
Frontiers in Climate 01 frontiersin.org

Assessing the role of precipitation 
inputs and overbank flow in 
hydrological modeling: a case 
study of the Irrawaddy River Basin 
in Myanmar using WRF-Hydro
Qi Sun 1,2*, Joël Arnault 1, Patrick Laux 1,2, Luca Glawion 1,2 and 
Harald Kunstmann 1,2,3

1 Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-
Partenkirchen, Germany, 2 Institute of Geography, University of Augsburg, Augsburg, Germany, 
3 Center for Climate Resilience, University of Augsburg, Augsburg, Germany

Hydrological models are essential tools for water resource management and for 
mitigating extreme hydrological events risks. Although they are crucial for flood 
forecasting, these models often exhibit substantial uncertainties, including input 
data uncertainties (e.g., precipitation) and structural uncertainties of the models 
themselves. This study aims to explore the implications of different precipitation 
datasets and hydrological model structures on streamflow simulation, by evaluating 
the effects of multiple precipitation products and employing an enhanced model 
version to reduce structural uncertainty. This study evaluated the hydrological 
applicability of three representative precipitation products—reanalysis-based 
(the land component of the fifth-generation European Reanalysis, ERA5-Land), 
satellite-based (Integrated Multi-satellite Retrievals for GPM, IMERG), and machine 
learning-based (the first deep learning based spatio-temporal downscaling of 
precipitation data on a global scale, spateGAN-ERA5), using the offline version of 
WRF-Hydro, a distributed hydrological model. Additionally, this study evaluated the 
performance of an enhanced version of WRF-Hydro, incorporating an overbank 
flow module for reducing the model structural uncertainty in a large, flood-prone 
tropical river basin, Irrawaddy River Basin in Myanmar. The findings indicate that: 
(1) Simulations driven by IMERG precipitation outperformed those driven by ERA5-
Land and spateGAN-ERA5 in terms of accuracy in streamflow, with average NSE 
values of 0.77, compared to 0.19 and 0.09, respectively; (2) The modified model with 
enabled overbank flow showed consistent improvements over the default model. 
The average NSE improved from 0.09–0.77 (default) to 0.31–0.78 (modified); (3) 
The water balance analysis reveals that incorporating the overbank flow module 
reduces surface runoff, accompanied by an increase in soil moisture storage, and 
slightly enhancing underground runoff and evapotranspiration (ET) during the 
rainy period. After the end of the rainy period, the increase soil moisture storage 
gradually contributes to an increase in surface runoff. These results highlight the 
significant impact of accurate precipitation data and the overbank flow module 
on hydrological processes, particularly in flood-prone areas, and suggest that the 
modified model and high quality precipitation data may enhance hydrological 
forecasting capabilities.
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1 Introduction

Water, as a vital natural resource, is under increasing pressure 
globally due to rising demand and limited availability, due to 
population growth, urbanization, and climate change (Ferguson and 
Gleeson, 2012; Boretti and Rosa, 2019). These challenges underscore 
the critical need for effective water resource management to ensure 
sustainable development and resilience against water-related risks. 
Hydrological models are essential tools for predicting water 
availability, optimizing resource allocation, and mitigating risks 
associated with extreme hydrological events such as floods and 
droughts (Rogelis and Werner, 2018; Lane et al., 2019; Melsen and 
Guse, 2019). Despite their importance, these models face significant 
challenges due to the substantial spatial–temporal variability of 
meteorological drivers (e.g., precipitation), the complexity of surface 
conditions (e.g., topography, land use) and complexity of hydrological 
processes, leading to various uncertainties in model outputs (Song 
et al., 2015). As summarized by previous studies (Renard et al., 2010; 
Troin et  al., 2018; Zhang et  al., 2025), these uncertainties can 
be broadly categorized into two main types: (1) input uncertainty, 
which arises from measurement, sampling limitations, varying 
algorithms in forcing data such as precipitation; (2) model structural 
uncertainty, which stems from the simplified representations of 
hydrological processes, as well as empirical approximations that may 
not fully capture the complexity of natural systems. Assessing these 
uncertainties is crucial for improving the predictive accuracy of 
hydrological models and minimizing risks associated with water 
resources management, flood forecasting, and climate 
adaptation planning.

Precipitation is one of the most critical inputs in hydrological 
modelling, as it significantly influences the performance of 
hydrological models (Li et al., 2025). Rain gauge observations provide 
the most direct and accurate precipitation data; however, due to the 
sparse and uneven spatial distribution of observation stations, as well 
as environmental (e.g., complex terrain and extreme events) and 
anthropogenic factors, data quality and stability are often affected (Li 
et al., 2018b; Mtibaa and Asano, 2022). With advancements in satellite 
observations and data assimilation techniques, two main types of 
precipitation products have been developed: reanalysis-based and 
satellite-based precipitation. The integration of the two types of 
precipitation data has markedly enhanced the applicability of 
hydrological models in simulating and predicting floods with by 
allowing a spatial observation of the at global and regional scales, 
compared to gauge-based data (Huffman et al., 2024; Wang et al., 
2020; Gebrechorkos et  al., 2024; Li et  al., 2025). The ERA5-Land 
precipitation dataset—an enhanced global dataset representing the 
land component of the fifth generation of European Reanalysis 
(ERA5-Land; Muñoz-Sabater et al., 2021; 9 km approximately)—and 
satellite-based precipitation products, such as the latest version of the 
Integrated Multi-satellite Retrievals for GPM (IMERG; Huffman et al., 
2024; 9 km approximately), are among the most widely utilized 
datasets in water resources research (Liu et al., 2021; Zhu et al., 2024). 
Despite their widespread application, both datasets exhibit inherent 
limitations that should be  carefully considered in hydrological 
analyses. Reanalysis-based precipitation products face challenges 
related to data assimilation and model uncertainties (Nie and Sun, 
2020), while satellite-based precipitation products are influenced by 
sampling uncertainties, sensor limitations, and data processing 

algorithms (Hussain et al., 2018; Wang et al., 2020). Previous studies 
have evaluated the performance of reanalysis-based and satellite-
based precipitation products, including the ERA5-Land and IMERG 
datasets, as well as their impacts on hydrological simulations across 
various regions and topographies (Amorim et al., 2020; Le et al., 2020; 
Wang et al., 2020; Wedajo et al., 2021; Li et al., 2025; Xie et al., 2022). 
Especially, previous studies have examined the performance of 
IMERG and ERA5-Land precipitation datasets in tropical and 
monsoonal regions, providing insights into their suitability for 
hydrological modeling. For example, Le et al. (2020) compared eight 
satellite-based precipitation datasets across six river basins in Vietnam 
(tropical monsoon climate) and found that IMERG exhibited the best 
overall performance in streamflow simulations, indicating the 
robustness of its retrieval algorithm in tropical Southeast Asia. Xie 
et al. (2022) further highlighted spatial differences in precipitation 
product performance across China and demonstrated that IMERG 
tends to underestimate precipitation in southern regions, while ERA5-
Land generally overestimates it. ERA5-Land performs better than 
IMERG in northern and northeastern China, whereas IMERG shows 
better performance in the southeast, particularly in areas with a 
subtropical monsoon climate. Additionally, Chang et  al. (2024) 
assessed precipitation products in southwestern China (subtropical 
monsoon climate) and found that while ERA5-Land overestimated 
annual precipitation, IMERG performed better agreement with gauge-
based data and yielded comparable or even slightly better performance 
in streamflow prediction. These findings underscore the importance 
of evaluating the applicability of precipitation datasets under 
monsoonal conditions. However, hydrological assessments focusing 
specifically on ERA5-Land and IMERG precipitation products within 
the Irrawaddy River Basin remain limited.

Moreover, while remote sensing provides regional to global 
precipitation estimates but generally lacks the fine spatial resolution 
compared to local radar imagery and machine learning-based 
downscaled data. This limitation directly affects simulation of runoff 
generation and streamflow aggregation, particularly in regions 
characterized by complex terrain or heterogeneous land surface 
conditions (Maina et al., 2020; Shuai et al., 2022; Wetterhall et al., 
2011; Ficchì et al., 2016). To address this issue, merging satellite data 
with rain gauge or radar observations has been a commonly adopted 
approach to improve the spatial distribution of precipitation data 
(Ochoa‐Rodriguez et al., 2019; Mtibaa and Asano, 2022). However, 
these methods can be limited by the availability and quality of ground 
observations. Recently, machine learning approaches trained on high-
resolution radar imagery have been widely adopted to overcome these 
limitations. Such trained downscaling models not only improve local 
precipitation estimates but also demonstrate the potential to 
be  generalized and applied across different regions. Advanced 
downscaling approaches leveraging deep neural networks have proven 
to be capable of a skillful km-scale global precipitation estimates. For 
example, spateGAN-ERA5 (Glawion et al., 2025; 2 km) is the first 
deep learning-based temporal–spatial downscaling of precipitation 
data on a global scale. It is developed using ERA5 reanalysis data and 
radar imagery from DWD, and used a conditional generative 
adversarial neural network (cGAN) to train the model. The 
spateGAN-ERA5 dataset is based on machine learning algorithms 
trained on radar imagery, with the underlying assumption that 
rainband patterns can be learned by algorithms. However, the training 
data are limited to radar observations from Germany, which may not 
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fully capture the spatial and temporal variability of rainband 
characteristics in other climatic regions (Glawion et  al., 2025). 
Currently, the validation of spateGAN-ERA5 has been conducted 
primarily in regions like the United States and Australia, using open-
access radar data (Glawion et al., 2025). Despite these validations, the 
hydrological utility of spateGAN-ERA5 remains unexplored. This 
study is the first to systematically evaluate the hydrological 
applicability of spateGAN-ERA5 in a large tropical monsoon river 
basin. Indirect evaluation of precipitation data performance through 
hydrological modelling—by comparing simulated discharge with 
independent hydrological observations—can provide more 
comprehensive and robust assessments than direct comparisons with 
sparse meteorological stations (Yang et al., 2014).

In addition to input data uncertainties, hydrological models 
themselves often exhibit limitations in capturing the full complexity 
of natural processes. For example, due to the non-consideration of 
overbank flow, when the river flow pushes over its banks, in the 
WRF-Hydro model, the simulated streamflow exhibit overestimated 
peak values (Arnault et al., 2023). Thus, an enhanced version of the 
hydrological model which incorporating the overbank flow module 
to allow for water flow between land and river in a two-way manner, 
has demonstrated promising performance in regions such as East and 
West Africa (Arnault et al., 2023; Mortey et al., 2024; Ndiaye et al., 
2024). These previous studies have primarily focused on small basins, 
where precipitation is relatively uniformly distributed spatially within 
these river basins. Despite its success in these areas, this model has yet 
to be validated in other geographical contexts. The Irrawaddy River 
Basin experiences a typical tropical monsoon climate, strongly 
influenced by the South Asian monsoon, and exhibits substantial 
spatial (wet and dry zone, 500 mm to 4,000 mm) and seasonal 
variations (rainy and dry season, nearly 90% precipitaion within rainy 
season) in precipitation (Chen et al., 2020). Additionally, compared to 
the relatively flat terrain of and uniform land use within the small 
African basins, the Irrawaddy Basin exhibits a more heterogeneous 
topography, including mountains and low-lying delta (from 3,500 m 
to 500 m above mean sea level), with dense river network and diverse 
type of land use patterns, including forest areas, grasslands and 
cultivated lands (Pang et al., 2019). Hydrological processes here are 
influenced by not only spatial variations in precipitation, but also 
complex terrain, and diverse land use patterns, leading to more 
complex runoff generation mechanisms. Specifically, there has been 
no comprehensive evaluation of its performance in a large river 
basin—the Irrawaddy River Basin in Myanmar, where unique climatic, 
topographical, and land-use characteristics may present new 
challenges. Therefore, further validation in this region is essential to 
assess the model’s robustness and adaptability to different 
meteorological and hydrological conditions.

To evaluate the uncertainties in both precipitation inputs and 
hydrological model structure, this study compares hydrological 
simulations using multi-source precipitation datasets (reanalysis, 
satellite-based, and machine learning–derived) and model 
configurations with and without the overbank flow module in a large, 
flood-prone tropical river basin. To achieve this goal, we conduct a 
series of hydrological simulations over the poorly gauged Irrawaddy 
River Basin for the period 2010–2011. Specially, we: (1) evaluate the 
streamflow simulations using WRF-Hydro driven by three different 
precipitation products; (2) assess the influence of incorporating the 
overbank flow module on streamflow performance; (3) investigate the 

water balance components differences under various precipitation 
datasets and model configurations (i.e., default vs. overbank flow-
enabled). A distributed hydrological model—WRF-Hydro is set up for 
the Irrawaddy River Basin, and six simulation scenarios (3 
precipitation datasets × 2 model configurations) are designed to 
explore uncertainties in streamflow simulation. The results highlight 
the sensitivity of streamflow simulations to different precipitation 
inputs and the inclusion of the overbank flow module, offering 
reference for hydrological modelling in similar poorly gauged, flood-
prone regions.

The remainder of the article is structured as follows: Section 2.1 
introduces the study area and Section 2.2 describes the data used and 
Section 2.3 describes the evaluation metrics, while Section 2.4 details 
the hydrological model and Section 2.5 introduces the overbank flow 
module. Section 3 and 5 presents the results and discussion of the 
study, and the conclusion in Section 5.

2 Materials and methods

2.1 Study area

The Irrawaddy (also known as the Ayeyarwady) River Basin, 
located between 15°30′-28°50′N, 93°16′-98°42′E, is predominantly 
within Myanmar. Covering a total drainage area of about 410,000 km2 
(60% of Myanmar’s land area, Sirisena et al., 2021), the basin runs 
from the north to the south of the country, ultimately discharging into 
the Andaman Sea (Figure 1a).

Land cover is dominated by forests and cropland (rain-fed) comprise 
more than 65% of the basin (Figure  1b). Dense forests are mainly 
distributed in the northern mountainous and hilly region, while 
croplands are mostly located in the central dry zone and deltaic plains. 
The basin features diverse topography, ranging from northern mountains 
and central plateaus to the low-lying delta in the south, which contributes 
to substantial hydrological and climatic variability (Figure 1c).

The Basin experiences a tropical monsoon climate, with a rainy 
season from May to October and a dry season extends from November 
to next year April. In addition to temporal variability, the spatial 
distribution of annual precipitation is also highly uneven, ranging from 
over 4,000 mm in the northern mountainous regions to around 
500 mm in the central parts (Chen et al., 2020). Regarding interannual 
rainfall variability, Edirisinghe et al. (2023), based on CHIRPS (Climate 
Hazards Group InfraRed Precipitation with Station Data) observations 
from 1981 to 2021, reported a mean annual precipitation of 
approximately 1,852 mm across the Irrawaddy Basin, with a standard 
deviation of 152 mm and a coefficient of variation (CV) of 8.23%, 
indicating moderate interannual variability. The region is frequently 
impacted by tropical cyclones during the monsoon season, which often 
trigger heavy rainfall and severe flooding (Besset et  al., 2017). For 
example, on 26 September in 2024, an estimated 1 million people across 
70 out of the 330 townships in Myanmar were reportedly affected by 
the flooding caused by heavy monsoon rains and remnants of Typhoon 
Yagi (United Nations, 2024). In addition to flood disasters, this basin 
has experienced more droughts during 2000–2017 (Zhao et al., 2023). 
Under future climate scenarios, streamflow in this river basin is 
projected to increase overall but with greater interannual variability (Xu 
et al., 2024; Luo et al., 2025). These changes are expected to intensify the 
risks of both flooding and drought events in Irrawaddy River Basin—a 
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basin with large population—where streamflow is directly related to 
food security, life security, and sustainable water resource management.

2.2 Datasets

WRF-Hydro requires static terrestrial data to describe the model 
domain, parameters, initial condition, such as topographic height, land 
use, soil type and vegetation fraction. For high-resolution global digital 
elevation data, this study utilizes HydroSHEDS (Hydrological data and 
maps based on Shuttle Elevation Derivatives at multiple Scales).1 
HydroSHEDS are primarily derived its DEM from the Shuttle Radar 
Topography Mission (SRTM) at a resolution of 3 arc-seconds (~90 
meters at the equator), with some custom-modifications (Lehner et al., 
2008). The datasets are offered in resolutions of 3, 15, and 30 arc-seconds 
as well as 5 and 6 arc-minutes. Considering the spatial extent and 
complexity of the Irrawaddy River Basin, the 3 arc-second resolution 
DEM is selected for this study. The 3 arc-seconds DEM is processed by 
ArcGIS to generate accurate flow directions, delineate watersheds, 
extract stream and reservoir networks, produce one-dimensional 

1  https://www.hydrosheds.org

parameter files for lake and stream networks, define nest grid cells for 
routing, and compile geographical information of lake. Additionally, 
lake data are incorporated using HydroLAKES (Messager et al., 2016), 
which provide the shoreline polygons of all global lakes. The lakes are 
co-registered with the global river network from HydroSHEDS database 
via their lake pour points. Land use and soil type information are 
obtained from the United States Geological Survey datasets (USGS) and 
the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset.

Several meteorological variables are also needed to run the offline 
model. These include specific humidity, air temperature, downward 
long-wave and short-wave radiation, surface pressure, near surface u and 
v wind components, the precipitation rate. The primary source of 
meteorological data (except for precipitation), used in this study are from 
ERA5-Land. ERA5-Land is a near-surface meteorological reanalysis 
dataset developed by the European Centre for Medium-Range Weather 
Forecasts (ECMWF). It is generated by running high-resolution 
numerical simulations of the ECMWF land surface model, which is 
driven by downscaled meteorological forcing from the ERA5 climate 
reanalysis. This dataset  also incorporates an elevation correction to 
improve the representation of near-surface thermodynamic variables 
(Muñoz-Sabater et al., 2021). ERA5-Land covers the period from 1950 
to near-present, with a latency of approximately 2–3 months. This dataset 
has been widely applied in hydrology, climate modeling, and land surface 
process studies (Higgins et al., 2023; White et al., 2023; Xie et al., 2024).

FIGURE 1

Location and basic characteristic of Irrawaddy River Basin. (a) Geographical location of Irrawaddy River Basin in Asia. (b) The distribution of land use 
types in Irrawaddy River Basin. (c) Overview of the Irrawaddy River Basin including the distribution of seven hydrological stations (red circles), and 
elevation. For the basin area information, see Table 2.
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Precipitation, as the most important input variable for 
hydrological modeling, were represented using three precipitation 
datasets in the simulations. The first precipitation dataset employed 
was the reanalysis-based product—ERA5-Land (Muñoz-Sabater 
et  al., 2021). ERA5-Land provides global coverage with a spatial 
resolution, approximately 9 km at the equator, and a temporal 
resolution of 1 h as mentioned above. The second dataset was IMERG 
(Huffman et al., 2024), a satellite-based precipitation product that 
combines data from multiple passive microwave sensors and infrared 
observations. IMERG provides near-global coverage (60°N to 60°S) 
with a high temporal resolution of 30 min and a spatial resolution of 
0.1° (approximately 9 km at the equator). The third dataset used was 
spateGAN-ERA5 (Glawion et al., 2025), a machine-learning based 
data, this global precipitation dataset was developed based on ERA5 
reanalysis data (Hersbach et al., 2020) and trained using a conditional 
generative adversarial neural network (cGAN), which was exclusively 
calibrated on gauge-adjusted and climatology-corrected weather 
radar data provided by the German Meteorological Service (DWD). 
spateGAN-ERA5 provides precipitation estimates at a spatial 
resolution of 2 km and a temporal resolution of 10 min, which could 
provide relatively high spatial–temporal resolution input for 
hydrological modelling. The relevant information is summarized in 
Table 1.

The observed streamflow data were obtained from the Global 
Runoff Data Centre (GRDC).2 There are 7 stations (HKAMTI, 
MAWLAIK, MONYWA, PYAY, KATHA, SAGAING, MAGWAY) 
available in study region, and all of them have relatively long period 
observation streamflow data from 1978 to 2023. The daily streamflow 
data from 2010 to 2011 are used in this study. Our study focuses on a 
two-year simulation period due to several practical considerations: (1) 
Based on literature study, the Irrawaddy Basin has a mean annual 
precipitation of approximately 1852 mm, with a standard deviation of 
152 mm and a coefficient of variation (CV) of 8.23%, indicating 
moderate interannual rainfall variability (Edirisinghe et al., 2023); (2) 
The spateGAN-ERA5 dataset used in our simulations has a very high 
spatial (2 km) and temporal (15 min) resolution, which demands 
substantial computational resources and storage; conducting longer-
term simulations at this resolution over the extensive Irrawaddy River 
Basin (~361,000  km2) is computationally intensive and resource-
demanding; (3) An additional two-year simulation for 2012–2013 was 
performed, and the results are broadly consistent with those from 2010 
to 2011 (not shown).

ET is a key state variable in hydrological processes. To evaluate the 
model performance in ET, two reference ET products were used in 
this study. The Global Land Evaporation Amsterdam Model product 
(GLEAM) calculates ET from bare soil, short vegetation and 
vegetation with a tall canopy, and it also considers ice and snow 
sublimation products, based on the Priestley and Taylor (PT) 
evaporation model with a variety of satellite-sensor products to 
estimate daily evaporation at a global scale and 0.25° spatial resolution 
(Martens et al., 2017; Miralles et al., 2011). Based on previous study 
(Jia et al., 2022; Salazar-Martínez et al., 2022), compared other remote 
sensing-based ET products, GLEAM has the smaller bias and higher 
correction across between latitudes 30° S and 30° N. Another global 

2  https://grdc.bafg.de

ET product used in this study is derived from a three-temperature 
(3 T) model and Global Land Data Assimilation System (GLDAS) 
datasets. This product, hereafter referred to as ChinaET, with daily and 
0.25° (Yu et al., 2022), has generally comparable performance to other 
common ET products and better performance under extreme weather 
conditions in croplands.

Soil moisture is another key state variable in hydrological 
processes. To evaluate the model performance in soil moisture, two 
reference soil moisture products were used in this study. GLDAS 
(Rodell et al., 2004), developed by National Aeronautics and Space 
Administration (NASA), using land surface models and combining 
satellite- and ground-based observations, provides 0.25° soil moisture 
estimations for 0–10 cm soil layer. This dataset is widely used in 
terrestrial water resources research and shows advantages in less 
uncertainty and effectively capturing drought events in Central Asia 
(Qing et al., 2022; Yu et al., 2023). Another one is from Earth System 
Science Data Climate Change Initiative (ESA CCI), include ACTIVE, 
PASSIVE and COMBINED soil moisture observations (Dorigo et al., 
2017). We used daily and 0.25° COMBINED product (Preimesberger 
et al., 2020) in this study, which combines soil moisture observations 
from multiple active and passive satellite remote sensing instruments 
operating in the microwave spectrum. The data generally agrees well 
with the spatial and temporal patterns estimated by observed in-situ 
data and provides a long-term record for climate studies and various 
applications related to soil moisture dynamics (Dorigo et al., 2017; 
Humphrey et al., 2021).

2.3 Statistical methods

The performance of WRF-Hydro in simulating streamflow is 
quantitatively evaluated through several typical statistical metrics 
including correlation coefficient (CC), Nash Sutcliffe Efficiency (NSE), 
Root Mean Square Error (RMSE), Mean Absolute Error (MAE). They 
are defined by Equations (1–4) respectively. The CC is a statistical 
indicator that represents the linear relationship between simulations 
and observations, where the value lies between −1.0 to 1.0. A 
correlation of −1 signifies a perfect negative correlation, and a perfect 
positive correlation by 1. A correlation of 0 specifies that there is no 
relationship between the two variables. NSE is a commonly used 
metric in hydrological evaluations, which measures both the 
magnitude of errors and the variability of timeseries. It ranges from 
minus infinity to 1.0 (Nash and Sutcliffe, 1970; Liu et al., 2021). The 
closer the value is to 1, the better the model performance. If the value 
is 0, the model performance is just as good as yielding the mean 
observation. According to the widely cited model evaluation 
guidelines by Moriasi et al. (2007), hydrological model performance 
at the watershed scale can be considered “good” if NSE falls between 
0.65 and 0.75. RMSE is a standard way to quantify the error of a model 
in predicting data, with a range from 0 to ∞, and 0 means there is no 
error. MAE quantifies the average magnitude of absolute deviations 
between predicted and observed values, and the ideal value is 0 too. 
In this study, these four metrics are selected because they could assess 
different aspects of model performance separately (bias, variance, 
correlation), compared to composite metrics. These four metrics are 
widely adopted in hydrological model evaluations (Liu et al., 2021; Xu 
et al., 2024) and enable effective comparison with existing studies in 
similar contexts.
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Where Qobs,i denotes the i-th observed streamflow, Qmod,i denotes 
the i-th model simulated streamflow, Qobs,i* denotes the temporal 
average of observed streamflow, n is the number of days.

2.4 Model

WRF-Hydro (Gochis et  al., 2025) is a distributed hydrological 
model, widely used for flash-flood prediction (Varlas et  al., 2018; 
Jam-Jalloh et  al., 2024), regional hydroclimate impact assessments 
(Fersch et al., 2020), seasonal forecasting of water resources (Cho and 
Kim, 2022), and land-atmosphere coupling studies (Rummler et al., 
2019). The model can operate in either an offline (uncoupled) mode or 
a coupled mode, where it is integrated with atmospheric or Earth 
system models. The offline mode, which is the model configuration 
used in this study, utilizes one-way process using a meteorological 
forcing dataset. The model can simulate and predict hydrological 
processes at various spatial scales (from headwater catchment to 
continental river basin) and temporal resolutions (from minute to 
season). WRF-Hydro simulates key hydrological processes including 
surface overland flow, baseflow, subsurface flow, and channel routing. 
By incorporating both surface and subsurface hydrological 
components, the model enables a more physically realistic 
representation of the terrestrial water cycle. WRF-Hydro extends the 
traditional Noah land model by providing the framework of routing. 
This routing method supports differing resolutions between the land 
surface model (LSM) grid and the routing grid, enabling the use of 
high-resolution topographic and hydrological data specifically for the 
routing process. In this study, the LSM resolution is 3,000 m, and the 
routing resolution is 300 m. The high routing resolution was adopted 
to better capture the dense and complex river network structure and 
topographic variability of the Irrawaddy River Basin, which is critical 
for accurate simulation of flood propagation and localized hydrological 

responses. The default paramters of the river channels’ geometry of 
WRF-Hydro applied in this study, since we had no detailed data on 
river channel geometry parameters in this data-scarce river basin. The 
default parameters are widely used in hydrological modeling and are 
designed to represent typical channel characteristics across various 
stream orders. Due to the lack of meteorological observation data, 
we could not conduct a calibration of the WRF-Hydro parameters, 
which might have implications for the streamflow accuracy of the 
simulations. However, since the main focus of this study is set on the 
effects introduced by different precipitation datasets and the sensitivity 
of the overbank flow module, it is expected that the calibration does 
not affect our main conclusions. There is no spin-up range employed 
for warming the model, since the streamflow is quite small and 
equilibrium (soil moisture) quickly reached due to the start of the 
simulation during the dry season.

2.5 Two-way extension of the land-river 
water flow module

The Irrawaddy River Basin is prone to frequent flooding, often 
leading to overbank flow and inundation of adjacent floodplains. 
Although WRF-Hydro accounts for numerous hydrological processes, 
in its default version, the surface water enters a channel once it exceeds 
the retention depth and does not return to the land (Gochis et al., 
2020). The model, however, does not include the overbank flow 
process, which can lead to unrealistically high peak discharges when 
compared to the gauge observation. To mitigate the problem, Arnault 
et al. (2023) incorporated overbank flow module in the WRF-Hydro 
source code, which allows for water flow between land and river in a 
two-way manner. In this module, the model incorporates a new 
parameter—the overbank flow threshold (Hthres). This parameter is 
used to determine whether the water head in a given channel pixel 
exceeds the defined threshold. If the water head exceeds Hthres, the 
model assumes that overbank flow occurs, subsequently the water 
originating from the upstream channel pixel is redirected to the 
adjacent land surface. To ensure mass conservation, the upstream 
channel flow is subsequently added to the surface water component 
computed by the overland flow routing module (Arnault et al., 2023). 
To better illustrate this process, Supplementary Figure S1 presents a 
schematic diagram of the overbank flow mechanism in a river–
floodplain system, adapted from Arnault et  al. (2023) with 
modifications. A detailed explanation of model modifications to 
enable the two-way extension of land-river water flow, along with the 
numerical balance achieved through the overbank flow option is 
provided in Arnault et al. (2023). The code is available at doi: 10.6084/
m9.figshare.21063982. This advanced model was applied successfully 

TABLE 1  Comparison of the three precipitation datasets employed in this study: ERA5-Land, IMERG, and spateGAN-ERA5.

Dataset Spatial resolution Temporal resolution Description Reference

ERA5-Land ~9 km Hourly Reanalysis data Muñoz-Sabater et al. (2021)

IMERG ~9 km 30 min Satellite data Huffman et al. (2024)

spateGAN-ERA5 ~2 km 10 min

Downscaled using GANs, 

enhancing ERA5, trained by radar 

image

Glawion et al. (2025)

The table summarizes their data sources, spatial and time resolutions.
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in Nzoia river basin in tropical East Africa and Sissili-Kulpawn Basin, 
and Senegal River Basin in West Africa (Arnault et al., 2023; Mortey 
et al., 2024; Ndiaye et al., 2024).

2.6 Terrestrial water balance computation

The terrestrial water balance (TWB) can be written as follows:

	 s gP ET R R S= + + + ∆
	 (5)

The terrestrial water balance equation describes the distribution 
of water. Precipitation (P)—the total input of water from rain, snow, 
and other sources. ET (water lost to the atmosphere through 
evaporation and plant transpiration), surface runoff (Rs) (water 
flowing overland into streams and rivers), underground runoff (Rg) 
(groundwater contributions to flow, including baseflow), and changes 
in terrestrial water storage (ΔS).

3 Results

3.1 Impact of precipitation datasets on 
streamflow simulation

To evaluate the model performance on simulating streamflow, the 
Irrawaddy River Basin and its seven hydrological stations (shown in 
Figure  1) were selected. The spatial distribution of these stations 
provides relatively comprehensive coverage of the basin.

The simulated streamflow driven by three precipitation datasets—
spateGAN-ERA5 (SPATE), ERA5-Land (ERA5), and IMERG—
reasonably reproduce the observed temporal variations at all seven 
hydrological stations (Figure  2). The CC exceeded 0.80 across all 
stations and reached up to 0.95 at some locations, indicating a strong 
agreement between simulated and observed streamflow time series 
(Table 2). However, the simulations based on ERA5 and SPATE tend 
to overestimate streamflow during rainy season compared to the 
observed data (Figure 2). In contrast, IMERG simulation shows better 
performance on daily streamflow simulation, with high mean CCs 
(0.92) and satisfactory NSE values ranging from 0.69 to 0.89 
(NSE > 0.65 indicating good model performance) and low Biases, as 
reflected by lower average RMSE (2,941 m/s3) and MAE (2,280 m/s3). 
Comparatively, ERA5 and SPATE demonstrated relatively lower CC 
values (0.88 and 0.85, respectively), poorer NSE ranges (−0.22 to 0.58 
and −0.11 to 0.34, respectively), and higher average RMSE (5,373 m3/s 
and 5,685 m3/s) and MAE (3,510 m3/s and 3,597 m3/s), highlighting 
the relatively inferior performance of these datasets in simulating daily 
streamflow at the basin scale (Table 2).

To better understand the differences in the simulated streamflow, 
we further analyzed the annual precipitation and subbasin-averaged 
monthly precipitation (Figures  3, 4). Compared to IMERG, both 
ERA5 and SPATE significantly overestimate the annual mean 
precipitation in the river basin, with ERA5 overestimating by 
approximately 35. 33% and SPATE by about 35. 42%. The 
overestimation is particularly in the northern mountainous regions 
located upstream of the basin (Figures 3, 4a,b,d). This overestimation 
has a substantial impact on the larger simulated streamflow from 

upstream to downstream (Figures  2a–g). The performance of the 
precipitation-driven simulations using ERA5 and SPATE is quite 
similar, as the precipitation of SPATE was downscaled based on ERA5 
and have quite high similarity in precipitation amount (Figures 3, 4). 
Although the IMERG produces relatively more accurate streamflow 
overall, it still overestimates peak flow values—similar to the ERA5 
and SPATE, albeit to a lesser extent. This systematic overestimation 
across all datasets may be attributed to the absence of overbank flow 
processes in the default model (Arnault et al., 2023).

3.2 Impact of overbank flow on streamflow 
simulation

To address the overestimation of peak streamflow values, 
we conducted further simulations using all three datasets—SPATE, 
ERA5, and IMERG—with the overbank flow module activated. The 
corresponding simulation scenarios are denoted as SPATEOVER, 
ERA5OVER, and IMERGOVER, respectively. The results of these 
different configurations are presented and compared in Figure 5 and 
Table  2 to evaluate the impact of incorporating overbank flow 
processes on accuracy of streamflow simulation. Simulations 
incorporating the overbank flow module yielded improved daily 
streamflow performance, as indicated by a higher mean CC (rrom 
0.88 to 0.91) across the three datasets and seven stations, a reasonable 
average NSE (from 0.35 to 0.58), and reduced bias metrics, including 
lower reduced average RMSE (−23.7%) and mean MAE (−23.6%). 
Specifically, for the IMERGOVER simulation compare to IMERG, 
mean CC increased from 0.90 to 0.93, representing a 2.2% 
improvement. Notably, mean NSE for the upstream and midstream 
five stations increased from 0.79 to 0.81 (2.3%). Additionally, average 
RMSE and MAE across five stations decreased by 6.4 and 5.3%, 
respectively, although the two downstream stations exhibited slight 
declines in some performance metrics. Among all sites, station 3 
showed a particularly pronounced improvement across all four 
metrics: CC rose from 0.93 to 0.95 (2.2%), NSE increased markedly 
from 0.83 to 0.97 (16.9%), while RMSE and MAE were reduced by 
14.3 and 16.7%, respectively. The results indicate that incorporating 
the overbank flow module significantly mitigates the unrealistically 
high peaks observed in the default model, thereby enhancing the 
realism and accuracy of the simulated streamflow. Moreover, this 
study examines a large river basin, where module impacts varies 
across the seven gauging stations. This variability can be attributed to 
differing hydrological conditions at each site. As shown in Figure 5, 
the reduction in peak streamflow due to the inclusion of the overbank 
flow module is more pronounced at downstream stations 
(Figures  5g–i) compared to upstream stations (Figures  5a–c). 
Although overbank flow occurs in the upstream areas, the resulting 
streamflow reduction at individual upstream basins is relatively 
limited. However, as the river traverses multiple sub-basins, the 
cumulative effect of overbank flow becomes increasingly significant. 
This accumulation leads to a substantial attenuation of peak discharge 
observed at the downstream stations.

In addition to streamflow, the simulated soil moisture and ET 
were compared with observational products. The long-term daily 
mean top-layer (0–10 cm) soil moisture from WRF-Hydro 
(Figures 6c–e) exhibits relatively similar spatial distributions to those 
from the observational products GLDAS and ESACCI (Figures 6a,b). 
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FIGURE 2

Hydrographs of simulated streamflow driven by precipitation inputs from ERA5-Land (blue), IMERG (green), spateGAN-ERA5 (orange), compared with 
observed discharge (black) at (a–g) seven stations during 2010–2011 using WRF-Hydro.
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In the northern region, where precipitation is higher, soil moisture 
content is also greater, while in the central region, where precipitation 
is relatively lower, soil moisture is correspondingly lower. However, 
the simulations tend to overestimate top-layer soil moisture, 
particularly in areas with high precipitation. This is further confirmed 
by the basin-averaged soil moisture time series shown in Figure 7, 
where the simulations generally capture the temporal variations in soil 
moisture; however, all simulations tend to overestimate soil moisture, 
particularly during the rainy season. Among them, the ERA5 
simulation exhibits a larger bias (0.025 m3/m3) compared to the 
IMERG simulation (0.020 m3/m3), which can be partly attributed to 
the overestimation of precipitation in the ERA5-Land dataset. Despite 
the relatively accurate simulated streamflow from IMERG, the model 
still exhibits an overestimation of soil moisture. Although there is an 
overestimation bias in soil moisture, the temporal variation closely 
matches the observations, and the magnitude of the bias is relatively 
small, making it generally acceptable. Additionally, different products 

also shows discrepancies in soil moisture estimates. The differences 
between the GLDAS and ESA CCI products may result from 
differences in their input data and retrieval algorithms.

The daily mean ET simulated by WRF-Hydro (Figures 8c–e) show 
relatively similar spatial distributions with those from the ChinaET 
and GLEAM datasets (Figures 8a,b). This is also further supported by 
the basin-averaged ET time series in Figure 9, where the simulations 
generally capture the temporal variability of ET. During the rainy 
season, simulated ET values fall within the range of the two 
observational products, with only minor discrepancies, typically 
within 1 mm/day. Some differences between ChinaET and GLEAM 
are also observed, which may be  attributed to differences in the 
retrieval algorithms used in these products.

To further investigate the impact of incorporating the overbank 
module on the terrestrial water balance, Figure 10 presents the key 
water balance components—including precipitation, surface runoff, 
changes in soil moisture storage (ΔS), ET, and underground 

TABLE 2  Quantitative analysis results of model performance for daily streamflow simulation using different precipitation datasets (ERA5, SPATE, IMERG) 
and model configurations (default and overbank options).

Metrics Stations 
and station 
code

HKAMTI
2,260,100

MAWLAIK
2,260,110

MONYWA
2,260,120

KATHA
2,260,400

SAGAING
2,260,500

MAGWAY
2,260,600

PYAY
2,260,700

Drainage Basin 

ID and basin area 

(km2)

Basin 1

22,429

Basin 2

34,919

Basin 3

33,136

Basin 4

63,759

Basin 5

33,262

Basin 6

85,076

Basin 7

15,789

EXPERIMENTS

CC

ERA5 0.91 0.90 0.91 0.90 0.81 0.86 0.86

ERA5OVER 0.93 0.94 0.94 0.93 0.87 0.92 0.92

IMERG 0.95 0.94 0.93 0.91 0.88 0.90 0.90

IMERGOVER 0.96 0.95 0.95 0.93 0.92 0.93 0.92

SPATE 0.90 0.86 0.85 0.88 0.80 0.84 0.83

SPATEOVER 0.92 0.89 0.88 0.91 0.84 0.88 0.87

NSE

ERA5 0.15 0.58 0.38 −0.22 0.20 0.03 0.18

ERA5OVER 0.24 0.80 0.88 0.48 0.66 0.80 0.83

IMERG 0.89 0.81 0.83 0.72 0.70 0.69 0.76

IMERGOVER 0.90 0.84 0.87 0.73 0.70 0.66 0.70

SPATE 0.06 0.13 −0.11 0.20 0.34 −0.06 0.09

SPATEOVER 0.00 0.34 0.15 0.42 0.53 0.31 0.44

RMSE 

(m3/s)

ERA5 1671.39 2642.18 3672.48 4350.39 5191.29 9870.31 10213.31

ERA5OVER 1581.17 1803.83 1618.92 2847.53 3414.55 4496.87 4613.47

IMERG 607.89 1772.30 1930.11 2091.24 3167.56 5549.19 5468.52

IMERGOVER 549.94 1638.77 1654.36 2053.68 3204.13 5876.09 6173.21

SPATE 1766.20 3779.79 4913.90 3512.74 4715.32 10373.78 10734.46

SPATEOVER 1823.89 3298.09 4304.83 3010.15 3988.46 8352.00 8448.73

MAE (m3/s)

ERA5 1008.23 1786.68 2261.09 2821.93 3424.79 6610.22 6657.78

ERA5OVER 990.17 1353.59 1176.02 1982.23 2463.22 3492.99 3492.53

IMERG 404.73 1393.92 1408.83 1684.03 2304.33 4603.49 4157.30

IMERGOVER 375.39 1314.19 1173.79 1690.43 2374.93 4834.82 4599.54

SPATE 1136.04 2337.21 2912.50 2208.23 3069.23 6725.10 6789.51

SPATEOVER 1193.72 2088.82 2619.91 1934.68 2673.39 5538.28 5427.11

For the location of the drainage basins, see Figure 1. The bold values in indicate better simulation performance under the metric.
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runoff—calculated according to Equation (5), as simulated by both 
the default WRF-Hydro model and the enhanced version with the 
overbank flow module activated. Figures 10a–c, which represent the 
results from the three precipitation datasets, all show that during the 
rainy season, incorporating the overbank flow module leads to a 
reduction in surface runoff (4.6%), accompanied by an increase in soil 
moisture storage (2.2%), along with slight increases in ET and 
underground runoff. The increased soil moisture storage during the 
rainy season subsequently contributes to increased surface runoff after 
the rainy period ends. Based on the water balance analysis, the 
inclusion of the overbank flow module allows a portion of river water 
to overflow onto adjacent land surfaces, when water depth exceed the 
bank depth. This process reduces surface runoff during the peak rainy 
months (e.g., from April onward). With this process, ET and soil 
moisture simultaneously slightly increasing. Some of this infiltrated 
water percolates into underground runoff. Later, as rainfall decreases 
in October, the increased soil moisture from previous overbank events 
contributes to increased surface runoff compared to the default 
simulation. These are further confirmed by Figures  6f–h, 8f–h in 
increased soil moisture and ET along the bank compared to the 
default simulation.

After examining the variations in different water components, 
we further investigated the changes in soil moisture across different 

soil layers. The simulated changes in soil moisture for each layer are 
presented in Figure 11. With the exception of the first month, soil 
moisture content generally increases, which aligns with the trends 
observed in Figure 10 in soil moisture storage changes, indicating an 
overall increase in water storage compared to the default run. During 
the rainy season, the first soil layer shows a more pronounced increase 
in moisture content (0.0018 m3/m3) compared to the deeper layers 
(Layer 2: 0.0016, Layer 3: 0.0016, and Layer 4: 0.0014 m3/m3). This 
pattern reflects the downward infiltration of water, which subsequently 
enhances moisture levels in the underlying soil layers.

4 Discussion

Accurate precipitation data is crucial for hydrological application. 
In this study, we  investigated the effects of different precipitation 
inputs on simulated streamflow for a distributed hydrological model, 
applied to the Irrawaddy River Basin, a flood-prone region. 
Specifically, we  compared the results from three representative 
precipitation products—IMERG (satellite-based), ERA5-Land 
(reanalysis-based), and spateGAN-ERA5 (machine learning-based 
dataset). We found that simulated streamflow driven by ERA5-Land 
and spateGAN-ERA5 precipitation shows significant overestimation 

FIGURE 3

Annual mean precipitation (mm) distribution of datasets for 2010–2011 in the Irrawaddy River Basin: (a) ERA5-Land, (b) IMERG, and (c) spateGAN-
ERA5. The red numbers in panel (a) indicate the basin identification numbers.
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compared to observed streamflow, primarily due to its overestimation 
of precipitation. A similar wet bias in ERA5-Land data has also been 
observed in other wetter and more complex terrain regions, such as 
Turkey, the Qilian Mountains, parts of Southeast Asia such as 
Indonesia, as well as neighboring areas such as China and Nepal 
(Amjad et al., 2020; Jiang et al., 2021; Li et al., 2025; Guo et al., 2024; 
Jiang et al., 2021; Chang et al., 2024; Xie et al., 2022; Linarka et al., 
2025; Khadka et al., 2022) and IMERG performs better compared to 
ERA5-Land over subregions of subtropical and tropical monsoon 
climate (Tang et al., 2020; Chang et al., 2024). The overestimation of 
ERA5-Land may related to the model physics schemes (eg., 
microphysics and cumulus parameterization) and the data 
assimilation techniques (Jiang et al., 2021). Additionally, the lack of 

observational data in this region, along with topographic impacts, 
may also contribute to this issue. The obvious overestimation need 
caution when applying ERA5-Land in hydrological applications in 
these regions. The pronounced overestimation in the northern 
mountainous regions, which are located upstream of the river, has a 
considerable impact not only on upstream flow but also on midstream 
and downstream streamflow simulations—areas that has large 
populations and agricultural production. This study further 
underscores the importance of the accurate of precipitation input for 
data-scare regions.

Besides, spateGAN-ERA5, which is based on ERA5 data and 
utilizes a machine learning method along with radar information to 
downscale reanalysis data, offers relatively higher spatial–temporal 

FIGURE 4

Monthly Precipitation Time Series from three precipitation datasets for (a–g) seven sub-basins in the Irrawaddy River Basin from 2010 to 2011, (h) the 
basin number.
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FIGURE 5

Hydrographs of simulated streamflow using the default model (solid blue lines) driven by three precipitation datasets—SPATE (first column), ERA5 
(second column), and IMERG (third column), along with overbank flow represented by red dashed lines, are compared against observed streamflow 
(black) at (a–u) seven stations with WRF-Hydro during 2010–2011.
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FIGURE 6

Spatial patterns of daily average surface (0–10 cm) soil moisture in the Irrawaddy River Basin during 2010–2011 (a,b) from the reference product 
GLDAS and ESA CCI; (c–e) simulated soil moisture from WRF-Hydro with the overbank flow module enabled, driven by ERA5, IMERG, and SPATE 
precipitation datasets; (f–h) the differences between simulations with and without the overbank flow module (overbank run minus default run).
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resolution compared to ERA5. In our study, the results indicate that 
the downscaling process causes only minor changes in precipitation 
amount, resulting in similar simulated streamflow between the two 
datasets. However, spateGAN-ERA5 exhibits notable differences in 
the spatial precipitation patterns compared to ERA5-Land (Figure 3), 
which in turn affect the performance of the overbank flow module. 
Where precipitation spatial patterns vary greatly, show substantial 
differences in surface runoff spatial patterns (Figure 12) and overbank 
flow intensities—for example, in sub-basin 2. We found that these 
significant spatial differences in surface runoff distribution, driven by 
precipitation spatial distributation, alter the simulated overbank flow 
and consequently impact streamflow simulations (Figure  5). 
Specifically, compared to ERA5-Land—where precipitation, e.g., is 
concentrated upstream along the channel in sub-basin 2, resulting in 
earlier runoff entering the channel—spateGAN-ERA5 precipitation is 
more loosely distributed across sub-basin 2, thus the runoff entering 
the channel relatively at downstream within this sub-basin. As water 
flows downstream within this sub-basin into the relatively narrow 
channel, overbank flow along the banks is pronounced in simulations 
driven by ERA5-Land, whereas it is comparatively weaker in 
simulations driven by spateGAN-ERA5. Even with similar overall 
precipitation amounts, differences in spatial distribution can have a 
significant impact on flood simulations.

The substantial differences in the annual spatial precipitation 
patterns between the downscaled spateGAN-ERA5 data and ERA5-
Land are likely attributable to the cumulative effects of high-frequency 

(10-min interval) downscaling. The machine-learning model learns 
the spatial distribution of precipitation bands from radar imagery, and 
the convective downscaling process may enhance the estimation of 
convective precipitation. This refinement could improve upon the 
relatively coarse spatial distribution in ERA5-Land, which is limited 
by model resolution and interpolation gaps due to sparse gauge 
stations. However, since the radar data used for training the machine 
learning model, is primarily derived from Europe, it may not be fully 
representative of the climate in our study region, which is largely 
influenced by the monsoon and has significant climatic differences. 
Therefore, incorporating more radar data from South Asia into the 
downscaling process may help to better represents the spatial pattern 
of precipitation in this region.

The quality of IMERG precipitation can largely be affected by the 
complex radiative environment created by topography and cloud, 
which significantly affects passive microwave retrievals, thereby 
impairing the accuracy of precipitation detection and evaporation of 
precipitation before it is detected by stations also has impacts (Xu 
et  al., 2019). Incorporating additional meteorological station 
precipitation observations would further enhance the validation in 
this study.

In addition, we conducted streamflow simulations using both the 
default WRF-Hydro configuration and an enhanced model 
incorporating the overbank flow module. The results demonstrated 
that the overbank configuration effectively mitigates unrealistic peak 
flows in the simulated streamflow, yielding outputs that align more 

FIGURE 7

Comparison of observed and simulated time series of basin-averaged top-layer (0–10 cm) soil moisture in the Irrawaddy River Basin from 2010 to 
2011.
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FIGURE 8

Spatial pattern of daily average ET (mm/day) in the Irrawaddy River Basin during 2010–2011 (a,b) from the reference product China ET and GLEAM; 
(c–e) simulated ET from WRF-Hydro with the overbank flow module enabled, driven by ERA5, IMERG, and SPATE precipitation datasets; (f–h) the 
differences between simulations with and without the overbank flow module (overbank run minus default run).
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closely with observations. These findings are consistent with previous 
studies (Arnault et al., 2023; Mortey et al., 2024; Ndiaye et al., 2024), 
which also reported that the inclusion of overbank flow processes in 
WRF-Hydro substantially improves streamflow representation in 
African basins such as the Nzoia, Sissili-Kulpawn, and Senegal River 
basins. For instance, Arnault et al. (2023) implemented an overbank 
flow routing option in WRF-Hydro, resulting in a marked 
improvement in daily discharge performance, with the NSE increasing 
from −2.69 to 0.30 in the Nzoia Basin. Similarly, Mortey et al. (2024) 
employed a two-way river-land interaction configuration, improving 
the NSE from −0.34 to 0.47 in the Kulpawn Basin. However, these 
prior studies were limited to relatively small basins with only one 
gauging station for validation.

In contrast, our study was conducted over a large, flood-prone 
river basin with seven hydrological stations distributed across 
upstream, midstream, and downstream locations. The results revealed 
that incorporating the overbank flow module led to a notable 
improvement in streamflow simulation accuracy, with the average 
NSE improved from 0.09–0.77 (default) to 0.31–0.78 (modified). This 
underscores the broader applicability and robustness of the overbank 
flow module in complex basin-scale hydrological modeling. 
Additionally, we also investigated overbank process on water balance. 
The simulated changes were hydrologically consistent with the 
expected behavior during flood events. Specifically, during high-flow 
periods, water exits the river channel as river losses, some of which is 
temporarily stored on land surfaces (bank storage), contributing to 
increased ET and infiltration into the soil profile (overbank 
infiltration). This infiltration increases soil water storage and 

subsequently leads to increased underground runoff. These findings 
are in line with Doble et al. (2012), who highlighted that episodic 
aquifer recharge from overbank flooding represents a significant often 
overlooked component of the water balance. Furthermore, this 
module provides potential for simulating floodplain inundation, 
provided that spatially explicit flood extent data are available for 
validation. Overall, this study highlights the importance of 
incorporating overbank flow processes into distributed hydrological 
models such as WRF-Hydro, particularly for accurately representing 
streamflow dynamics and water balance components in large, flood-
prone basins.

There are some limitations in this study. First, we did not conduct 
a calibration of WRF-Hydro parameters due to the lack of 
meteorological observation data. Moreover, the primary objective of 
this study was to evaluate the uncertainties introduced by different 
precipitation datasets and to assess the sensitivity of the overbank flow 
module. As reported by Arnault et al. (2023), traditional parameter 
tuning—including most sensitive parameters such as the percolation 
rate, runoff-infiltration partitioning, lateral hydraulic conductivity, 
overland roughness, retention depth, and river roughness (Manning’s 
coefficients) has been shown to be insufficient in fully addressing the 
problem of unrealistically high peak discharges. While the lack of 
calibration may reduce the accuracy of streamflow simulations, it 
allows for a controlled evaluation of the precipitation-driven and 
structural improvements introduced by the overbank flow module.

Second, the absence of critical observational data—such as 
station-based precipitation, flood occurrence locations, inundation 
depths, and in situ soil moisture and ET measurements—limits the 

FIGURE 9

Comparison of observed and simulated time series of basin-averaged ET (mm/day) in the Irrawaddy River Basin from 2010 to 2011.
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ability to perform more detailed validations. Consequently, we used 
observed discharge as a indirect indicator to evaluate the precipitation 
products. Additionally, uncertainties in soil moisture and ET products, 
which arises from their respective input data and algorithms, may also 
have influence the evaluation results. For example, in this river basin, 
the temporal correlation coefficients between GLEAM and ChinaET 
is only 0.44, indicating that the two ET products respond differently 
to seasonal or interannual variability. The spatial correlation 
coefficients reaches 0.60, indicating the products shows higher 
agreement in spatial pattern. Although the simulated results 
reasonably captured the spatial pattern of soil moisture and ET 
products, it tended to overestimated in soil moisture content across 
the basin. Similar overestimation has been reported by Liu et  al. 
(2021) in the Xijiang River Basin, potentially related to inaccuracies 
in soil type representation, which affect water redistribution and 
infiltration processes within the model (Liu et al., 2021; Zhang et al., 
2023). Therefore, improving soil type characterization and 
parameterization should be considered in future studies to enhance 
the accuracy of hydrological simulations.

Furthermore, due to lack of the information of dam operation 
records, reservoir capacities, and irrigation withdrawals, the model 
does not explicitly account for these anthropogenic influences. This 
omission may partially explain some of the model biases—particularly 
the underestimation of low flows in our study and potential 
misattribution of error sources to precipitation inputs alone. However, 

compared to other major rivers in Asia, Myanmar’s river systems 
remain relatively unregulated (Hedley et al., 2010). Several large dams, 
including the Myitsone and Tamanthi projects on the mainstream of 
the Irrawaddy River, have been canceled or postponed (Lazarus et al., 
2018; Taft and Evers, 2016). Despite the presence of several small dams 
(Lazarus et al., 2018), previous studies have shown that these dams 
exert minimal influence on streamflow—typically within ±2%—their 
location on low-order tributaries and the basin’s low overall degree of 
regulation (Phy et al., 2024). Future modeling efforts should account 
for its potential hydrological impacts. Additionally, the irrigation 
mainly happened within sub-basin 6 and 7, where most of the 
cropland is located. It is predominantly practiced during the dry 
season using canals to pump water from the river to the fields. This 
may influence the dry-season streamflow simulations. However, since 
our study focuses on the peak flows and the overbank flows that occur 
during the rainy season, the overall impact of irrigation on the main 
findings might be limited. Besides, groundwater withdrawals in the 
dry zone are comparatively limited, with an estimated annual recharge 
of approximately 4,770 Mm3 and a total withdrawal of approximately 
770 Mm3 (Taft and Evers, 2016). HIC (2017) estimated and compared 
the annual flows under a water resources development scenario—
including domestic use, irrigation, and reservoir storage totaling 
20 km3—with a no-development scenario and found only a 2% 
difference in discharge along the Irrawaddy mainstream. Lastly, the 
ground water coupling (Rummler et al., 2022) and crop vegetation 

FIGURE 10

Differences in hydrological balance components between the overbank flow simulation and the default WRF-Hydro configuration. (a) SPATEOVER 
minus SPATE, (b) ERA5OVER minus ERA5, and (c) IMERGOVER minus IMERG.
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dynamics (Warrach-Sagi et al., 2022) may further influence model 
performance and should also be  considered in future research to 
enhance the accuracy and reliability of the streamflow simulation.

In this study, we focused on the enhanced version of WRF-Hydro 
driven by multi-source precipitation datasets and conducted water 
balance analysis. Although a hindcast evaluation was not performed in 
the current work, improvements in the water balance—particularly in 
soil moisture simulation—are crucial for future flood forecasting. For 
example, Wyatt et al. (2020) demonstrated that in-situ soil moisture 
data improve seasonal streamflow forecast accuracy in rainfall-
dominated watersheds. Visweshwaran et al. (2022) applied a novel 
Forward Sensitivity Method (FSM) for soil moisture assimilation to 
enhance streamflow forecasting. Moreover, soil moisture is widely used 
in machine learning-based models to train and improve streamflow 
forecasts (Kumar et al., 2021). Above all, a more realistic water balance 
simulation is beneficial for streamflow forecasting accuracy.

5 Conclusion

This study aims to evaluate uncertainties arising from both 
precipitation inputs and hydrological model structure by comparing 
simulations driven by multi-source precipitation datasets—reanalysis, 
satellite-based, and machine learning–derived—and model 
configurations with and without an overbank flow module. This 

assessment is conducted over the large, flood-prone, and poorly 
gauged Irrawaddy River Basin during 2010–2011. Specifically, we:

	 1.	 Evaluated streamflow simulation accuracy using three 
precipitation datasets. IMERG-driven simulations achieved 
NSE values ranging from 0.69 to 0.89, corresponding to 
improvements of approximately 150–190% relative to 
spateGAN-ERA5 (−0.22 to 0.58) and 235–260% relative to 
ERA5-Land (−0.11 to 0.34), respectively.

	 2.	 Assessed the impact of incorporating the overbank flow 
module. The modified model with enabled overbank flow 
showed consistent improvements over the default model. The 
average NSE improved from 0.09–0.77 (default) to 0.31–0.78 
(modified), representing an improvement of approximately 100 
to 245%. The most significant NSE improvement occurred at 
Station 6 (ERA5-Land), where NSE increased from 0.03 to 
0.80, indicating enhanced accuracy and reliability.

	 3.	 Analyzed water balance component changes due to model 
modifications. The water balance analysis reveals that 
incorporating the overbank flow module reduces surface 
runoff (4.6%), accompanied by an increase in soil moisture 
storage (2.2%), and slightly enhancing underground runoff and 
ET during the rainy period. After the end of the rainy period, 
the increase soil moisture storage gradually contributes to an 
increase in surface runoff.

FIGURE 11

Time series of basin-averaged soil moisture (m3/m3). Layers 1 to 4 represent different soil depths: 10 cm (blue), 30 cm (green), 60 cm (red), and 100 cm 
(cyan), respectively. (a) SPATEOVER minus SPATE, (b) ERA5OVER minus ERA5, and (c) IMERGOVER minus IMERG.
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FIGURE 12

Spatial pattern of simulated daily average surface runoff (mm/day) in the Irrawaddy River Basin during 2010–2011 (a–c) from WRF-Hydro with the 
overbank flow module enabled, driven by ERA5, IMERG, and SPATE precipitation datasets; (d–f) the differences between simulations with and without 
the overbank flow module (overbank run minus default run). The red numbers in panel (a) indicate the basin identification numbers.
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Overall, these results highlight the substantial influence of both 
accurate precipitation inputs and model enhancements (such as 
overbank flow module) on improving hydrological simulations in a 
large river basin. These findings underscore the importance of 
incorporating such elements to better represent complex hydrological 
processes, particularly in flood-prone regions, and strengthen its 
forecasting capability for water resource management. For future 
work, building upon the improved hydrological model incorporating 
the overbank flow module, future research will focus on integrating 
seasonal-to-subseasonal (S2S) forecast data to investigate of the 
modified model’s capability in hydrological predictions and flood risk 
early warning in the Irrawaddy basin. Additionally, the more 
comprehensive representation of water cycle processes in the modified 
model provides an opportunity for coupled WRF-Hydro simulations 
with more realstic water cycle modeling and advance our 
understanding of hydrological dynamics in complex river basins.
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