives are well-positioned to drive peer learning by 
facilitating farmer field schools and incentivizing members who 
adopt GHG-reducing practices through preferential access to markets 
and feed subsidies. Cooperatives can also partner with service 
providers to offer bundled climate advisory services alongside 
input delivery.

Local governments should integrate climate-smart agriculture 
into county-level agricultural extension plans and budgets. This 
includes financing training programs for extension staff on climate 
resilience, creating ward-level climate response plans, and supporting 
the establishment of innovation platforms that bring together 
farmers, researchers, and private sector actors. Local governments 
can also provide targeted subsidies, or financial support to 
smallholder farmers adopting GHG-reducing technologies.

An integrated policy approach combining education, social capital 
enhancement, technical training, and financial incentives is necessary to 
drive the implementation of GHG-reducing practices. However, the 
potential impact of these policy interventions requires careful evaluation 
to ensure their effectiveness and adaptability to diverse agricultural 
contexts, such as wards. Additionally, further research is needed to 
understand the nuanced relationship between risk perception, resource 
availability, and adoption behavior, enabling the design of more effective 
and evidence-based interventions.
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