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Effectively scaling diverse marine carbon dioxide removal (mCDR) technologies from 
pilot-scale demonstrations to industrial-scale deployments requires a quantitative 
understanding of how much additional carbon a given deployment will sequester 
compared to a scenario with no mCDR intervention and the long-term durability 
of the stored carbon. Given the high environmental variability and vast size of 
the ocean carbon pool, observations alone cannot resolve the amount, rate, and 
fate of mCDR-associated carbon sequestration. Likewise, when conducting an 
mCDR deployment it is impossible to observe a counterfactual scenario with no 
mCDR deployment performed. For this reason, ocean biogeochemical models 
are expected to play a key role in advancing mCDR deployments by informing 
observational requirements, defining uncertainty envelopes, and ultimately verifying 
durable carbon sequestration. However, current models, which are designed 
to capture basic ocean processes, have limitations when being used for this 
new application—simulating perturbations to the ocean system ranging in scale. 
Here, we describe our perspective on the most critical ocean biogeochemistry 
model process representations that need to be refined or added to accurately 
simulate the impact of a subset of mCDR approaches on carbon uptake and 
ocean biogeochemistry.
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1 Introduction

Solving Earth’s climate crisis requires simultaneous efforts to both curb anthropogenic 
greenhouse gas (GHG) emissions and develop scalable approaches for removing anthropogenic 
GHGs from the atmosphere (Lee et al., 2023). Ocean-based carbon removal solutions (Cross 
et al., 2023) are particularly appealing because of the vast amount of carbon stored in the 
world’s oceans compared to the atmosphere and terrestrial landscapes, and their natural ability 
to buffer changes in GHG content of the atmosphere (Friedlingstein et al., 2019). Oceans 
contain the largest non-geological reservoir of carbon on Earth with ~37,000 Pg C present in 
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the form of dissolved inorganic carbon (DIC) (Keppler et al., 2020), 
~700 Pg C in the form of organic carbon (Hansell and Carlson, 2014), 
and ~2,300 Pg C stored in the top 1 m of marine sediments (Atwood 
et al., 2020) compared to the atmospheric CO2 reservoir of ~885 Pg C 
(Friedlingstein et al., 2019). The oceans already absorb about 25% of 
global anthropogenic CO2 emissions (Friedlingstein et  al., 2024) 
because of the ocean solubility pump (Crisp et al., 2022; Gruber et al., 
2023). In general, the goal of marine CO2 removal (mCDR) 
technologies is to either accelerate biotic or abiotic processes that 
mediate ocean carbon uptake to ultimately increase the ocean carbon 
reservoir or directly capture CO2 from seawater and store it elsewhere 
(e.g., on land in geological reservoirs; Figure 1) (Palter et al., 2023; 
Rohling, 2023).

To ultimately be  successful, any carbon removal technology, 
including mCDR, needs to reliably and transparently demonstrate the 
net carbon footprint of the overall process (Abdallah et  al., 2012; 
Delacote et al., 2024). Likewise, effectively scaling mCDR technologies 
from pilot-scale demonstrations to industrial-scale deployments 
requires a quantitative understanding of how much carbon a given 
deployment will sequester, the fate and durability of the stored carbon, 
and perhaps more importantly, what potential impacts (i.e., feedbacks) 
large scale carbon capture will have on the Earth system and biological 
communities. CO2 removal is typically quantified through 

domain-specific monitoring, reporting and verification (MRV) 
guidelines (Singh et al., 2016). MRV is geared towards quantitatively 
certifying carbon removal for financial carbon market purposes, and 
currently there is not a regulatory MRV framework in place for 
mCDR. Hence, emerging research-based MRV frameworks may form 
the basis for ocean carbon markets (Ho et al., 2023) as the technologies, 
our ability to monitor and model their efficiency, and carbon market 
regulations collectively evolve.

The primary factors that should be considered for mCDR MRV 
include (1) additionality (i.e., how much CO2 is removed beyond a 
counterfactual baseline), (2) leakage (i.e., how much CO2 escapes 
removal), (3) durability (i.e., how long the CO2 remains sequestered), 
and (4) uncertainty in each of these factors (Ho et al., 2023). The 
relatively new field of mCDR faces three major challenges when it 
comes to establishing MRV. First, there are numerous different mCDR 
approaches being developed that harness different aspects of the 
ocean’s carbon cycle. Second, directly measuring the impact of mCDR 
applications on natural cycles is impossible because of the large size 
and variability of the ocean carbon pool, the spatial extent over which 
the signal of any given mCDR application would spread across, and 
an inability to observe baseline conditions in a world in which no 
mCDR intervention was conducted. Third, quantifying the durability 
of sequestered carbon, particularly with respect to biotic approaches, 

FIGURE 1

This perspective focuses on current model limitations (right) for assessing the efficacy of a subset of proposed mCDR approaches (left) that harness 
abiotic ocean processes for carbon sequestration (e.g., DOCCS and OAE), stimulate biotic processes (e.g., biomass sinking or enhanced micro or 
macro algae growth via fertilization or aquaculture), or restoration/protection of natural carbon sinks.
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requires predictions of future ocean conditions and ventilation 
pathways. Thus, any feasible MRV framework is expected to rely on 
skillful numerical models with validation from observations to assess 
if there is a difference in ocean chemistry caused by a mCDR 
intervention compared to predicted counterfactual scenarios.

In terms of the first identified challenge, the scientific community 
and industry are exploring many diverse pathways for using the ocean 
to partially offset anthropogenic CO2 emissions. These approaches 
generally focus on either direct capture of CO2 dissolved in seawater 
for storage elsewhere (e.g., in geological reservoirs) or increasing the 
rate that the ocean absorbs atmospheric CO2 and stores it in either 
organic or inorganic forms. A major metric of success for any mCDR 
technology is how long the carbon remains stored (i.e., its durability 
or permanence). Approaches such as ocean alkalinity enhancement 
(OAE) (Oschlies et  al., 2023) or direct ocean carbon capture and 
storage (DOCCS) (Digdaya et  al., 2020) primarily exploit abiotic 
geochemical processes that exchange atmospheric CO2 with the 
marine DIC reservoir (Figure 1). At the scale of the global ocean, the 
residence time of DIC is nearly 200,000  years (Zeebe and Wolf-
Gladrow, 2009), implying that any additional DIC uptake promoted 
by geochemical mCDR approaches should in theory persist in the 
ocean over geological time scales.

Other mCDR approaches focus on accelerating biological controls 
on ocean carbon storage through various pathways, including 
alleviating nutrient limitation for primary production (e.g., iron 
fertilization or artificial upwelling), directly sinking organic carbon to 
the marine sediment interface, or restoring and protecting natural hot 
spots for carbon burial (e.g., coastal blue carbon; Figure 1). The fate of 
biologically sequestered carbon is perhaps more challenging to 
determine than for carbon sequestered via geochemical approaches. 
Particulate and dissolved organic carbon (POC and DOC, 
respectively) produced in the surface ocean via photosynthesis 
undergoes substantial remineralization in its journey among water 
masses in dissolved forms and/or sinking to sediments in particulate 
forms. Decomposition of organic carbon in the water column is 
directly related to time scales of ventilation within and among water 
masses (Fine et al., 2017). A fraction of the organic carbon circulating 
throughout the water column may resist decomposition and persist 
over time scales of 1,000–6,000 years (Walker et al., 2016) as refractory 
DOC (Mentges et al., 2019), while decomposed DOC is converted to 
CO2 that will degas to the atmosphere in supersaturated regions of the 
surface ocean or contribute to the DIC pool in undersaturated regions 
and potentially be entrained into the deep ocean. Likewise, carbon 
buried in marine sediments can persist for millions of years, however, 
the majority of primary production derived organic carbon sinking 
from the photic zone to the seafloor is decomposed before burial 
(Emerson, 2013).

Carbon sequestered via biotic approaches can be  considered 
durable regardless of whether it is in the form of POC, DOC, or DIC 
upon remineralization so long as any of these forms of carbon remain 
in the ocean. Thus, the depth at which partitioning between POC, 
DOC, and DIC pools occurs is very important from a durability 
perspective given that (1) mCDR-derived carbon in the surface ocean 
can only be exchanged with the atmosphere if it is in the form of DIC 
and (2) once mCDR-derived carbon penetrates the deep ocean it is 
somewhat irrelevant what form it is in with respect to durability over 
climate-relevant time scales. Along these lines, global ocean model 
simulations suggest that about two thirds of the CO2 sequestered by 

mCDR approaches that leverage the biological pump will leak back 
into the atmosphere over a 50-year timeframe (Siegel et al., 2021), 
though the carbon sequestration efficiency of the biological pump 
ranges from decades to centuries across different ocean basins 
(DeVries et al., 2012). One way to potentially bypass the proclivity for 
fresh organic carbon to be degraded in the ocean would be to recover 
biomass produced by biotic mCDR approaches for use as feedstock on 
land for diverse biomaterials that replace fossil-based components 
(Campbell et  al., 2023; Grandgeorge et  al., 2024; Campbell et  al., 
2025), but the resulting carbon permanence is process-specific and 
highly variable.

Here, we  describe our perspective on the most critical ocean 
biogeochemistry model process representations that need to be refined 
or added to accurately simulate the impact of a subset of mCDR 
approaches on carbon uptake and ocean biogeochemistry. 
We  primarily emphasize the challenges and opportunities for 
advancing regionally tuned ocean biogeochemical models to evaluate 
mCDR. Scaling these findings to global-scale modeling systems 
presents distinct challenges that merit a dedicated examination, 
particularly with regards to coupling mesoscale dynamics with Earth 
system models. Other important limitations germane to ocean 
modeling in general such as uncertainty in future changes in ocean 
circulation, the biological pump, particulate inorganic carbon cycling, 
and global-scale ocean carbon dynamics are not comprehensively 
addressed here.

2 Limitations of current models for 
mCDR applications

In our opinion, responsibly deploying mCDR technologies at the 
scale needed to tackle Earth’s climate challenge (i.e., gigatons of 
carbon) will require robust ocean models first for gaining regulatory 
and societal buy-in for pilot-scale field trials, then guiding the siting 
of large-scale deployments, and ultimately monitoring, reporting, and 
verifying carbon sequestration for the sake of carbon crediting. It will 
be important to both use models to guide field trial design and use 
field trial data to validate and/or improve models. Here, we identify 
model gaps and biases currently limiting accurate representation of a 
subset of mCDR approaches.

2.1 Predicting the durability and leakage of 
carbon derived from biological mCDR 
approaches

Understanding the time scales over which carbon is partitioned 
between dissolved, particulate, organic, and inorganic pools in the 
ocean and/or returned to the atmosphere is central to any mCDR 
approach focused on using biology to sequester CO2 (e.g., iron 
fertilization, artificial upwelling, biomass sinking, etc.). Ocean 
biogeochemistry models are generally based on the foundation of a 
nutrients, phytoplankton, zooplankton, detritus (NPZD) model that 
serves as the basis for predicting interplay between organic carbon 
production and degradation (Fasham et al., 1990). In recent decades, 
increasingly complex NPZD models have been developed that are 
capable of representing additional biogeochemical constituents (e.g., 
iron, phosphorus, silica, DOC), different particle size classes, more 
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diverse planktonic communities (Fennel et al., 2022), and coupled 
sediment biogeochemical processes (Moriarty et al., 2018; Rocha et al., 
2018; Moriarty et al., 2021). These complexities are all relevant to the 
needs of emerging mCDR research and allow for more realistic 
predictions of when and where mCDR-derived carbon may exist as 
POC, DOC, or DIC. However, the computational cost of adding every 
one of these features to a regional or global model and running the 
model at an appropriate resolution to resolve these complex processes 
remains prohibitive (Terhaar et al., 2024). Below we discuss several 
areas where additional mechanistic representations could improve our 
capacity to predict the durability and/or leakage of carbon derived 
from biological mCDR approaches.

The counteracting processes of particle sinking, organic matter 
decomposition, and zooplankton grazing exert a primary control on 
the efficiency of the biological carbon pump, and, likewise the 
durability of mCDR-enhanced primary production, yet our ability to 
simulate the mechanistic drivers of these processes remains limited 
(Honjo et  al., 2014; Boyd et  al., 2019; Nowicki et  al., 2022). At a 
molecular scale, microbes acting as the primary decomposers of 
sinking POC attach to particles and/or use extracellular enzymes to 
break down organic carbon in the form of large polymers; this both 
fuels the microbe’s metabolism and creates lower molecular weight 
DOC byproducts (De La Rocha and Passow, 2007).

Models often represent the competition between POC sinking and 
decomposition rates (i.e., a rapidly sinking particle will have less time 
exposed to decomposers) based on the Martin curve, a power law 
function to compute POC flux as a function of depth in the water 
column and a remineralization parameter (Armstrong et al., 2001; 
Williams and Follows, 2011). More complex representation of 
individual particle characteristics (e.g., mineral ballast, size specific 
degradation rates) have yielded additional insight into the drivers of 
the ocean biological pump (Armstrong et al., 2001; Buesseler and 
Boyd, 2009; Omand et al., 2020). However, experimental results have 
challenged the assumption that particle sinking and remineralization 
rates are independent. The physical act of sinking, the rate of which is 
a function of suspended solids in the water column (Turner et al., 
2021), has been shown to increase POC degradation rates as these 
breakdown products are shed from the main particle, eliminating 
enzymatic competition (Alcolombri et al., 2021). Vertical zooplankton 
migration is another process that may play an outsized but poorly 
understood role in the fate and durability of sinking POC (Archibald 
et  al., 2019). For example, larger zooplankton that more actively 
migrate up and down in the water column have been shown to 
transport twice as much carbon from surface to deep waters than 
smaller, less migratory organisms (Hansen and Visser, 2016). 
Microbially-explicit models also exist that are capable of resolving 
both zooplankton migration (Morozov and Kuzenkov, 2016) and 
microbial community interactions with individual particles that 
change both microbial abundance and particle properties as they sink 
(Nguyen et al., 2022). Representing these processes at the scale of 
individual algae blooms may be an important tool for evaluating the 
durability of some biotic mCDR applications such as iron fertilization.

Biogeochemical transformations that occur once POC reaches 
marine sediments via natural or human-induced sinking play a key 
role in determining potential leakage and the overall impact of biotic 
mCDR applications on atmospheric global warming potential. 
Benthic production of other GHGs such as methane (CH4) and 
nitrous oxide (N2O) is a potential leakage pathway that can potentially 

minimize the amount of global warming potential removed from the 
atmosphere, which may be important for models to consider in some 
cases (e.g., when deliberately sinking biomass). CH4 and N2O are 
substantially more potent, albeit shorter lived, GHGs compared to 
CO2 with 20 year sustained global warming potentials of 96 and 250 
times that of CO2, respectively (Neubauer and Megonigal, 2015). 
Coastal and marine environments can act as either sources or sinks of 
both CH4 and N2O depending on the balance between production and 
oxidation in sediments and the water column (Canfield et al., 2005; 
Foster and Fulweiler, 2016). Globally, the oceans act as a source of 
both GHGs to the atmosphere (Tian et al., 2024; Saunois et al., 2025). 
In relation to biological mCDR approaches, the composition and 
abundance of organic matter plays a direct role in mediating sediment 
CH4 (Valentine, 2011) and N2O production (Eyre et al., 2013). To 
ensure that mCDR approaches that modify seafloor carbon content 
do not end up replacing atmospheric CO2 with other more potent 
GHGs it is important to evaluate how the goal of organic carbon 
storage in anoxic environments influences production of other GHGs 
and whether produced GHGs are oxidized in the water column or 
emitted to the atmosphere. As previously mentioned, detailed models 
exist that can incorporate sediment dynamics (Fennel et al., 2006; Lee 
et al., 2022) into ocean biogeochemistry models as well as CH4 and 
N2O cycling in the water column (Buitenhuis et al., 2018; Żygadłowska 
et  al., 2023), but there remains large uncertainty around 
parameterizing such models and our basic understanding of the 
interplay between aerobic and anaerobic processes mediating CH4 and 
N2O fluxes.

Many discussions of the carbon sequestration potential of 
biological mCDR focus on the efficiency of POC burial in sediments. 
The intricacies of DOC cycling in the water column are also important 
to consider from both carbon accounting and ecosystem impact 
perspectives considering DOC is the foundation of aquatic food webs. 
Some ocean biogeochemistry models define two pools of DOC—
labile and refractory—that turnover on timescales from hours to days 
and millennia, respectively (Khangaonkar et al., 2021). In a mCDR 
context, refractory DOC could be  described as “more durable,” 
whereas labile DOC could be substantially “leakier” if degraded in 
surface waters where atmospheric CO2 exchange can occur. Some 
models such as Carbon, Ocean Biogeochemistry and Lower Trophic 
version 2 (COBALT v2) designed for global implementations and the 
Estuarine Carbon Biogeochemistry (ECB) model designed for 
estuarine conditions in settings like the Chesapeake Bay (Feng et al., 
2015) have an additional pool of semi-labile DOC (Stock et al., 2020). 
In reality, DOC exists across a much wider spectrum of reactivities, 
which are generally classified as labile, semi-labile, refractory, or ultra-
refractory (Hansell, 2013), but even these classifications are 
an oversimplification.

Roughly half of the global ocean’s net primary productivity is 
cycled through a pool of highly reactive DOC (i.e., metabolites) on the 
order of minutes to days, which represents a miniscule pool (<0.1% of 
total DOC) but a massive flux (15–25 Pg C yr.−1) (Moran et al., 2022a). 
The byproduct of labile DOC cycling is not simply CO2; microbial 
processing generates chemically complex molecules that comprise the 
pool of recalcitrant DOC in the ocean (Moran et al., 2022b). Further 
complicating matters, the reactivity of a given molecule is not 
necessarily related solely to its chemical structure (Zonneveld et al., 
2010; Ward et al., 2017). Processes such as priming effects (Bianchi 
et al., 2015; Ward et al., 2019) and photo-oxidation (Stubbins et al., 
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2012; Ward et al., 2014) can amplify the reactivity of semi-labile or 
refractory molecules under certain conditions, which should 
be  considered when assessing the additionality of biotic mCDR 
interventions. From a modeling perspective, there has been recent 
progress that explicitly tracks concentrations of ~100 distinct 
molecules in response to interactions with ~35 unique microbial units; 
even when assuming that each class of molecules has equal reactivity, 
the model was capable of generating distinct pools of labile and 
refractory DOC (Mentges et al., 2019). Other relevant advances have 
been made in terrestrial reactive transport models that define varying 
levels of organic carbon reactivity based on ultra-high resolution mass 
spectrometry data (Muller et al., 2024).

In summary, the durability of biologically sequestered carbon in 
the ocean depends on complex interactions between particle sinking, 
organic matter decomposition, zooplankton grazing, sedimentary 
processes, DOC cycling, and ocean circulation, all of which influence 
potential leakage of CO2 and other GHGs like CH4 and N2O to the 
atmosphere. While biogeochemical models have advanced 
significantly in representing these processes, limitations remain in 
simulating microbial dynamics, particle properties, and sedimentary 
transformations. An ability to accurately predict when and where 
organic carbon is remineralized, which requires models to be skilled 
at simulating both organic carbon remineralization and large scale 
ocean currents (e.g., DeVries et al., 2012; Siegel et al., 2021), is a central 
modeling capability for biotic mCDR approaches considering that 
whether organic carbon is remineralized to DIC in surface versus deep 
waters can influence the time scales over which mCDR-derived 
carbon is durable by several orders of magnitude.

2.2 Predicting the efficiency of inorganic 
carbon sequestration

Model and observation-guided MRV strategies for mCDR 
approaches that harness abiotic geochemical processes to sequester 
CO2 in the form of DIC are perhaps more tractable compared to biotic 
approaches considering the thermodynamics of the marine carbonate 
system are thoroughly understood (Stock et al., 2014; Aumont et al., 
2015) compared to the microbial physiology and ecology mediating 
DOC transformations. Likewise, in comparison there is a fairly small 
number of tracers needed for MRV with geochemical approaches–e.g., 
pH, the partial pressure of CO2 (pCO2), DIC, and total alkalinity 
(TA)–as opposed to the hundreds of thousands of currently 
uncharacterized organic molecules in the ocean that contribute to a 
vast array of coupled biogeochemical cycles (Moran et al., 2022b). The 
high temporal variability in carbonate cycle parameters, particularly 
near the coast, and sheer size of the DIC pool in the ocean drives a 
need for extremely precise and spatiotemporally resolved observations 
to capture signals of geochemical mCDR, hence the need for reliable 
predictive capabilities for MRV (Schulz et al., 2023; Wang et al., 2023). 
The efficiencies of geochemical mCDR approaches are limited in 
multiple respects, driven by uncertainties in the response of alkalinity 
additions (and other mCDR approaches) in different environments, 
the complexity of biogeochemical and ecosystem feedbacks on the 
implementation of mCDR approaches, and our inability to accurately 
simulate these processes. MRV for DOCCS approaches (Aleta et al., 
2023) benefit from the fact that the collected CO2 can be directly 
quantified, however, these technologies often result in discharge of 

elevated pH water and thus share some modeling challenges with 
OAE. This section focuses primarily on OAE for this reason.

Although carbonate system representation can widely vary 
between different modeling studies, the standardized Ocean Model 
Intercomparison Project (OMIP) protocols provide guidance that, at 
a minimum, TA should require representation of CO2, carbonate, 
bicarbonate, hydroxide and hydrogen ions, and borate (Orr et al., 
2017), while additional contributions of silicon and phosphorus 
alkalinity can be computed offline. Many global ocean models also 
represent changes to TA over coarse spatial scales and relatively large 
time steps, well past the time necessary for equilibration of added 
alkalinity products. In contrast, the representation of the carbonate 
system in regional models is generally much more diverse with respect 
to the complexity of simulated dynamics (Shen et al., 2019; St-Laurent 
et  al., 2020; Hauri et  al., 2021). At a minimum, biogeochemical 
simulations represent a simplified version of carbonate chemistry that 
mechanistically simulates TA as a function of salinity and can 
be adjusted by processes of nitrification and denitrification (Fennel 
et al., 2008).

More complex ecosystem models such as COBALT (Stock et al., 
2014; Stock et al., 2020) coupled to Regional Ocean Modeling System 
(ROMS; Shchepetkin and McWilliams, 2005) add complexity to 
carbonate system representation by allowing TA and DIC to 
be directly affected by both physics and biogeochemical reactions 
(Hauri et al., 2020). Mechanistic models such as Eco3M (Baklouti 
et al., 2006; Baklouti et al., 2021), further link the carbonate system to 
processes such as explicit remineralization by bacteria and the 
reactivity of labile, semi-labile, and refractory carbon pools along with 
different detritic pools, and have been deployed in multiple regions 
including the Mediterranean Sea (Pagès et al., 2020a; Pagès et al., 
2020b; Lajaunie-Salla et al., 2021) and the tropical Pacific (Gimenez 
et al., 2018). However, such models are computationally expensive and 
difficult to evaluate since they involve parameters that are less 
frequently measured in tandem with carbonate system parameters 
(e.g., different pools of DOC, cellular abundance).

There are a variety of regionally heterogeneous factors that could 
either substantially limit the efficacy of mCDR approaches for a given 
region and/or increase the uncertainty of predictions for a given 
region. In terms of factors limiting efficacy, potential interactions 
between alkalinity feedstocks with sediment and organic particles, 
which are generally more abundant in coastal systems (and closer to 
the sea surface in the case of sediments) compared to the open ocean, 
could reduce the overall efficiency of CO2 uptake associated with 
OAE. Coastal regions exhibit highly heterogeneous particle 
concentrations throughout tidal cycles, seasons, and following passage 
of storms (McAnally William et al., 2007; Green and Coco, 2014). 
There are also potential additionality concerns from interactions 
between OAE with natural sources of alkalinity in shallow marine 
sediments (Bach, 2024). Despite these concerns, deploying OAE in 
coastal settings is desirable from logistical, regulatory, and MRV 
perspectives (Oschlies et al., 2023), meaning substantial effort should 
be made to enhance process-based predictive capacity for diverse 
coastal regions.

From our perspective, among the potentially most important 
model gaps to resolve with respect to geochemical mCDR approaches 
(i.e., OAE and effluent from DOCCS) are how the following processes 
behave when pushing the carbonate system to extremes not typically 
observed in nature: mineral precipitation and sinking dynamics, gas 
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exchange, and the influence of initial carbonate conditions on system 
responses along with the absence of feedback effects from the 
carbonate system on organisms (i.e., organisms are not influenced by 
the carbonate system). Some of these gaps are not due to a lack of 
process representation in models, per se, but rather are associated with 
challenges in parameterizing models for conditions that the ocean 
does not typically experience (e.g., large local pH and TA shifts). On 
the other hand, mineral precipitation and feedback between the 
carbonate system and organisms lack representation in current 
biogeochemical models.

Traditionally, there has not been a need to focus much effort on 
high pH mineral precipitation. However, precipitation of minerals 
such as brucite, which happens rapidly during initial alkalinity 
addition, or calcium carbonate, which occurs more gradually, 
effectively remove the additional alkalinity from the system if these 
precipitates sink (Hartmann et al., 2023). In the worst case scenario, 
runaway precipitation can occur when aragonite saturation exceeds a 
specific threshold (Moras et al., 2022), which would negate any carbon 
sequestration benefits of OAE, and potentially contribute to reduced 
CO2 uptake relative to typical levels. In this worst-case runaway 
precipitation scenario, any CO2 emissions associated with the OAE 
technology would not be  offset by the intended benefits. Thus, 
we argue that representing precipitation in models is essential from an 
MRV perspective for OAE technologies operating at or near potential 
precipitation thresholds.

In terms of air-sea gas exchange, the typical wind and 
concentration gradient based equations used in ocean models 
(Wanninkhof, 2014) reliably capture the dominant driver of gas 
exchange–high winds. However, we argue that chemical enhancement 
of gas exchange (i.e., hydration reactions of CO2 with water and 
hydroxide ions) may also be important to consider when modeling 
OAE scenarios (Wanninkhof and Knox, 1996). Limited experimental 
results suggest that chemical enhancement may account for up to 8% 
of total gas exchange under low wind conditions (Wanninkhof and 
Knox, 1996). Such processes may be even more impactful with larger 
pCO2 gradients and low turbulence conditions; for example, pCO2 can 
approach 0 ppm at a pH of 9 (Ringham et  al., 2024), which is a 
common maximum pH for the types of discharge permits many OAE 
practitioners are pursuing in the US. Waves are also often not 
considered but models such as Wave Watch III exist that could 
be coupled to ocean biogeochemistry models (Bi et al., 2015). These 
challenges are relevant to both OAE in general as well as many 
DOCCS approaches, which often have some element of alkalinity 
addition (e.g., elevated pH effluent after removing CO2 from seawater).

2.3 Predicting global impact of ecosystem 
restoration and protection

Predicting the effectiveness of restoring and/or protecting natural 
ecosystem functions that efficiently sequester carbon, often referred 
to as nature based solutions (Buma et al., 2024), shares many modeling 
challenges with the biotic mCDR approachesdiscussed above. The 
majority of proposed marine restoration-based approaches would 
involve organic carbon cycling in some way with the trophic level of 
interest ranging from zooplankton (Luo et al., 2020), to macroalgae 
(Queirós et  al., 2019) and corals (van der Heijden and Kamenos, 
2015), up to the scale of fisheries (Saba et al., 2021) and macro-fauna 

(e.g., whales) (Pershing et al., 2010). As such, assessing the durability 
of carbon sequestration associated with these restoration-based 
methods will rely on addressing many of the same modeling challenges 
described for engineered biotic mCDR approaches. The challenges 
identified for geochemical approaches are perhaps less impactful for 
understanding restoration-based mCDR considering such approaches 
would not push marine ecosystems to new extremes but rather focus 
on restoring balance to natural processes and mitigating human 
influence. In addition to microscale refinement in models, restoration-
based mCDR focused on fauna may also require more detailed 
coupling of ocean biogeochemistry, fisheries (Cheung et al., 2010; 
Marshall et al., 2017), biodiversity (Cheung et al., 2009), and social 
models (Kasperski et al., 2021) to assess additionality. For example, 
changes in fishery practices (e.g., decreased harvesting) in one region 
may promote increased harvesting in another (Cross et al., 2023).

Restoring and protecting “blue carbon” habitats (e.g., marshes, 
mangrove, and seagrass) is another prominent mCDR strategy due to 
high rates of carbon burial compared to terrestrial and open ocean 
systems (McLeod et al., 2011). Robust predictive capacity for assessing 
carbon burial in these ecosystems such as the marsh equilibrium 
model exist (Vahsen et al., 2024). However, a lack of representation of 
coastal vegetated ecosystems in Earth system models prevents us from 
assessing additionality of restoration-based solutions when interacting 
with the broader Earth system (Ward et al., 2020). Likewise, models 
focused on floodplain dynamics typically use surface water 
environments as boundary conditions (Yabusaki et al., 2020; Sulman 
et al., 2024), but do not explicitly focus on connecting material fluxes 
to ocean models. This may be particularly important in the context of 
restoring coastal habitats given the largest uncertainty in their ability 
to sequester carbon is how much carbon and alkalinity are exported 
laterally from the coastline to the open ocean (Santos et al., 2021).

While restoration-based mCDR may not be the most economically 
viable in terms of cost per ton of CO2 (Williamson and Gattuso, 2022), 
it is likely among the most socially acceptable first steps to take given 
the undeniable co-benefits such as improving habitat for fisheries and 
buffering of coastal flooding among others (Gattuso et al., 2021).

2.4 General considerations for modeling 
mCDR interventions

Additionality is generally assessed by comparing the difference in 
net atmospheric CO2 uptake between simulations of an mCDR 
intervention and its counterfactual scenario (Oschlies et al., 2025). 
This approach of subtracting results of one simulation from another 
inherently differentiates natural variability from mCDR-induced 
changes over the modeled domain assuming the mCDR intervention 
is represented in a way that does not alter ocean physics. For example, 
when simulating alkalinity release from a wastewater treatment plant, 
Khangaonkar et al. (2024) only introduced alkalinity to the model 
domain without altering the transport of mass and heat, which would 
alter physical circulation and make each scenario incomparable.

To be  useful for this application, models need to be  skillful 
enough to accurately represent physical, biological, and chemical 
processes within the spatial domain of interest. For example, issues 
with accurately representing ocean circulation may in some cases 
exert substantial uncertainty (Fox-Kemper et al., 2019). Likewise, 
while regional ocean biogeochemistry models generally do a good 
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job of capturing large scale trends, they have a hard time capturing 
patchy or episodic processes like localized algae blooms, leading to 
mismatches between modeled and observed carbonate system 
concentrations (Shen et al., 2019). Model skill is generally assessed 
through a series of validation and sensitivity analyses and can 
be improved using statistical data assimilation techniques (Rothstein 
et  al., 2015; Fennel et  al., 2022). However, data assimilation for 
mCDR applications has some unique challenges. First, it is 
impossible to make observations of the counterfactual condition 
(Ho et al., 2023; Fennel, 2024). Second, by assimilating carbonate 
system data into simulations of the mCDR intervention, the 
counterfactual simulation is no longer comparable; however, it is 
perhaps feasible to assimilate data types not impacted by the 
intervention such as salinity or dissolved oxygen (Fennel 
et al., 2023).

Because multiple scenarios need to be  compared to assess 
additionality, sources of numerical noise should also be evaluated to 
confirm that differences between the counterfactual and mCDR 
simulations are indeed due to the mCDR intervention. Model noise 
can interfere with accurately capturing key processes like the 
additionality of OAE or other mCDR interventions. It has long been 
understood that modeling is susceptible to numerically induced 
artifacts due to methods used to solve equations (Walters and Carey, 
1984). Representing continuous processes through discrete operators 
inevitably leads to approximation and truncation errors. Despite 
significant advancements over the years to reduce such artifacts, 
particularly in areas like advection (Adcroft et al., 2019) and spurious 
mixing (Holmes et  al., 2021), numerical noise continues to be  a 
central issue in ocean modeling. Numerical noise is influenced by 
various factors, such as the advection scheme, time step, grid size, 
compilation options, and hardware configuration. Understanding 
these influences is critical for improving model accuracy. Careful 
evaluation of each model and domain is essential to ensure that 
observed changes in pCO2 are due to an mCDR intervention rather 
than numerical noise.

A significant source of noise also arises from the intrinsic 
conceptual model used to represent biogeochemistry in ocean models. 
Indeed, biogeochemical models are based on different assumptions 
that can affect the end results. In the case of COBALT v2, for example, 
weak feedback between chlorophyll and TA exists, arising from the 
fact that the saturation state impacts the production of aragonite and 
calcite detritus, which in turn will impact export. Therefore, even a 
small change (in the case of an OAE experiment, for example) will set 
the model off on a slightly different trajectory, leading to different 
mesoscale and submesoscale realizations very quickly. This issue has 
been overcome in the latest version of COBALT (Stock et al., 2024) by 
reading chlorophyll-a from a file, cutting the link between TA and 
chlorophyll-a and reducing that source of noise. This specific issue 
highlights the importance of deeply investigating, understanding, and 
minimizing sources of model noise when using models for MRV.

Ultimately, the purpose of a particular model experiment should 
drive the level of realism and skill required from a given model 
configuration (Fennel et al., 2023) as the mCDR field evolves from 
idealized simulations focused on proof of principle and hypothesis 
testing (Köhler et  al., 2013; Keller et  al., 2014) to more realistic 
simulations of anticipated or actual field trials and commercial 
deployments (Wang et al., 2023; Khangaonkar et al., 2024; Guo et al., 
2025; Laurent et al., 2025).

3 Solutions for refining ocean models 
for mCDR

Here we provide a road map with several tangible solutions for 
improving computational approaches to better support predictions 
and/or verification of the permanence of carbon stored in the ocean 
as a result of mCDR interventions. Recommendations by Fennel 
et  al. (2023) on critical processes that need improved model 
representation, validation, and uncertainty quantification lay the 
groundwork for the solutions we propose as potential first steps, 
which include (1) expanding efforts to experimentally and 
observationally refine parameterization of fundamental ocean 
processes that play an outsized role in assessing proposed mCDR 
interventions, (2) establishing a modular approach for incorporating 
improved representation of processes specific to the MRV needs of 
different mCDR technologies in an ensemble of models, and (3) 
defining and testing criteria for traceable and auditable uncertainty 
quantification for models used for MRV across a range of 
ocean conditions.

3.1 Lab to field scale parameterization and 
validation

Insufficient observational data and process studies to support 
ocean biogeochemical model development is a central challenge 
facing the oceanography community. This challenge is further 
amplified when using existing models for new applications like 
mCDR. Large scale coordinated research programs like Export 
Processes in the Ocean from RemoTe Sensing (EXPORTS) play a 
critical role in providing the foundational data needed for developing 
next generation ocean models (Bisson et al., 2018; Archibald et al., 
2019; Kramer et al., 2022; Pinti et al., 2023). However, at this early 
stage in mCDR research, even relatively modest investments in 
laboratory and field experimentation can yield critical insight for how 
to better use existing models for mCDR applications (Cyronak et al., 
2023; Iglesias-Rodríguez et  al., 2023; Riebesell et  al., 2023; Savoie 
et al., 2025).

A major challenge when using existing models for mCDR is 
that current model parameterizations have typically not been 
designed to capture the extremes that mCDR applications will 
produce (e.g., highly localized pH changes or organic matter 
loading). Refining process representation and parameterization in 
ocean biogeochemistry models for both biotic and geochemical 
mCDR approaches can benefit from idealized model development 
informed by lab scale experimentation focused on parameterizing 
rates (e.g., carbonate system equilibration, organic carbon 
reactivity). For example, using a model that only simulates the 
carbonate system and air-sea exchange is likely the most tractable 
approach for building in new capabilities such as representation of 
brucite/carbonate precipitation thresholds when introducing 
concentrated alkalinity to seawater. In many cases, highly controlled 
beaker to bottle-scale experiments may be needed to build and test 
idealized models of a specific process, following guidelines 
established for OAE best practices (Iglesias-Rodríguez et al., 2023). 
Then, linking small-scale processes to realistic feedbacks in regional 
models will require rigorous testing of biogeochemical 
parameterizations at the mesocosm scale to help reduce the web of 
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complex uncertainties that will be  introduced as numerical 
experiments and mCDR deployments are implemented in realistic 
coastal ocean domains.

Experimental approaches can test and measure CO2 uptake, 
organic matter decomposition and other carbon related processes 
across multiple different physico-chemical treatments (e.g., salinity, 
temperature, and TA) and mCDR approaches (e.g., different sources 
of alkalinity, biological communities that are stimulated by 
fertilization, and different forms of biomass that are buried). Gradually 
increased complexity in mesocosm experiments can help determine 
other effects like CO2 exchange that may be affected by processes like 
chemical enhancement (Wanninkhof and Knox, 1996). Isolated 
mesocosms can be made increasingly complex to incorporate different 
model elements such as sediment, particles, and flora/fauna (Zayas-
Santiago et al., 2020) and ultimately controlled floating infrastructure 
(Riebesell et  al., 2013; Riebesell et  al., 2023). In terms of OAE, 
validation of carbonate dynamics for multiple different alkalinity types 
in the lab or mesocosms can then help bridge the gap to field-scale 
experiments in more complex environments with substantially higher 
natural variability and confounding factors. For example, how do 
different proposed OAE feedstocks interact with diverse initial 
conditions to drive gas exchange and additional DIC uptake? Likewise, 
how does the reactivity of organic matter associated with different 
types of proposed biotic mCDR approaches (e.g., microalgae, 
macroalgae, wood, etc.) vary under diverse environmental conditions 
and stimulate or repress production of other GHGs? As we seek to 
refine our models for mCDR applications, diverse types of 
experimental data (collected from lab benches as well as on beaches 
and in bays, and oceans) will be essential for testing these refinements.

3.2 A modular approach for mCDR-specific 
model improvements

Connecting regional ocean models to finer spatial-scale processes 
will bring forth a multitude of complicating factors, not least of which 
is increased computational demand. When modeling more realistic 
field conditions, simulating biogeochemical responses to alkalinity 
additions and/or primary production will require more complex 
representations and/or parameterizations of processes involving 
carbonate dynamics, concentrations of elements that are typically 
considered stable (e.g., Mg and Ca), those toxic to phytoplankton (e.g., 
Ni) (Fennel et al., 2023), and a more realistic representation of organic 
matter reactivity beyond labile, semi-labile, and refractory (Muller 
et al., 2024), among other factors. Smaller spatial-scale dynamics will 
also be required to simulate the potential for secondary precipitation, 
particle sinking rates, subduction of highly alkaline surface waters to 
subsurface waters with less chance for atmospheric contact, air-sea 
exchange rates (Fennel et al., 2023), and interactions between sinking 
POC and planktonic communities. Additionally, capturing carbonate 
equilibrium or pulses of nutrients or organic matter in an energetic 
marine environment is imperative before a plume is diluted and 
exported out of a regional model domain. Tracking the extent of an 
exported plume with undersaturated pCO2 may then require another 
connection between a regional model with higher complexity and a 
global model with simplified representations of carbonate and organic 
matter cycling dynamics as the air-sea gradient equilibrates over 
longer time scales.

Several logistical hurdles remain for implementing such complex 
biogeochemical dynamics within regional modeling systems, each 
with benefits and tradeoffs. The implementation of the same 
biogeochemical model (e.g., ECB, COBALT, PISCES, ERSEM, among 
others) (Fennel et al., 2019) across multiple domains offers a high 
degree of control over numerous variables and parameters and would 
reduce uncertainty in the biogeochemical responses of mCDR efforts 
due to varying model configurations. But importing an unfamiliar 
biogeochemical component into a mature regional ocean model will 
also likely necessitate extensive calibration, potentially including key 
model processes that lack experimental or observational data for 
model validation. Alternatively, individual users with well-validated 
and individualized biogeochemical parameterizations for their 
regional ocean models can apply significant expertise and professional 
judgment when implementing code changes that incorporate 
additional complexity for specific processes like carbonate system or 
organic matter cycling dynamics in their region of study. Yet this 
approach would also require significant, voluntary effort on the part 
of a wide array of users to maintain updated representations of known 
biogeochemical responses to mCDR activities in a rapidly expanding 
research field with a nascent set of standards and best practices 
(Oschlies et al., 2023).

One promising approach involves adding processes through 
coupled modules (Figure 2) that are transferable across models and 
regions. This approach would alleviate the need for individual 
researchers to make mCDR-specific modifications by either directly 
altering the code underlying their existing well-calibrated models and/
or changing to a different biogeochemical configuration used by 
others in the mCDR modeling community. The outcome of mCDR-
specific module couplings is more robust predictions of optimal 
dispersion methods and Earth system feedbacks in regions to which 
models are well calibrated. The concept of adding model functionality 
with model couplers and/or modules is a common approach (Jöckel 
et  al., 2005), but has not been applied to mCDR applications, 
specifically. For example, Régimbeau et  al. (2025) modified 
representation of phytoplankton physiology in global Earth system 
models based on genome level models to better understand how 
bioavailable metabolites influence DOC cycling.

We propose that a hybrid approach capable of integrating with 
varying levels of biogeochemical complexity may be best suited for 
widespread use and the adoption of regular standards that will benefit 
model comparability efforts. Such an approach would allow users to 
maintain customized code for their region of interest while utilizing a 
coupler (e.g., a software component that facilitates data exchange and 
synchronization between distinct model components) to connect a 
separate mCDR module that adaptively responds to relevant variables 
in the native biogeochemical configuration. This mCDR focused 
module would then benefit from community input, with potential for 
full-time support to document and archive validated parameters in a 
central module repository which reflects the latest scientific 
understanding based on lab and field experiment results. For members 
of the ocean modeling community interested in engaging in mCDR 
research for the first time, the existence of mCDR specific modules 
would reduce the upfront effort and cost of modifying their model of 
choice with mCDR specific considerations. In contrast, developing 
increasingly detailed and bespoke biogeochemical parameterizations 
for different regional modeling domains may be a time-intensive and 
potentially error-prone process, with an end result that would make 

https://doi.org/10.3389/fclim.2025.1640617
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Ward et al.� 10.3389/fclim.2025.1640617

Frontiers in Climate 09 frontiersin.org

performing side-by-side comparisons of mCDR dynamics increasingly 
challenging. A modular approach to improved biogeochemical 
process representation may also allow for faster, more transparent 
implementation among users who can continue to operate with a well-
validated model configuration and add additional mCDR-specific 
complexity as they see fit.

It is worth noting that coding new processes is only the first step 
in a much longer model development process requiring extensive 
validation against field observations, sensitivity analysis, and iterative 
refinement—all of which require substantial observational data that is 
largely unavailable for many mCDR-specific processes. Likewise 
adding more complexity to a model purely for the sake of more 
detailed process representation is not always useful, and over-
parameterization is a risk (Schneider et al., 2017). Before embarking 
on model modifications it is useful to think through the types of 
questions posed by Martin et al. (2024) such as “are data available to 
assess the impact of including the process?”

3.3 Leveraging distinct regions to test 
transferable mCDR-specific model 
improvements

Developing mCDR-specific modules that improve regionally 
tuned biogeochemical models will require testing and parameterizing 
them across distinct estuarine, coastal, and ocean settings to 
understand when and why existing models may be biased or uncertain 
when used for mCDR applications. For example, global simulations 
have shown that the efficiency of carbon uptake following alkalinity 
addition can vary by 10% or more across different ocean basins 
depending on both the physical dispersal and transport of alkalinity 
and initial carbonate system conditions (Burt et al., 2021). At the scale 
of specific coastal regions, the types of modular mCDR-specific 
parameterizations we propose in Section 3.2 may also have varying 
influence on overall model skill depending on the region. For example, 

in more sheltered or lower wind regions, the current common 
assumption that gas exchange does not occur during no to low wind 
conditions will likely exert substantially more bias than for a high 
wind region or the open ocean. Likewise, accurately representing 
secondary mineral precipitation is likely most important when 
simulating OAE in regions with higher baseline aragonite saturation.

Here, we  discuss how the distinct characteristics of three 
prominent coastal regions in the United States—the Pacific Northwest 
Coast, Chesapeake Bay, and Gulf of Alaska—may facilitate valuable 
tests for OAE-specific modules based on their differences and 
similarities. We specifically highlight coastal environments instead of 
major ocean basins because many early field trials and commercial 
deployments are most likely to be conducted nearshore for practical 
reasons (e.g., access to existing infrastructure and energy). Comparing 
gains or losses in model skill when applying new parameterizations to 
these and other regions will begin to highlight key uncertainties in 
existing models for mCDR applications and improve module 
interoperability with models of varying biogeochemical complexity.

The Pacific Northwest Coast is an eastern boundary upwelling 
region (Hickey, 1979) characterized by high spatial and seasonal 
variability in carbonate conditions (Figure  3A). This region is 
characterized by anomalously high primary production during the 
summer (Ware and Thomson, 2005) despite relatively weak upwelling 
winds compared to the northern California coastline (Hickey and 
Banas, 2008). Upwelling delivers nutrient-rich, low oxygen, and high 
pCO2 water onto the shelf, which supports high primary production 
but creates challenges such as coastal acidification and hypoxia (Feely 
et al., 2008; Feely et al., 2010; Davis et al., 2014; Murray et al., 2015; 
Siedlecki et al., 2015). High DIC water entering the Salish Sea through 
intense estuarine exchange flow (MacCready et al., 2021) also leads to 
net outgassing of CO2 from water to air (Murray et al., 2015; Jarníková 
et al., 2022), although in-gassing can also be significant in particular 
locations throughout the year. From a modeling perspective, these 
conditions create opportunities to test the efficiency of mCDR 
approaches under highly variable pCO2 gradients, ranging from highly 

FIGURE 2

(A) A modular approach for adding complexity and process richness to biogeochemical (BGC) models tuned to specific regions is one potential 
solution for addressing the mCDR-specific model limitations discussed in this paper. Rather than building every possible piece of functionality into one 
model, users could select which modules are needed for specific mCDR approaches. (B) An example of how to couple an OAE-specific module 
(purple) with general regional ocean circulation models (blue) and their biogeochemical component (green), the relevant outputs needed for MRV 
(gray), and iterative improvements that can be made to the module through regional sensitivity analyses and new experimentation (orange).
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supersaturated to undersaturated conditions. For example, one could 
test if there are efficiency losses or gains when using OAE to lower 
natural CO2 outgassing in supersaturated locations instead of 
promoting additional CO2 uptake. Likewise, one could test new gas 
exchange parameterizations to understand potential biases in 
predictions of efficiency under different initial pCO2 conditions.

In contrast to the Pacific Northwest Coast, Chesapeake Bay offers 
a test environment shaped by terrestrial inputs, shallow estuarine 
depths, partial haline stratification driven by microtidal dynamics, and 
relatively limited estuarine exchange flow (Feng et  al., 2015). 
Freshwater and nutrient inputs related to eutrophication across the 
region drive seasonal spring blooms with exceptionally undersaturated 
pCO2 conditions (<300 μatm) compared to near atmospheric pCO2 
conditions throughout the rest of the year (Figure 3; Da et al., 2021; 
St-Laurent and Friedrichs, 2024). TA varies from <300 μmol kg−1 in 
freshwater reaches to >2,000 μmol kg−1 closer to the ocean, 
highlighting the influence of terrestrial inputs on carbonate system 
dynamics unique to river-dominated estuarine systems. The 
Chesapeake Bay provides an important counterpoint to the high 
energy Pacific Northwest Coast due to the Bay’s relatively constrained 
exchanges with the ocean across its mouth that reduce the influence 
of winds and upwelling and the short residence times (2–3 months in 
individual tributaries) (Shen and Haas, 2004). Testing OAE 
simulations in the microtidal, shallow, and partially stratified 
Chesapeake Bay environment would effectively extend the range of 
conditions in which an OAE module will have to perform, and, in 
comparison to the Pacific Northwest Coast, test whether 
parameterizations developed in energetic upwelling regions can 
capture the subtleties of stratified environments with weaker 
circulation dynamics.

Finally, we turn to the Gulf of Alaska, where production is driven 
by contrasting upwelling and downwelling regimes. The Gulf of 
Alaska exhibits yet another layer of complexity, offering a productive 
shelf ecosystem influenced by both cyclonic offshore upwelling and 
coastal downwelling (Stabeno et al., 2004; Weingartner et al., 2005; 
Hauri et al., 2021; Hauri et al., 2024). Summertime primary production 
and low salinity drive undersaturated pCO2 conditions, a stark 
contrast to high pCO2 conditions found in Pacific Northwest upwelling 
zones (Figure 3C). The region’s relatively low carbonate concentrations 
(Bednaršek et al., 2021) may also help mitigate the risk of secondary 
precipitation during alkalinity addition and provide a low carbonate 
endmember compared to the other regions. Evaluating how sensitive 
the three different regions are to thresholds for precipitation will 
be  useful for understanding whether generalized versus region-
specific parameterizations are suitable. Furthermore, the cyclonic 
circulation disperses low-pCO2 waters into the Arctic Ocean (Méheust 
et  al., 2013), suggesting broad downstream effects from localized 
mCDR deployments in this region. By modeling mCDR in the Gulf 
of Alaska, we can test how physical transport of alkalinity and DIC 
over long distances impacts carbon sequestration efficiency and 
durability, providing insights transferable to other subpolar or Arctic 
settings that are expected to be  highly efficient from an OAE 
perspective (Zhou et al., 2024).

The Pacific Northwest Coast, Chesapeake Bay, and Gulf of Alaska 
collectively embody large gradients in circulation, carbonate 
chemistry, sediment interactions, and nutrient dynamics. By 
leveraging the distinct characteristics of these regions, along with 
other regions with established and well-calibrated biogeochemical 
models, we can accelerate development of transferable improvements 
of mCDR-specific model parameterizations and process 

FIGURE 3

Simulated surface pCO2 for the summer of 2016 (July, August, September) in (A) the Salish Sea and Pacific Northwest Coast (MacCready et al., 2021), 
(B) the Chesapeake Bay (St-Laurent et al., 2020; Da et al., 2021; St-Laurent and Friedrichs, 2024), and (C) the Gulf of Alaska (Hauri et al., 2024). The 
unique biogeochemical behaviors in these three major coastal regions exemplify the type of diverse systems we propose testing new mCDR-specific 
modeling capabilities. Note that the color scale shows all values greater than 500 μatm as yellow for panel C since very high pCO2 values are found at 
the outfall of some rivers. Data presented in this figure is available from Pagès et al. (2025).
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representation. Comparing model performance across regions with 
varying carbonate and circulation dynamics will allow the mCDR 
community to mitigate biases, optimize parameterizations, and refine 
uncertainty quantification frameworks.

4 Outlooks and conclusions

In this manuscript, we summarize our current perspective on 
limitations of current regional ocean biogeochemistry models for 
mCDR applications and offer a roadmap for incorporating mCDR-
specific model improvements with a modular approach. We argue that 
these types of model improvements are needed to support early efforts 
to scale up from small pilot field trials to commercial deployments, 
and ultimately to large enough mCDR interventions that move the 
needle in terms of climate change mitigation. Advancing across these 
scales will require decadal vision and highly coordinated rather than 
siloed research and mCDR technology deployment endeavors.

The implementation of mCDR efforts with spatially wide-reaching 
effects due to, for example, slow air-sea CO2 equilibration times could 
provide substantial logistical challenges for the future efficacy of 
mCDR deployments and MRV efforts in regions of the ocean affected 
by others’ actions months to years prior. The importance of models for 
MRV will grow as repeated real-life mCDR interventions move us 
further from the counterfactual scenario (i.e., a world with no mCDR 
interventions). Complex and potentially long-lasting effects of 
deploying diverse mCDR approaches demands globally linked 
modeling, observational, and deployment efforts to understand 
compounding interactions among them (Ombres et al., 2025).

To capture these globally linked mCDR efforts with rapid and 
complex biogeochemical responses at sites of deployment, models 
will need to represent linkages between field-scale and global 
processes. Simulations of near-field scale alkalinity and/or 
nutrient dynamics for mCDR deployments will require high 
performance computing infrastructure that can represent finer 
time steps at spatial resolutions of 100 m or less. These 
computational demands may also necessitate the use of 
GPU-capable software that can further exploit parallel processing 
schemes to achieve reasonable simulation times. Furthermore, 
integrating field-to-regional scale dynamics of mCDR activities 
within global processes will require some form of linkages 
between ocean dynamics that span 4–5 orders of magnitude 
spatially. This computational effort can only currently 
be  accomplished with exascale computing systems, and may 
require further response curves to be  implemented when 
transferring to larger scales (Zhou et al., 2024).

One important consideration regarding the use of modeling 
for MRV purposes is the energy needed to run simulations and 
the degree to which computing facilities run on renewable energy 
(Silva et  al., 2024). For example, we  estimate that simulating 
carbonate system dynamics in the Gulf of Alaska using ROMS-
COBALT (Figure 3C) required about 24 h on ~224 cpu cores per 
simulated year. Refining the model to get these results required 
~200 simulated years using roughly ~20,000 kWh of energy used 
just by the CPU (ignoring the contributions from cooling and data 
storage), which is ~2 times the average household energy 
consumption in the US (U.S. Energy Information, 2020). Global 
scale Earth system model simulations can use orders of magnitude 

greater computational resources depending on model complexity. 
As carbon removal strategies become increasingly reliant on 
sophisticated models for MRV, decarbonizing computational 
capabilities is one important consideration for ensuring that 
mCDR interventions result in net negative emissions. The need 
for repeatedly running new model simulations for either planning 
or verifying carbon removal of every individual mCDR 
deployment may also be  alleviated as tools based on well-
documented, repeated global simulations such as the OAE 
Efficiency Map emerge (Zhou et al., 2024). In this case, the “risk 
assessment for incomplete CO2 equilibration” framework 
proposed by Bach et al. (2023) could be used to scale the value of 
carbon credits based on uncertainty in the simulations used for 
carbon removal verification, with more skillful model ensembles 
justifying higher value credits. Finally, Ho et al. (2023) suggests 
that training artificial intelligence and machine learning 
algorithms with well-calibrated model outputs, validated with 
actual field data, could be another viable approach for streamlining 
predictions of the carbon removal efficiency of future 
mCDR interventions.

While we  primarily discussed how to adapt and improve 
modeling capabilities for the emerging field of mCDR, 
co-development of observing systems for MRV, detecting changes 
to the world’s oceans, and validating new model developments is 
essential. As we improve and validate our models for mCDR and 
other new applications the community should explore what an 
ideal data-assimilative ocean model looks like, and how such a 
model can best support sampling efforts through approaches like 
Observing System Simulation Experiments, wherein model 
outputs can be repeatedly sampled to better determine optimal 
configurations for sampling strategies that inform forecasts 
(Hoffman and Robert, 2016). Likewise, when staging large scale 
field trials, models forecasting ocean conditions may have a better 
understanding of the likelihood of vertical mixing, flushing rates 
at time of deployment, and could immediately assess the carbon 
uptake efficiency post hoc. However, current state of the art 
predictive capabilities only support accurate forecasts up to a few 
days in advance when considering biogeochemistry (Bever et al., 
2021). Accurate weather forecasting provided by aerial or future 
satellite platforms, as well as new artificial intelligence approaches 
for predicting weather, waves, and the ocean carbon system, may 
prove essential for such predictions (Rodríguez et al., 2018; Dong 
et al., 2022; Song et al., 2023; Roobaert, 2025).

Scientifically, we are still in the early days of assessing the efficacy 
and efficiency of diverse mCDR approaches. It is both likely and 
essential that public and private investment in decarbonization and 
carbon removal will grow exponentially in the coming decades 
necessitating strategic and concerted use of resources to create a sum 
greater than the whole of its parts. Doubling down on society’s 
investment in ocean observing platforms via dedicated long term 
regional testing infrastructure (e.g., mCDR Centers of Excellence) that 
are distributed across diverse coastal and marine environments is one 
strategy for catalyzing transformational understanding of how 
humans can positively influence the Earth system and mitigate the 
deleterious effects we  have had since the Industrial Revolution. 
Sustained observations of ocean carbon and biological systems 
(Boettcher et  al., 2023) are critical for supporting continued 
development of the models we  need to understand future Earth 
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system feedbacks as humans continue to intervene with natural 
processes both positively and negatively.
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