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Enhancing transportation total-factor carbon productivity constitutes a critical

initiative for high-quality economic development across Chinese provinces.

Based on panel data from 30 Chinese provinces spanning 2007–2022, this

study comprehensively employs the Super-E�ciency Slack-Based Measure

(SBM) model, non-parametric kernel density estimation, standard deviational

ellipse, and global Moran’s I index to analyze the spatiotemporal evolution

characteristics of Total Factor Carbon Productivity in Transportation (TFCP-

T) across provinces. Finally, a spatial Durbin model is utilized to empirically

investigate influencing factors. Key findings include: (1) China’s provincial

TFCP-T exhibits an overall fluctuating upward trend, yet reveals a distinct

spatiotemporal di�erentiation pattern characterized by “high e�ciency and

intensification in the eastern region versus gradient lag in the central and western

regions.” (2) Significant spatial positive correlation and club convergence e�ects

exist in China’s transportation green total factor productivity, with western

provinces facing risks of low-level lock-in. (3) Economic development level,

openness to foreign trade, environmental protection intensity, and industrial

structure upgrading positively promote TFCP-T, while consumption level and

informatization level exert significant inhibitory e�ects. These results provide

critical policy insights for enhancing transportation carbon productivity and

fostering regional coordinated development in China.

KEYWORDS

total factor carbon productivity in transportation (TFCP-T), standard deviational ellipse

(SDE), Moran’s I, spatial Durbin, kernel density estimation

1 Introduction

Transportation, serving as a foundational and pioneering industry for national

economic development and the “arterial network” of urban operations, directly influences

resource allocation efficiency within socioeconomic systems. However, this sector faces

dual challenges: as the second-largest carbon emission source following industry, it

must simultaneously address sustained growth in freight demand amid energy structure

uncertainties and resolve policy adaptation dilemmas arising from regional development

imbalances. China exhibits pronounced economic gradients across provinces, with

coastal eastern and inland regions forming a tiered distribution pattern in urbanization

levels, industrial structures, and transportation network density. Such multidimensional

heterogeneity necessitates carbon reduction policies grounded in precise identification of

geographical spatial characteristics.
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Against this backdrop, Total Factor Carbon Productivity in

Transportation (TFCP-T)—a critical metric evaluating output

efficiency per unit carbon emission during economic growth—

comprehensively reflects synergistic effects of technological

progress and resource allocation optimization on low-carbon

transitions. Consequently, measuring transportation TFCP-T,

clarifying its spatiotemporal evolution, and exploring spatial

differentiation characteristics at provincial and regional levels hold

significant implications for formulating tailored transportation

carbon policies and advancing emission reduction goals.

Current research on carbon efficiencymeasurement has yielded

substantial achievements. The concept of carbon efficiency was

pioneered by Kaya and Yokobori (1997), who defined it as

the ratio of carbon emissions to GDP. This spurred scholarly

interest, leading to carbon efficiency assessments across sectors

and regions to evaluate carbon reduction target attainment.

Existing literature primarily adopts two approaches: single-

factor carbon efficiency and multi-factor carbon efficiency.

Single-factor metrics typically consider the impact of individual

elements (e.g., economic or energy indicators) on total emissions

(Wei et al., 2012; Aldy, 2006) but fail to differentiate input

factors or account for other production influences. Carbon

efficiency, shaped jointly by economic development and energy

consumption, inherently embodies “total factor” characteristics.

Total Factor Carbon Productivity in Transportation (TFCP-T)

integrates capital, labor, energy, and technology inputs to quantify

economic output per unit carbon emission. Its core innovation

lies in incorporating carbon emissions as environmental costs

into traditional total factor productivity frameworks, reflecting

low-carbon economic efficiency of transport systems. Enhancing

TFCP-T not only reduces carbon intensity per output unit

but also drives economic restructuring and green technology

diffusion, providing robust technical and managerial foundations

for achieving dual-carbon goals.

Studies on Total Factor Carbon Productivity (TFCP) (Chang

et al., 2024; Hasanov et al., 2024) have been conducted from

diverse perspectives through meticulous analysis by scholars.

Methodologically, Data Envelopment Analysis (DEA) (Wu and

Wang, 2025), its Malmquist index extensions (He et al., 2024),

and Stochastic Frontier Analysis constitute commonly employed

measurement approaches. A significant advancement was made by

Tone (2001) who introduced slack variables into DEA’s objective

function, establishing the Slack-Based Measure (SBM) model that

incorporates undesirable outputs, which has since become the

mainstream paradigm for efficiency research. Building on this,

Wang et al. (2025a) utilized the Super-Efficiency SBM model to

quantify carbon efficiency in China’s coastal logistics industry,

while Lee and Ogata (2025) applied the same framework to

analyze green total factor productivity across OECD nations.

Thematically, research trajectories have evolved from initial

empirical TFCP investigations (Pan et al., 2022) toward deeper

explorations of spatial correlations (Cui et al., 2024; Tan and

Zhou, 2025), spatiotemporal convergence (Gu et al., 2023), and

other sophisticated dimensions. These studies span multiple spatial

scales, encompassing national (Wang et al., 2022b), provincial

(Chen and Yao, 2024a), and city-level (Kong et al., 2024) analyses.

Furthermore, within unified analytical frameworks, scholars have

examined the impacts of various determinants including industrial

intellectualization (Wang et al., 2022a), environmental regulation

(Zhang et al., 2024) new infrastructure development (Liu et al.,

2024b), digital economy (Chen and Yao, 2024b;Wang et al., 2025b),

renewable energy (Su et al., 2023), and green innovation (Jiang

et al., 2024; Liu et al., 2024a) on TFCP dynamics.

In summary, while existing research achievements are

substantial, three primary limitations warrant further expansion:

First, although TFCP serves as a crucial metric for assessing

output efficiency per unit carbon emission during economic

growth, few scholars have systematically explored improvement

pathways from a spatiotemporally integrated perspective. Current

studies struggle to capture evolutionary trajectories of regional

disparities and spatial interaction effects, compromising the

validity of findings. Second, scholars investigating TFCP frequently

overlook spatial spillover effects arising from cross-regional

industrial restructuring and factor mobility on adjacent regions’

TFCP, particularly demonstrating a lack of targeted analysis

accounting for intrinsic characteristics of the transportation sector.

Third, existing literature predominantly concentrates on TFCP

in industrial and agricultural contexts, with few scholarly efforts

dedicated to in-depth examinations of carbon efficiency within the

transportation industry.

Building on this foundation, this study integrates panel data

from 30 Chinese provinces (2007–2022) to measure changes in

transportation TFCP-T using the Super-Efficiency SBM model.

We further synthesize kernel density estimation with the

Standard Deviational Ellipse (SDE) to characterize agglomeration

features and trace migration trajectories of the spatial centroid.

Concurrently, global Moran’s I indices and Moran scatterplots

are employed to quantify spatial autocorrelation in TFCP-T and

corroborate the identified agglomeration patterns.

2 Research design

2.1 Research methods

2.1.1 Super-e�ciency SBM model incorporating
undesirable outputs

The standard SBM model accounts for slack adjustments but

overlooks undesirable outputs. The super-efficiency SBM model

incorporating undesirable outputs overcomes the limitation where

efficient DMUs all score 1 and become incomparable, enabling

further evaluation and ranking of efficient DMUs. This study

employs the super-efficiency SBM model to measure TFCP-T. The

formulation for the super-efficiency SBM model with undesirable

outputs is specified as follows (Tone and Sahoo, 2004):

min ρ =
1+ 1

m

∑m
i=1

s−i
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n
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(1)
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Where xik, yrk, and buk espectively denote the i-th input factor,

r-th desirable output, and u-th undesirable output for the k-th

DMU; s−i ,s−r and sbu− represent slack variables for input factors,

desirable outputs, and undesirable outputs respectively; and λj is

the weight vector for input-output combinations of the j-th DMU.

2.1.2 Nonparametric kernel density estimation
Kernel density estimation is a nonparametric method used to

estimate the probability density of a random variable, allowing

for the visualization of its distribution trends over time through

graphical representation. Its formula is as follows:

f (x) =
1

nh

n
∑

i=1

K

(

Xi − x

h

)

(2)

where n represents the sample size (30 provinces and

municipalities in this study), h is the bandwidth of density

estimation, which controls the smoothness of the estimate, and K

is the kernel function. A larger bandwidth results in a smoother

estimate but may introduce greater bias.

2.1.3 Moran’s index
Global spatial autocorrelation is employed to determine the

spatial dependence of China’s TFCP-T. This study utilizes the

global Moran’s I index to evaluate the overall spatial linkages

or degree of differentiation in TFCP-T across regions. The

computational formula is specified as follows:

I =

n
∑

i=1

n
∑

j=1
wij(xi − x̄)(xj − x̄)

s2
n
∑

i=1

n
∑

j=1
wij

(3)

s2 =
1

n

n
∑

i=1

(xi − x̄)2 (4)

In the above equations, s2 denotes the variance of the study

variable, wij constitutes the spatial weight matrix, this article uses

spatial distance matrix for analysis, xi and xj represent TFCP-T

values for provinces i and j respectively, n indicates the number

of provinces under study, and x̄ signifies the mean TFCP-T

across all provinces within the research scope. The Moran’s I

index ranges from [–1, 1], where smaller absolute values indicate

weaker spatial dependence of the studied phenomenon, while larger

absolute values denote stronger spatial autocorrelation. Specifically,

positive values confirm the presence of statistically significant

spatial positive correlation.

2.1.4 Standard Deviation Ellipse
The Standard Deviation Ellipse (SDE) is a commonly used

spatial statistical analysis method for quantitatively describing the

distribution characteristics and directional trends of geographical

data. By constructing an elliptical distribution range, this method

reflects the spatial centroid, principal axis orientation, and

dispersion degree of the data. The calculation of the standard

deviation ellipse is based on the geometric mean center and

coordinate distribution characteristics of the data. Following the

study by Zhang et al. (2022), this paper employs this method to

quantitatively interpret the evolutionary patterns of Total Factor

Carbon Productivity in Transportation (TFCP-T) across China.
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√

√

√

∑n
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(

ωixi sin θ − ωiyi cos θ
)2

∑n
i=1 ω2

i

(8)

S = πσxσy (9)

Equations 5–9 represent the calculation formulas for the

weighted mean center (Xω ,Yω), directional angle θ , standard

deviation along the X-axis σx, standard deviation along the

Y-axis σy, and ellipse area respectively. The symbol ωi denotes the

spatial weight of element i, where ai and bi represent the spatial

coordinates of the study object. xi and yi represent the deviations

of the spatial coordinates of the study object from the mean center,

while σx and σy denote the standard deviations.

2.1.5 Spatial econometric models
Compared with traditional CCR regression approaches, spatial

econometric models account for the spatial dependence and

spatial interaction effects inherent in sample data. Among spatial

econometric frameworks applicable to cross-sectional data, spatial

regression models with spatial coefficients primarily include the

Spatial Lag Model (SLM), Spatial Error Model (SEM), and Spatial

Durbin Model (SDM).

The Spatial Lag Model (SLM) parallels autoregressive models

in time series analysis. This model focuses on examining whether

spillover effects exist for regional variables—specifically, whether

changes in a given variable within one region directly influence

variables in neighboring regions. The fundamental expression of

the Spatial Lag Model (SLM) is given by:

Frontiers inClimate 03 frontiersin.org

https://doi.org/10.3389/fclim.2025.1624297
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Sun et al. 10.3389/fclim.2025.1624297

Y = α + ρWY + βX + θ , θ ∈
(

0, σ 2In
)

(10)

Where Y represents the dependent variable, X denotes

explanatory variables, α is the constant term,W signifies the spatial

weight matrix, this article uses spatial distance matrix for analysis,

β corresponds to regression coefficients, ρ indicates the spatial

lag coefficient for the dependent variable Y , and θ constitutes the

random disturbance term following an independent distribution.

The Spatial Error Model (SEM) characterizes spatial disturbance

correlation and global correlation, explicitly incorporating higher-

order effects of spatial influence. This model introduces a spatial

error term into the econometric equation to examine how

external shocks affect the dependent variable in both neighboring

regions and the local area—impacts that exhibit spatial decay yet

demonstrate temporal persistence. The fundamental formulation of

the Spatial Error Model (SEM) is expressed as:

Y = α + βX + θ , θ = εwθ + λ, λ ∈
(

0, σ 2In
)

(11)

Where λ represents the spatial error coefficient quantifying the

magnitude of influence, and ε denotes the random disturbance

term; all other variables retain their previously defined meanings.

The Spatial Durbin Model (SDM) generalizes both the Spatial

Error Model (SEM) and Spatial Lag Model (SLM). It can be derived

through restructuring and extensions of SEM and SLM frameworks

by incorporating specific conditional constraints. The fundamental

expression of the Spatial Durbin Model (SDM) is given by:

Y = α + ρWY + βX + λWX + θ , θ ∈
(

0, σ 2In
)

(12)

Where λ constitutes a parameter vector, with all other variables

retaining their previously defined meanings.

2.2 Indicator selection and data sources

2.2.1 Indicator selection
In the TFCP-T calculation process, input decision-making

units (DMUs), input vectors, and desirable/undesirable outputs

are defined, with specific input indicators specified as follows: (1)

Energy input: Raw coal, gasoline, kerosene, diesel, fuel oil, and

natural gas are converted using energy conversion coefficients from

the 2006 IPCCGuidelines for National Greenhouse Gas Inventories

(Table 1). Electricity inputs employ regional grid average CO2

emission coefficients (Table 2) to convert consumption into

standard coal equivalent, aggregated as total energy input (Li et al.,

2019). (2) Capital input: Fixed-asset investment in transportation

infrastructure serves as capital input, calculated using the perpetual

inventory method. (3) Labor input: Urban employment in the

transportation sector is designated as labor input.

Output indicators encompass both desirable and undesirable

outputs. The value-added of the transportation sector serves as the

desirable output reflecting transport benefits, while total carbon

emissions constitute the undesirable output. Carbon emissions are

calculated according to Equation 13 as follows:

TABLE 1 Standard coal conversion and CO2 emission coe�cients.

Energy type
(10,000 tons)

Standard coal
conversion
coe�cient

CO2 emission
coe�cient

Raw coal 0.7143 0.7559

Gasoline 1.4714 0.5538

Kerosene 1.4714 0.5714

Diesel 1.4571 0.5921

Fuel oil 1.4286 0.6185

Liquefied

petroleum gas

1.7143 0.5042

Natural gas 1.33 0.4483

The Net Calorific Value (NCV) of natural gas is measured in kJ/m3 , while the standard coal

conversion coefficient for natural gas is expressed in kgC/m3 .

TABLE 2 Regional grid average CO2 emission coe�cients.

Grid name Covered provinces CO2
emission
coe�cient

North China

Regional Grid

Beijing, Tianjin, Hebei, Shanxi,

Shandong, Inner Mongolia

0.884 3

Northeast China

Grid

Liaoning, Jilin, Heilongjiang 0.776 9

East China Regional

Grid

Shanghai, Jiangsu, Zhejiang,

Anhui, Fujian

0.703 5

Central China

Regional Grid

Henan, Hubei, Hunan, Jiangxi,

Sichuan, Chongqing

0.525 7

Northwest China

Grid

Shaanxi, Gansu, Qinghai, Ningxia,

Xinjiang

0.667 1

South China

Regional Grid

Guangdong, Guangxi, Yunnan,

Guizhou, Hainan

0.527 1

CO2 =

16
∑

i=1

CO2i =

16
∑

i=1

Eti · CEFi (13)

Where Eti denotes the total consumption of the t-th energy type

in year i for the transportation sector, i indicates the corresponding

year, and CEFi represents the carbon emission coefficient.

2.2.2 Data sources
Tibet, Hong Kong, Macao, and Taiwan were excluded from the

study due to incomplete statistical records. The analysis focuses on

30 provincial-level administrative units in mainland China (2007–

2022), stratified into four geographic regions per China’s official

regional classification:national, eastern, central, and western China.

Transportation energy consumption data were standardized into

metric tons of standard coal equivalents (tce) using conversion

coefficients prescribed in China’s national standard GB/T 2589–

2020 (Sun et al., 2024), energy types including raw coal, gasoline,

diesel, and natural gas. Data were rigorously sourced from:

China Statistical Yearbook, China Transportation Yearbook, China
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Energy Statistical Yearbook, China Environmental Yearbook, and

the National Bureau of Statistics database.

3 Result and analysis

3.1 Spatiotemporal evolution
characteristics of TFCP-T

By conducting kernel density estimation of nationwide Total

Factor Carbon Productivity in Transportation (TFCP-T), the

temporal agglomeration intensity at each time point is manifested

by the peak height of the distribution, corresponding to its kernel

density value as illustrated in Figure 1.

National Trend: The distribution centroid demonstrates

a pronounced rightward shift over time, indicating overall

improvement in carbon emission efficiency. The left-skewed

tail reveals significant contraction of low-value zones post-2012,

though a truncated right tail persists, suggesting divergent paces of

technological transition across regions.

Eastern Region: Centroid stability within the 0.7–0.8 interval

(2010–2022) confirms high-equilibrium carbon efficiency. Near-

elimination of tail characteristics reflects regional developmental

homogeneity. Persistently compressed peak width since 2015

demonstrates pioneering achievement in intensive emission

reduction, with minimal intra-regional disparity.

Central Region: Centroid stagnation at TFCP-T = 0.3–0.6

(2007–2022) reveals plateaued efficiency, while the 2022

leftward peak migration implies weakening growth momentum.

Bidirectional tail expansion highlights intensified intra-provincial

divergence. Anomalous evolution from unimodal to broad

bimodal distribution (2022) signals emerging fragmentation

between high/low-efficiency clusters.

Western Region: Centroid anchoring in low-value zones and

marginal rightward drift post-2017 reflect delayed transitions. The

cliff-like left tail exposes developmental bottlenecks in inefficient

areas. Sustained bimodal structure with widening inter-peak

distance (2022) indicates aggravated internal polarization, where

high-efficiency clusters failed to propel comprehensive upgrading.

3.2 Spatial evolution characteristics of
TFCP-T

Transportation Total Factor Carbon Productivity (TFCP-

T), as a key metric for assessing provincial green low-carbon

transition progress, reflects each province’s capability to enhance

transportation efficiency while reducing carbon emissions. Using

ArcGIS software combined with the natural breaks classification

method, we categorized the data into four tiers to analyze

TFCP-T spatial patterns across the years 2007, 2012, 2017, and

2022. These four time nodes span a 15-year period with 5-year

intervals, balancing trend smoothness and policy inflection point

detection while mitigating interference from annual fluctuations.

This approach enables identification of spatial distribution patterns

for provincial TFCP-T across distinct temporal phases.Key

evolutionary regularities were identified as mapped in Figure 2.

Employing ArcGIS software with the Natural Breaks method,

China’s provincial transportation carbon efficiency is classified

into four tiers: high-efficiency zones, relatively high-efficiency

zones, medium-efficiency zones, and low-efficiency zones. Analysis

of spatial distribution maps across the four periods reveals

evolutionary patterns: in 2007, a “central high, peripheral low”

configuration emerged with high-value zones concentrated

in the Central Plains and coastal core provinces; by 2012,

localized spatial restructuring occurred where eastern coastal

provinces maintained efficiency leadership while inland regions

experienced downgrading; the 2017 transition marked a pivotal

shift as high-value zones intensely agglomerated in eastern

urban clusters like the Yangtze River Delta and Pearl River

Delta, with the northeast region descending into medium-

low efficiency zones for the first time, establishing a “coastal

protrusion and inland collapse” distribution; by 2022, intensified

spatial polarization manifested with eastern high-efficiency

zones exceeding the 1.0 threshold while western provinces

like Ningxia and Gansu showed marginal improvements yet

remained constrained within medium-low efficiency bands,

forming a “eastern leapfrogging versus central-western gradient

lag” carbon efficiency pattern. To further analyze spatiotemporal

changes in national TFCP-T and their geographical distribution

characteristics, this study employs the centroid-standard

deviational ellipse (SDE) analytical model, focusing on 2007

and 2022 to examine migration trajectories of the spatial

centroid and dispersion trends across provinces as depicted in

Figure 3.

According to the centroid trajectory coordinates, China’s

TFCP-T centroid migrated within the longitudinal range of

113.452◦E–113.333◦E and latitudinal range of 34.2103◦N–

33.5648◦N during 2007–2022. The migration trajectory

demonstrates a net southwest displacement of 72.93 km,

comprising a 0.119◦ westward shift in the east-west dimension

and 0.6455◦ southward movement in the north-south dimension,

indicating significantly enhanced contributions to TFCP-T

improvement from western and southern regions.

According to Table 3, the standard deviation along the

X-axis increased from 887.393 km to 910.5705 km, while the

Y-axis standard deviation expanded from 1,044.6021 km to

1,073.9351 km, confirming continuous spatial dispersion along

the dominant northeast-southwest (NE-SW) axial direction.

The synchronous expansion of both axes—with increments of

23.177 km (X-axis) and 29.333 km (Y-axis)—exhibited greater

magnitude in the north-south dimension than east-west, indicating

north-south oriented dominance in dispersive expansion. The

elliptical area expanded by 159,960 km2, evidencing significantly

enhanced spatial heterogeneity of TFCP-T. The directional

angle decreased from 21.77◦ to 16.26◦, representing a 5.51◦

counterclockwise rotation, yet the persistent dominance of the

NE-SW axial pattern demonstrates structural continuity in the

spatial framework.

3.3 Spatial cluster analysis of TFCP-T

This study employs Moran’s I for spatial autocorrelation

analysis of provincial TFCP-T. Figure 4 revealing indices of

0.1301 in 2007 and 0.3394 in 2022 (P < 1%), confirming

positive spatial correlation with a pronounced upward trend.
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FIGURE 1

Kernel density estimation of transportation TFCP-T across Chinese regions. (a) National. (b) Eastern. (c) Central. (d) Western.

To precisely analyze spatiotemporal clustering patterns of

transportation carbon efficiency, Moran scatterplots were

generated using Stata software for 2007, 2012, 2017, and 2022

(Figure 4). The majority of provinces are concentrated in Quadrant

I (high-high clusters) and Quadrant III (low-low clusters),

accounting for 70%, 71%, 70%, and 83% of all 30 provinces

respectively across the four periods. This demonstrates that TFCP-

T predominantly exhibits “high-high” (HH) and “low-low” (LL)

agglomeration patterns during 2007–2022, indicating significant

spatial dependence among adjacent provinces. HH clusters

are primarily distributed in Anhui, Shandong, Zhejiang, and

neighboring provinces, where well-developed economic systems

foster distinct spatial agglomeration; conversely, LL clusters

concentrate in southwestern, northwestern, and northeastern

regions—including Sichuan, Yunnan, Xinjiang, Gansu, and

Heilongjiang—where underdeveloped transportation systems due

to topographic constraints and economic disadvantages result in

suppressed TFCP-T performance.

3.4 Analysis of influencing factors

Based on the principle of objectivity, this study selects seven

explanatory variables—economic development level, openness

to foreign trade, government support intensity, environmental

protection intensity, informatization level, industrial structure, and

consumption level—with provincial TFCP-T as the dependent

variable. This framework investigates the influence mechanisms of

these determinants on TFCP-T. Specificmeasurementmethods and

variable notations are detailed in Table 4.

To enhance the accuracy of TFCP-T influencing factor analysis,

LagrangeMultiplier (LM), Robust-LM,Wald, and Likelihood Ratio

(LR) tests were conducted prior to selecting spatial econometric

models. Table 5 indicate that under different spatial weight

matrices, both LM and Robust-LM tests passed significance

thresholds. Furthermore, Wald and LR tests rejected the null

hypotheses of simplifying to Spatial Lag Model (SLM) and Spatial

Error Model (SEM) at the 1% significance level. Consequently,
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FIGURE 2

TFCP-T in 2007, 2012, 2017, and 2022. (a) 2007. (b)2012. (c) 2017. (d) 2022.

the Spatial Durbin Model (SDM) is identified as the optimal

specification for this study.

Additionally, the Hausman test yielded a significantly positive

statistic (13.57), rejecting the random effects specification.

Consequently, fixed effects models are deemed more appropriate.

Fixed effects specifications are categorized into three types: time

fixed effects, spatial fixed effects, and two-way fixed effects.

Regression analysis was performed to determine the optimal

specification, with Table 6 indicating the superiority of individual

fixed effects. Thus, this study adopts the spatial Durbin model with

individual fixed effects.

From the regression results of the Spatial Durbin Model

(SDM) with individual fixed effects presented below, variables

including economic development level, environmental protection

intensity, and industrial structure exert statistically significant

impacts on TFCP-T. However, since SDM incorporates spatial lags

of explanatory variables, the coefficient estimates cannot directly

reflect causal mechanisms. Therefore, further effect decomposition

is essential to quantify the precise influence pathways. The

decomposition results are detailed in Table 7, where direct effects

measure local explanatory variables’ impact on the local dependent

variable, while indirect effects capture neighboring regions’

explanatory variables’ influence on the local dependent variable.

(1) Analysis of the direct effect of economic development level

demonstrates a statistically significant positive impact on local

TFCP-T with a coefficient of 0.3124, primarily achieved through

two mechanisms: economic development generates ample capital

for upgrading transportation infrastructure while simultaneously

attracting talent inflows that drive green transportation technology

innovation. However, the indirect effect coefficient of 0.3400 lacks

statistical significance, indicating no measurable impact on local

TFCP-T from neighboring regions’ economic development—

a phenomenon attributable to inter-provincial competition

prevailing over collaborative development initiatives. Nevertheless,

the total effect registers at 0.2987 with statistical significance at

the 1% level, confirming that economic development collectively

enhances TFCP-T across both local and adjacent regions despite

the absence of significant spatial spillovers.

(2) Analysis of openness to foreign trade reveals a positive yet

statistically insignificant direct effect on local TFCP-T, indicating

limited influence primarily due to domestic demand-dominated

market structures that diminish the impact of external demand
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FIGURE 3

Distribution direction and migration path of TFCP-T in 2007 and 2022.

TABLE 3 Ellipse data from 2007 to 2020.

Year Gravity Center X Gravity Center Y X-axis Std Y-axis Std Angle Ellipse area

2007 113.452◦E 34.2103◦N 1,044.60km 1,177.19 km 21.77◦ 2,912,020 km2

2022 113.333◦E 33.5648◦N 1,073.94km 1,182.63 km 16.26◦ 3,071,980 km2

The data were calculated using Equations 5–9.

fluctuations. However, significant spatial spillover effects and total

effects confirm substantial cross-regional synergies. The positive

coefficient direction suggests potential benefits through injecting

dynamism into domestic markets, stimulating economic growth,

and consequently expanding transportation demand despite local

statistical non-significance.

(3) Government support intensity exhibits consistently

insignificant effects across all dimensions—local, neighboring

regions, and aggregate levels—revealing systematic ineffectiveness

in enhancing TFCP-T. This pattern suggests fiscal allocations to

transportation infrastructure fail to achieve precision targeting of

critical operational bottlenecks, with explanatory factors including

fragmented administrative oversight and misaligned funding

priorities that collectively undermine policy efficacy.

(4) Environmental protection intensity exhibits a statistically

significant negative direct effect on local TFCP-T, revealing

substantial suppression primarily stemming from stringent low-

carbon regulations imposed amid heightened governmental

environmental concerns. Domestic enterprises’ limited

technological preparedness for green transportation solutions

forces costly compliance investments, disproportionately reducing

desirable outputs while minimally decreasing undesirable

emissions, thereby diminishing comprehensive efficiency.

Conversely, significant positive indirect and total effects indicate

that neighboring regions’ enhanced environmental efforts

substantially elevate local TFCP-T. This counterintuitive spatial

pattern likely arises from industrial relocation triggered by

unbalanced regulatory policies in adjacent areas, redirecting

transportation enterprises to comparatively lenient jurisdictions.

(5) Informatization level demonstrates consistently significant

negative impacts across all effect dimensions, indicating that digital

expansion measured by internet broadband access ports suppresses

TFCP-T growth. While broadband proliferation accelerates

e-commerce development and stimulates transportation demand,

the sector’s persistent reliance on extensive development

paradigms disproportionately escalates energy consumption

and environmental pollution. Consequently, marginal gains in

desirable output are outweighed by amplified undesirable output

increases, resulting in net efficiency deterioration.

(6) Industrial structure transformation exerts significantly

positive effects across direct, indirect, and total dimensions,

confirming that tertiary sector expansion substantially enhances

both local and regional TFCP-T while generating robust spatial

spillovers. This dual-benefit mechanism operates through:

optimizing production-consumption coordination to elevate

resource allocation efficiency; and reducing aggregate energy

intensity and pollution emissions via relative contraction of

secondary industry.

(7) Consumption level exerts a statistically significant negative

direct effect on local TFCP-T, indicating substantial impediments to

efficiency growth. This phenomenon arises from dual demand-side

pressures: rising household consumption elevates requirements
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FIGURE 4

Moran’s I scatter plot of TFCP-T. (a) 2007. (b) 2012. (c) 2017. (d) 2022.

TABLE 4 Measurement indicators for TFCP-T influencing factors.

Type Name Variable Measurement
indicator

Dependent TFCP-T TFCP-T Super-efficiency SBM

Explanatory Economic

development level

LnEDL GDP per capita

Openness to

foreign trade

Op Total import-export

value/regional GDP

Government

support intensity

GSI Transportation

expenditure/total expenditure

Environmental

protection

intensity

EPI Environmental

expenditure/total fiscal

expenditure

Informatization

level

LnIL Number of internet

broadband access ports

Industrial

structure

IST Tertiary industry output

value/regional GDP

Consumption

level

LnCL Total retail sales of consumer

goods

for transportation services, yet consumers’ declining tolerance for

traditional extensive transit modes compels massive investments

in service quality upgrades. When such expenditures substantially

TABLE 5 Model specification test results.

Test Statistic P-value

LM-Error 7.857∗∗∗ 0.005

Robust-LM-Error 40.077∗∗∗ 0.000

LM-Lag 33.297∗∗∗ 0.000

Robust-LM-Lag 65.517∗∗∗ 0.000

Wald-Error 22.17∗∗∗ 0.002

Wald-lag 22.89∗∗∗ 0.002

LR-Error 21.56∗∗∗ 0.003

LR-Lag 22.22∗∗∗ 0.002

∗∗∗ , ∗∗ , ∗ significant at 1%, 5%, 10% levels.

exceed marginal revenue gains from consumption increases, net

efficiency declines occur. Future projections suggest potential

marginal benefit improvements under technological maturation.

The statistically insignificant indirect effect confirms absent spatial

spillovers to neighboring regions, while the significantly negative

total effect persists system-wide.

To ensure empirical robustness, this study conducts sensitivity

analysis by substituting the spatial distance matrix with a spatial
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TABLE 6 Comparison of three fixed e�ects specifications.

Variable Individual Time Two-way

Fixed
e�ects

Fixed e�ects Fixed e�ects

LnEDL 0.2878** 0.0973** 0.2708**

Op 0.0097 –0.0693 –0.0012

GSI 0.2987 0.0220 0.5214

EPI –2.0312** 5.3058*** –2.0035**

LnIL –0.0567 0.0836** –0.0703

IST 0.8771*** 0.1403 1.2134***

LnCL –0.1290** –0.0163 –0.1138**

ρ 0.5316*** –0.0911 0.2396***

R2 0.3252 0.0926 0.2676

∗∗∗ , ∗∗ , ∗ significant at 1%, 5%, 10% levels.

TABLE 7 E�ect decomposition results of explanatory variables.

Variable Direct e�ect Indirect e�ect Total e�ect

Coef. T Coef. T Coef. T

LnEDL 0.3124** 2.45 0.3400 1.34 0.6524*** 2.85

Op 0.0335 0.48 0.7900*** 2.89 0.8235*** 2.85

GSI 0.3159 0.92 −0.3193 −0.26 −0.0034 0.00

EPI −1.5915** −1.87 7.6671*** 2.60 6.0756* 1.84

LnIL −0.0656** −1.70 −0.1667* −1.95 −0.2323*** −2.68

IST 1.0271*** 3.51 2.2189** 2.58 3.2461*** 3.31

LnCL −0.1397** −2.73 −0.1811 −1.23 −0.3209** −2.33

∗∗∗ , ∗∗ , ∗ significant at 1%, 5%, 10% levels.

adjacency matrix for regression re-estimation. Results presented in

Table 8 demonstrate consistent effect directions and significance

patterns across all variables, confirming the fundamental stability

of our findings.

4 Conclusions

Based on the spatiotemporal evolution and driving mechanism

analysis of Transportation Total Factor Carbon Productivity

(TFCP-T) across 30 Chinese provinces from 2007 to 2022, this

study yields the following core findings:

(1) China’s provincial TFCP-T exhibits an overall fluctuating

upward trend, yet regional divergence is pronounced, forming

a stepwise distribution pattern characterized by efficient

intensification in the East and gradient lag in the Central and

Western regions. Coastal provinces in the East have achieved

stable high-value, unimodal concentration, leveraging advantages

in technological intensification. Conversely, influenced by

disparities in development foundations and policy adaptability,

the Central and Western regions demonstrate intra-regional

efficiency bipolarization (bimodal distribution) coexisting with

overall regional lag. The consistent southwestward migration of

the national TFCP-T centroid and the continuous expansion of

spatial dispersion further corroborate the strengthening trend of

regional heterogeneity.

(2) Green TFCP-T displays significant positive spatial

correlation, with the dual characteristics of inter-provincial

synergy and competition becoming increasingly prominent.

High-value agglomeration zones and low-value agglomeration

zones have solidified into a bipolar pattern of “coastal bulge and

inland depression.” Efficient provinces are concentrated in eastern

urban clusters like the Yangtze River Delta and Pearl River Delta,

while inefficient areas cluster in the Southwest, Northwest, and

Northeast regions. This distribution pattern exposes the structural

contradictions of a technology diffusion gap in the East and lagging

policy responses in the West, with the Western region particularly

facing a systemic risk of low-level lock-in.

(3) The driving mechanism involves a complex interplay

of local suppression and neighborhood promotion: Economic

development level enhances local efficiency through capital

accumulation and technological innovation, yet generates

limited spillovers to neighboring regions; openness level, while

exhibiting insignificant direct local impact, produces significant

positive cross-regional spillovers via technology introduction and

resource allocation optimization; industrial structure upgrading

simultaneously drives local efficiency growth and coordinated

development in neighboring regions by increasing the proportion

of tertiary industry, demonstrating strong spatial spillover effects;

environmental protection intensity suppresses local transportation

output due to short-term policy costs, yet prompts enterprise

relocation to neighboring regions and indirectly enhances

surrounding efficiency; informationization level stimulates

e-commerce logistics expansion, exacerbating carbon emission

pressure both locally and in neighboring areas; rising consumption

levels trigger excessive investment by transportation enterprises,

significantly suppressing local efficiency without spatial spillovers;

government support intensity fails to effectively translate into

efficiency improvements locally or in adjacent regions due to lack

of precision in fund allocation.

5 Recommendations

(1) Governments should actively adopt measures to

eliminate inter-regional disparities, achieve resource sharing

and mutual assistance in science and technology, fully leverage

the achievements of regional integration strategies, and break

down inter-regional barriers. Eastern regions should play a crucial

leading and supporting role in national carbon reduction, fully

utilize their economic, technological, and resource advantages to

improve energy efficiency, while tilting capital, technology, and

other factors toward the central and western regions to promote

balanced development of transportation infrastructure across

all regions.

(2) Provinces should promote the integrated development of

high-end services and intelligent manufacturing, reduce digital

transformation costs, encourage enterprises to incorporate data

elements into core production processes, and guide traditional

industries to move up the value chain toward R&D design
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TABLE 8 Robust test.

Variable Spatial adjacency matrix based Variable Partial sample excluded

Direct Based Total Direct Based Total

LnEDL 0.5888∗∗∗ 0.4351∗∗ 1.0239∗∗∗ LnEDL 0.7949∗∗∗ 0.4787∗∗ 1.2736∗∗∗

Op 0.0837 0.2011 0.2848 Op 0.1507∗ 0.2076 0.3583

GSI 0.1600 –1.0030 0.8430 GSI 0.1784 -0.6276 –0.4491

EPI –0.7893 2.9949 2.2056 EPI –0.2315 3.9417 3.7101

LnIL –0.0974∗∗ –0.0482 -0.1456∗∗ LnIL –0.0820∗∗ –0.0085 –0.0906

IST 1.6071∗∗∗ 0.3407 1.9479∗∗∗ IST 1.9630∗∗∗ 0.8932 1.0698

LnCL –0.1255∗∗∗ –0.5753∗∗∗ –0.7008∗∗∗ LnCL -0.1306∗∗∗ -0.7222∗∗∗ -0.8528∗∗∗

∗∗∗ , ∗∗ , ∗ significant at 1%, 5%, 10% levels.

and supply chain management. Relevant departments must

consistently prioritize systematic industrial restructuring, increase

investment in scientific and technological innovation, advance

deep integration of AI, industrial internet, and green design

technologies with transportation, manufacturing, and energy

sectors, and steer market entities to build a modern industrial

system characterized by “digital-driven, low-carbon circular”

development, thereby comprehensively enhancing total factor

carbon productivity.

6 Discussion

This study, based on provincial panel data revealing the

spatio-temporal evolution patterns of transportation carbon

productivity (TFCP-T), requires clarification of three underlying

issues. (1) Industry-specific analysis is constrained by the

objective limitation that provincial energy consumption data lack

breakdowns for sub-sectors such as road, rail, and aviation,

yet industrial structure (IST) upgrading serves as a policy

adjustment proxy variable. Its significant efficiency-enhancing

effect indicates that multimodal transport hub construction can

indirectly improve carbon efficiency by optimizing transportation

mode structures, necessitating future firm-level data to deepen

sectoral heterogeneity analysis. (2) The essence of the policy

adaptability gap in eastern regions manifests as diminishing

marginal returns from technology diffusion and rising policy

implementation costs: Figure 1 kernel density curves show

decelerated peak efficiency growth in the east after 2015, coupled

with local suppression from environmental regulations, rooted

in the high innovation costs during mature economies’ deep-

water transformation phase, requiring cross-provincial carbon

compensation mechanisms to share risks. (3) The rationality

of methodological assumptions is ensured through model self-

verification mechanisms: nonlinear characteristics of technology

diffusion are empirically confirmed by kernel density bimodal

distribution and club convergence phenomena, which challenge

linear simplification assumptions; conclusions of spatial Durbin

remaining consistent after altering spatial weight matrices,

confirming that independence assumptions do not distort core

spatio-temporal heterogeneity mechanisms. These discussions,

operating within the provincial spatial econometric framework,

provide actionable quantitative benchmarks for low-carbon

transportation transition, with future work to deepen policy

process analysis using micro-level data.
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