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This study aimed to evaluate precipitation estimates over the Brazilian Legal 
Amazon (BLA) using high-resolution historical simulations from the MPI-ESM1-
2-HR climate model, before and after regionalization with the RegCM4.7.1 model. 
Continuous 32-year simulations (1981-2012) were compared against observed 
precipitation data on a regular 0.5° × 0.5° grid over the BLA. Six experiments were 
conducted: (1) MPI, comparing raw MPI-ESM1-2-HR precipitation with observations; 
(2) REG, comparing regionalized MPI-ESM1-2-HR precipitation via RegCM4.7.1 with 
observations; and (3-6) four experiments applying two bias correction methods, 
canonical correlation analysis (CCA) and principal component regression (PCR), 
to the MPI and REG out-puts, resulting in MPI-CCA, MPI-PCR, REG-CCA, and 
REG-PCR experiments. Monthly evaluations revealed very low average correlations 
(r) between the uncorrected simulations and observations: 0.008 for MPI and 
0.013 for REG, with mean ab-solute errors (MAE) of 80 mm and 120 mm, and 
root mean square errors (RMSE) of 97 mm and 143 mm, respectively, indicating 
poor representation of observed climatology. However, the application of CCA 
and PCR substantially improved the simulations. MPI-CCA achieved r = 0.36, 
MAE = 43 mm, and RMSE = 54 mm, while REG-CCA reached r = 0.41, MAE = 42 
mm, and RMSE = 53 mm. The best performance was observed with PCR: MPI-
PCR showed r = 0.47, MAE = 40 mm, and RMSE = 51 mm, whereas REG-PCR 
obtained the highest accuracy with r = 0.52, MAE = 39 mm, and RMSE = 50 
mm. These improvements were corroborated by Kling-Gupta Efficiency (KGE) 
analysis, reinforcing its value as a metric for precipitation simulation assessment. 
Among all months, REG-PCR achieved superior correlation and lower errors in 8 
out of 12 months (February, March, April, July, September, October, November, 
and December). MPI-PCR performed better in January, June, and August, while 
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REG-CCA stood out only in May. These findings underscore the importance of 
bias correction, particularly PCR, in reducing uncertainties in future precipitation 
projections for the BLA. The results highlight the potential for applying PCR to 
model outputs to improve projections of climate extremes, thereby supporting 
strategic planning across multiple sectors in this critical region.

KEYWORDS

accumulated precipitation, simulation, CMIP6, canonical correlation analysis, principal 
component regression

1 Introduction

Between the end of the 20th century and the beginning of the 21st 
century, the planet experienced significant environmental changes, 
including a notable rise in surface temperatures and an increase in the 
frequency of extreme weather and climate events (Seneviratne et al., 
2021). These changes have been particularly intense in South America, 
especially within the Amazon region (Marengo et al., 2012; Espinoza 
et al., 2019; Dereczynski et al., 2020; Paca et al., 2020; Granato-Souza 
and Stahle, 2023).

The Amazon biome, which comprises over 40% of the global 
tropical forest area and spans approximately 6.7 million km2, with 
about 60% located within Brazilian territory (Weng et al., 2018), plays 
a pivotal role in regulating the Earth’s climate by contributing to the 
global carbon (Rosan et al., 2024) and moisture cycles (Costa and 
Satyamurty, 2016), as well as to the planetary energy balance. Its high 
precipitation rates make it a critical source of latent heat to the 
atmosphere (Zhang et al., 2015; Nobre et al., 2016; Phillips et al., 2017; 
Ataide et al., 2020). Encompassing a vast area rich in biodiversity and 
mineral resources, the Brazilian Legal Amazon (BLA) has undergone 
significant land-use changes, primarily driven by deforestation for 
agricultural expansion and cattle ranching. These anthropogenic 
pressures, compounded by natural climate variability, have 
undermined the forest’s resilience, resulting in prolonged dry seasons 
and increased fire risks, thereby pushing the region perilously close to 
a potential “tipping point” (Marengo et al., 2018; Costa et al., 2022; 
Silva et al., 2023).

In light of the ongoing transformations in the region, 
numerous studies have sought to simulate the long-term climate 
of the Brazilian Legal Amazon (BLA) under various climate 
change scenarios developed over recent decades by the 
Intergovernmental Panel on Climate Change (IPCC). These efforts 
span from early assessments using global climate models (GCMs) 
from the Coupled Model Intercomparison Project Phase 3 
(CMIP3) to more recent analyses based on CMIP6 (Medeiros 
et  al., 2022). However, most of these studies evaluate GCM 
projections up to the year 2,100 by comparing projected average 
temperatures and accumulated precipitation with observed 
climatologies over historical reference periods, typically relying on 
raw GCM outputs without implementing any bias correction 
(Sillmann et al., 2013; Marengo et al., 2018; Almazroui et al., 2021; 
Dias et  al., 2021; Monteverde et  al., 2022; Firpo et  al., 2022; 
Oliveira et al., 2023).

The GCMs participating in CMIPs provide not only future 
projections under various scenarios but also historical simulations 
that allow direct comparisons with observations. This facilitates the 
assessment of model reliability, which is often low for certain variables 

such as precipitation (Raju and Kumar, 2020). These inherent 
uncertainties, stemming from both model structure and natural 
climate variability, highlight the need for methods to mitigate them. 
A common strategy is the use of ensemble means across multiple 
GCM members, rather than relying on individual simulations (Yilmaz 
et al., 2024). Other approaches involve the regionalization of GCM 
outputs through regional climate models (RCMs) (Santos e Silva et al., 
2022). Regional climate projections based on models are all 
fundamentally dependent on some form of global model, including 
next-generation Earth System Models (ESMs). However, simply 
coupling an RCM to a GCM or ESM does not inherently ensure 
significant improvements in simulations, since RCMs may inherit 
biases from the global model and also introduce their own biases 
(Hall, 2014; Hong and Kanamitsu, 2014; Dosio et al., 2015; Takayabu 
et al., 2016).

Without a historical evaluation that establishes the reliability of a 
model’s simulations, analyzing future climate change scenarios 
produced by that model becomes contradictory (Costa et al., 2021; 
Ferreira et al., 2023; Gebrechorkos et al., 2023). An alternative lies in 
the use of statistical post-processing techniques to adjust biases and 
reduce mismatches between climate model outputs and observations 
(Maraun and Widmann, 2018). However, the most commonly used 
methods of this nature involve correcting specific statistical properties 
of the simulated data in comparison to observations, such as long-
term means or specific distribution quantiles, through additive 
adjustments (e.g., applying a constant) or rescaling of modeled data 
by a factor, among other approaches (Willems and Vrac, 2011; 
Maraun, 2016; Webber et al., 2018).

In this context, the present study proposes a hybrid dynamical–
statistical approach by applying two multivariate analysis 
techniques, Canonical Correlation Analysis (CCA) and Principal 
Component Regression (PCR), commonly used for bias correction 
in seasonal climate forecasts. These techniques are applied to 
historical simulated precipitation data from 1981 to 2012 generated 
by the MPI-ESM1-2-HR model (hereafter referred to as MPI) for 
the BLA region. The objective is to correct biases both before and 
after dynamic downscaling using the Regional Climate Model 
version 4.7.1 (hereafter referred to as REG), in order to assess the 
added value of both the regionalization process and the application 
of the techniques to the original MPI data. This approach is 
innovative not only for producing monthly precipitation estimates 
that are more consistent with observations, but also due to its 
potential for bias correction at daily scales, applicable to both 
historical and future climate scenarios. Such improvements may 
substantially reduce uncertainties and enhance assessments, 
particularly regarding the behavior of climate extremes by the end 
of the 21st century.
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2 Materials and methods

2.1 Study area and data

The Brazilian Legal Amazon (BLA), extensively studied in recent 
literature, covers approximately 61% of Brazil’s territory, spanning all 
northern states (RR, AP, AM, PA, TO, AC, RO), the entire state of 
Mato Grosso (MT), and part of Maranhão (MA), totaling 
5,217,423  km2. This vast region plays a critical role in global 
biogeochemical cycles, moisture regulation, and ecosystem services 
(Gomes et al., 2024). It presents diverse rainfall regimes defined by 
four Köppen climate types: tropical rainforest (Af) in the western 
areas (e.g., AM and AC), monsoon climate (Am) over most of the 
territory, tropical savanna (Aw) in the south, and semi-arid (As) 
conditions in peripheral areas like MA and TO (Alvares et al., 2013; 
Gomes et al., 2024).

With an average annual precipitation of about 2,200 mm, the 
BLA sustains the Amazon River, which discharges around 12.5 
million cubic meters of water per minute into the Atlantic, 
accounting for 16–18% of global freshwater flow into oceans 
(Herdies et  al., 2023). The region’s terrain is predominantly 
lowland (above 250 m), with higher elevations (400–800 m) in 
MT, southern PA, and western TO, and its highest point at Mount 
Roraima (2,739.3 m), located in northern RR at the border with 
Venezuela and Guyana.

The observational precipitation dataset used in this study (hereafter 
OBS) derives from a high-resolution gridded analysis developed for 
the entire Brazilian territory (Xavier et al., 2022). This dataset integrates 
information from over 11,000 rainfall stations, including conventional 
and automatic meteorological stations managed by the National 
Meteorological Institute (INMET), the National Water Agency (ANA), 
and other federal, state, and municipal institutions. For the purposes 
of this study, daily precipitation series were extracted from 1,695 grid 
points within the BLA, at a spatial resolution of 0.5° × 0.5°. Figure 1 
illustrates the region’s physiographic features and the spatial 
distribution of these grid points. These observational data served as a 
reference for calculating the climatology for the period 1981–2012, as 
well as for applying bias correction to the MPI and REG model outputs 
using CCA and PCR, as described in detail in subsequent sections.

2.2 CMIP6 model

The daily precipitation data simulated by the MPI model were 
obtained from the Earth System Grid (ESG) data portal, which hosts 
outputs from 23 CMIP6 models,1 including historical simulations 

1 https://esgf-node.llnl.gov/search/cmip6/, accessed on 20 March 2024.

FIGURE 1

Geographical location of the Brazilian Legal Amazon (BLA) within South America, highlighting its topography, the abbreviations of each constituent 
state, and the spatial distribution of the observational rainfall grid points across the region.
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spanning the period from 1950 to 2014. As detailed in (Gutjahr et al., 
2019), the high-resolution (HR) version, MPI-ESM1-2-HR, features 
a significantly enhanced horizontal resolution compared to its 
predecessor, the low-resolution (LR) version (MPI-ESM1.2-LR). 
Specifically, the HR version doubles the horizontal resolution of the 
ECHAM6.3 atmospheric components (T127, 0.9° × 0.9° or 
approximately 100 km) (Hertwig et al., 2015; Mauritsen et al., 2019). 
The ocean component has a resolution of 0.4° (approximately 40 km), 
implemented on a tripolar grid that allows for the explicit simulation 
of oceanic eddies (Jungclaus et al., 2013). This represents a substantial 
improvement over the LR configuration, which employs an 
atmospheric resolution of ~200 km and an oceanic resolution of 1.5°.

For CMIP6, the configurations used for ensemble members are 
designated by four indices, each representing specific model attributes: “r” 
denotes the realization, “i” the initialization, “p” the physical 
parameterization, and “f” the forcing. The ensemble identifier “r1i1p1f1” 
indicates that all members share the same initialization and physical 
configuration, with the forcing term “f1” corresponding to single-moment 
aerosol (OMA) simulations within the framework of the Atmospheric 
Model Intercomparison Project (AMIP) (Jungclaus et al., 2019).

2.3 Climate simulations

The Regional Climate Model version 4.7.1 (REG), configured in 
its hydrostatic variant with a horizontal resolution of 25 km, 23 
vertical levels, and a model top at 50 hPa, was employed to conduct 
regional simulations for the historical period from 1980 to 2012. 
The initial and boundary conditions for these simulations were 
derived from the MPI model. It is important to note that the first 
year of simulation was designated as a ‘spin-up’ period to allow 

model stabilization and was therefore excluded from 
subsequent analyses.

The Community Land Model version 4.5 (CLM4.5) was coupled to 
REG to simulate processes at the soil–plant–atmosphere interface. 
Simulations were performed using the Mercator Normal projection, with 
a temporal resolution (time step) of 30 min and grid dimensions 
comprising 145 points in the Y direction and 240 points in the X direction.

For cumulus convection parameterization, the Tiedtke scheme 
(Tiedtke, 1996) was applied over continental regions, while the Kain–
Fritsch scheme (Kain and Fritsch, 1990; Kain, 2004) was used over 
oceanic areas. Sub-grid scale cloud processes were represented using 
the explicit humidity scheme (SUBEX) (Pal et al., 2000). The Holtslag 
scheme (Holtslag et al., 1990) was employed for parameterizing the 
planetary boundary layer (PBL). The simulation domain encompasses 
part of South America and the South Atlantic Ocean, fully covering 
the Brazilian Legal Amazon (BLA), as illustrated in Figure 2.

2.4 Bias correction methods

We applied the Canonical Correlation Analysis (CCA) and 
Principal Component Regression (PCR) techniques, widely employed 
for generating seasonal climate forecasts (Mason and Tippett, 2017; 
Esquivel et al., 2018; Hossain et al., 2019), to evaluate which method 
more effectively corrects biases between the MPI and REG data 
relative to historical observations. Both techniques were applied to 
monthly data, relating raw monthly precipitation forecasts from the 
dynamic model to corresponding observations within a hindcast 
period (Barnett and Preisendorfer, 1987; Barnston, 1994; Johansson 
et  al., 1998), following the procedure described in (Barnston and 
Tippett, 2017; see their Figure 1).

FIGURE 2

Domain and topography (in meters) utilized in the REG climate simulations at a horizontal resolution of 25 km. The red solid line delineates the extent 
of the Brazilian Legal Amazon (BLA).
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As described by Barnston and Tippett (2017), techniques such as 
CCA and PCR have been employed in different ways in the field of 
climate forecasting, either as purely statistical forecasting models that 
relate some anomaly pattern, such as sea surface temperature, to 
observed precipitation anomalies for a given month or season, or, as 
adapted for this study, by relating the raw output of the dynamical 
model to the corresponding observations. CCA is used to identify 
relationships between two multivariate sets of variables (vectors) by 
analyzing their cross-covariance matrices, aiming to find the optimal 
linear combination between the two sets that yields the highest 
correlation. PCR is a regression analysis technique based on principal 
component analysis. Typically, it involves regressing the outcome 
(also known as the response or dependent variable) on a set of 
covariates (also known as predictors, explanatory variables, or 
independent variables) using a standard linear regression model, but 
it employs PCA to estimate the unknown regression coefficients in 
the model. The datasets are standardized to ensure that all grid points 
from the models (predictors) and from the observations (predictands) 
have an equal opportunity to contribute to the forecasting process 
(Barnston, 1994).

The monthly precipitation totals derived directly from the MPI, 
as well as from its regionalized version (REG), served as predictors 
(X), while the corresponding monthly observed precipitation fields 
were considered predictands (Y). Both datasets were pre-processed 
using Empirical Orthogonal Function (EOF) analysis to reduce noise 
(Horel, 1981). In this procedure, EOFs for X and Y were computed 
separately, retaining approximately 70 to 80% of each variable’s 
original variance through a selected number of eigenvectors. This step 
ensures that CCA and PCR emphasize the dominant modes of 
variability in X and Y. Subsequently, a cross-correlation matrix was 
constructed from the principal component time series of X and Y, with 
its dimensions reduced to match the number of retained modes, from 
which canonical eigenvectors and eigenvalues were derived for both 
variables. Figure  3 provides a schematic illustration of the steps 
required to simulate observed precipitation (predicting Y) as a 
function of the accumulated precipitation fields from the models, MPI 
and REG (predictor X).

All CCA and PCR procedures were performed using the Climate 
Predictability Tool (CPT), developed by the International Research 
Institute for Climate and Society (IRI, 2019), a widely adopted 
software for processing large datasets in statistical seasonal climate 
prediction (Lucio et al., 2010; Kipkogei et al., 2017; Landman et al., 
2019; da Rocha Júnior et al., 2021; Lucas et al., 2022; Silva et al., 2024). 
Barnston and Tippett (2017) demonstrated that, beyond constructing 
purely statistical forecast models, CCA and PCR can be applied to 
recalibrate and correct biases in raw outputs from dynamic models by 
associating hindcast predictions with observed data, enabling 
subsequent bias correction in future projections. Comprehensive 
guidance on CPT’s application for seasonal forecasts is available at: 
https://iri-pycpt.github.io/PyCPT2-Seasonal-Forecast-User-Guide/
cpt.html.

For CCA, the analysis was initially configured to consider 10 
modes, as recommended by the Climate Predictability Tool (CPT), 
which enables the software to automatically determine the optimal 
number of modes based on a model goodness-of-fit index. The 
regression equation derived from the canonical modes transforms the 
canonical temporal function of the predictor into that of the 
predictand. In contrast, PCR (Hotelling, 1957; Kendall, 1975) employs 

regression to establish combinations between predictor and 
predictand, effectively addressing typical challenges of Multiple Linear 
Regression, such as multicollinearity, while also reducing model noise. 
Further mathematical details on the application of PCR can be found 
in Rencher (2002) and Izenman (2008).

2.5 Evaluation methodology

The horizontal resolutions of the data sources differ: MPI has a 
spatial resolution of 0.9° × 0.9°, REG approximately 0.25° × 0.25°, and 
OBS 0.1° × 0.1°. To facilitate intercomparison between MPI and REG 
relative to OBS, and to standardize the input for the CCA and PCR 
experiments, all datasets were regridded to an intermediate resolution 
of 0.5° × 0.5° using bilinear interpolation. This approach is common 
and recommended in historical experiments involving HighResMIP 
models (Dong and Dong, 2021).

The precipitation data at this new resolution were subsequently 
aggregated into monthly totals at each grid point (1,695 points) for the 
reference period 1981–2012. From these, monthly, seasonal, and 
annual climatologies were computed to evaluate the performance of 
the simulated data relative to OBS. The metrics employed for this 
assessment were Pearson’s correlation coefficient (r), mean absolute 
error (MAE), and root mean square error (RMSE).

RMSE offers the advantage of penalizing larger errors more 
heavily, making it particularly appropriate for evaluating discrepancies 
between simulated precipitation from MPI and REG, as well as from 
the bias-corrected outputs generated via CCA and PCR. Its use is 
especially pertinent given the inherent heterogeneity of precipitation 
across the BLA throughout the year (Guo et al., 2021; Salazar et al., 
2024). Lower MAE and RMSE values indicate a closer fit to the 
observations, whereas higher values reflect greater divergence. The 
mathematical formulations of r, MAE, and RMSE are presented below 
(Equations 1–3).

 

( )
( )σ

=
cov ,

,
o s

r
o s  

(1)

 =
= −∑ 1
1 n

I IiMAE s o
n  

(2)

 
( )=

= −∑ 2
1

1 n
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where n is the total number of elements in the series, 
si = precipitation simulated (s) by the model in each monthly i, 
oi = precipitation observed in each monthly i, Cov(o, s) is the 
covariance between the data, σ(o, s) is the respective standard 
deviation between the data, and μ is the mean of the observations.

To assess whether these r values genuinely reflect agreement 
between model estimates and observations, the parametric Student’s 
t-test was applied to verify the statistical significance of the 
correlations at the 95% confidence level (p-value < 0.05). Based on 
the sample sizes, a critical correlation coefficient of approximately 
0.4 was determined; thus, correlations equal to or above this 
threshold can be considered statistically significant. However, it is 
important to note that statistical significance does not imply that 
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model estimates and observations are necessarily close in 
magnitude, as substantial relative errors may still coexist with high 
correlation values.

In studies comparing observed and model-simulated data, jointly 
analyzing MAE and RMSE offers the advantage of quantifying simulation 
errors in the same units as the observed data. MAE measures the average 

FIGURE 3

Schematic representation of the procedures applied to correct the occurrence bias in MPI/REG using observed occurrences as reference.
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magnitude of errors, providing an intuitive assessment of model accuracy 
without being disproportionately affected by outliers. However, due to the 
absolute value operator in its formulation, MAE may sometimes 
be  confounded with systematic bias, especially when the errors 
predominantly occur in one direction. In contrast, RMSE penalizes larger 
errors more heavily, increasing sensitivity to significant discrepancies 
between observations and simulations.

After analyzing the skill with the metrics described above, in order to 
more accurately verify the gain of the MPI-CCA, MPI-PCR, REG-CCA 
and REG-PCR simulations versus their original versions, we calculated 
the Kling-Gupta Efficiency (KGE), whose limits range from −∞ to 1, with 
values close to 1 indicating the best model performances (Gupta et al., 
2009). This metric is widely used in hydrological model evaluations 
(Towner et al., 2019), but it is versatile enough to assess any type of model 
simulation. The KGE combines three key components: linear correlation, 
bias ratio, and relative variability, into a single index. Its values range from 
−∞ to 1, with values closer to 1 indicating better agreement between 
observations and simulations (Equation 4).

KGE thresholds are often used subjectively. Knoben et al. (2019) 
showed that for a hypothetical case where a model demonstrates a 
correlation equal to 0  in relation to the observations, with simulated 
standard deviation also equal to 0 and mean of the simulations equal to 
that of the observations, despite varying from −∞, a good starting point 
to assess whether the model’s performance is satisfactory would be from 
−0.41 to 1, with values lower than −0.41 indicating poor model 
performance. In this case, we  adapted the division of KGE values 
suggested by (Kling et al., 2012) into four categories, as follows: “excellent” 
(KGE ≥ 0.75); “very good” (0.75 > KGE ≥ 0.5); “intermediate” (0.5 > KGE 
≥ 0); “bad” (0 > KGE > − 0.41); “very bad” (KGE ≤ − 0.41).

 ( ) ( ) ( )α β= − − + − + −2 2 21 1 1 1KGE r  (4)

where 𝑟 is the linear correlation between observations and 
simulations, 𝛼 a measure of the relative variability between 
observations and simulations given by the ratio between their 
standard deviations: 

σ
σ0

s , and 𝛽 a bias term given by the ratio between 
the averages of the sets of observations and simulations: µ

µ
s

o
.

3 Results and discussions

3.1 Precipitation patterns and model bias

The BLA comprises six homogeneous rainfall regions (dos Santos 
Silva et al., 2023), marked by two distinct rainy seasons, December to 
February in the south, influenced by the Chaco Low and the South 
Atlantic Convergence Zone (SACZ), and April to June in the north, 
driven by the Intertropical Convergence Zone (ITCZ). The central-
southern BLA experiences a more intense dry season during winter 
(June to August), while the far north sees a milder dry period in spring 
(September to November) (Marengo and Nobre, 2009; Firpo et al., 
2022). These seasonal rainfall patterns are illustrated in Figure  4 
through monthly climatologies of observed precipitation compared 
with simulations from MPI and REG, including bias maps that 
highlight discrepancies between model outputs and observations.

The historically higher rainfall concentration in the central-southern 
BLA between January and March (Figures  4a1–a3,b1–b3,c1–c3) is 

generally overestimated by MPI, whereas precipitation in the northern 
BLA during this period tends to be under-estimated (Figures 4a4,b4). 
From April to May, this pattern diminishes slightly, with negative biases 
persisting in the northern areas of RR, PA, and AP, while positive biases 
are more localized in the western parts of AM  and AC 
(Figures 4d1–d4,e1–e4). During the winter and early spring months (June 
to September), underestimations are evident in northern BLA, although 
with lesser intensity than earlier in the year (Figures  4f1–f4,i1–i4). 
Between October and December (Figures 4j1–j4 to Figures 4l1–l4), MPI 
increasingly overestimates precipitation over the central-western BLA, 
while underestimations become confined mainly to AP.

The REG model amplifies these MPI-simulated patterns, 
exhibiting more intense magnitudes of both positive and negative 
biases across the BLA. Notably, REG shows significant positive biases 
over MT from January to March and again from October to December, 
alongside pronounced negative biases in northern BLA from January 
to May (Figures  4a5,b5,c5,d5,e5,j5,k5,l5). In June and July, REG’s 
climatological behavior closely mirrors MPI, but from August to 
December, REG displays a broader area with positive biases, 
particularly over AM, where a core of overestimation emerges in 
August and intensifies through December (Figures 4h5,i5,j5,k5,l5).

Overall, both MPI and REG exhibit a dipolar bias pattern across the 
BLA, with negative biases predominating in the north and east, and 
positive biases in the south and west (Firpo et al., 2022; Ferreira et al., 
2023). These findings align with previous assessments of CMIP6 historical 
simulations for the Amazon, which attribute this pattern to deficiencies 
in the models’ representation of cloud physics, notably the misplacement 
of the Amazon’s maximum precipitation center (Khairoutdinov et al., 
2005), an issue persisting from earlier CMIP versions (Yin et al., 2013; 
Sierra et al., 2015; Ortega et al., 2021; Dias and Reboita, 2021).

Given its higher spatial resolution compared to MPI, one would 
expect REG to exhibit superior performance. However, regional models 
can inherit, amplify, or even generate their own biases (Dosio et al., 2015; 
Takayabu et al., 2016), due to inconsistencies between the circulation 
patterns simulated by the regional model and those imposed by the 
boundary conditions of the global model. These inconsistencies may 
stem from the relative importance of large-scale forcing versus local-scale 
phenomena, as well as from the difference in domain size between the 
regional and global models, REG operating at 25 km and MPI at 
approximately 100 km, which may allow REG to generate a substantial 
portion of its variability internally and in an unforced manner (Nikiema 
et al., 2017; Sanchez-Gomez and Somot, 2018). Other factors that may 
limit the regional model’s performance relative to the global model 
include the simplified representation of key processes, such as ocean–
atmosphere coupling, since sea surface temperatures (SSTs) are obtained 
from global simulations or reanalyses, and cloud–aerosol interactions, 
which are often included in regional models using climatological values. 
A noteworthy aspect was REG’s underestimation of accumulated 
precipitation along the coastal region from January to June, particularly 
between the states of Amapá and Pará, and its overestimation in the 
western and southern parts of the BLA from August to December, clearly 
amplifying patterns that were already present in MPI, albeit with 
lower intensity.

Despite these biases, MPI and REG successfully reproduce the 
BLA’s annual precipitation cycle, including the characteristic dipole 
between northern and southern sectors during the driest months 
(May to October). Similar behavior has been reported in other 
CMIP6 models, such as the Chinese BCCCSM2MR/BCCESM1 (Wu 
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et  al., 2019), the Canadian CANESM5 (Swart et  al., 2019), the 
American CESM2/CESM2WACCM (Gettelman et  al., 2019), 
E3SM10 (Golaz et al., 2019), GIS-SE21G/GISSE21H (Kelley et al., 
2020), and the European EC-Earth3/EC-Earth3Veg (Doblas Reyes 
et  al., 2018), all showing considerable underestimations in the 
extreme north and northeast of the BLA (RR, PA, AP, and MA), 
significantly reducing rainfall estimates even during peak rainy 
months, as confirmed by observational data.

3.2 Model performance metrics before bias 
correction

Figure 5 illustrates the spatial distribution of average monthly 
correlation coefficients (r) (Figures 5a,b). For both models, the highest 
correlations are found in the northeastern and central-southern 
sectors of the BLA, fully encompassing the states of Acre (AC), 
Rondônia (RO), Mato Grosso (MT), Tocantins (TO), and Maranhão 
(MA), as well as parts of Amazonas (AM) and Pará (PA). MPI 
generally exhibits higher correlation values and a broader area with r 
greater than 0.4 compared to REG.

An important feature of these correlation fields is that the highest 
values correspond to BLA sectors where MPI and REG most effectively 
captured seasonal variability, notably in the state of RR, which exhibits a 
well-defined seasonal cycle characterized by a rainy period during austral 
autumn and winter, and a dry period during summer, as previously 
shown in Figure 4. Conversely, the lowest MPI correlations are observed 
in the western Amazon, where the seasonal cycle is less pronounced due 
to consistently high rainfall year-round. The REG further expands this 
region of low correlations into the central-northern part of PA. Similar 
patterns have been reported in previous studies evaluating the 
performance of various rainfall estimation datasets for the BLA (Sapucci 
et al., 2022; dos Santos Silva et al., 2023).

Figure  5 also presents the spatial distribution of MAE 
(Figures  5c,d) and RMSE (Figures  5e,f) for the MPI and REG 
simulations. The importance of jointly evaluating these metrics 
becomes evident through the spatial patterns. For MPI, the highest 
MAE values are concentrated in a limited area of the northern BLA, 
between the states of AP and PA (Figure 5c). In the case of REG 
(Figure 5d), in addition to this region, two other significant areas of 
high MAE emerge: one in the western part of AM and another in the 
southern part of MT.

FIGURE 4 (Continued)
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When analyzing RMSE, the spatial extent of the errors increases. 
For MPI (Figure  5e), a broader area of high errors is evident in 
northern BLA, surpassing what is indicated by MAE alone. For REG 

(Figure 5f), regions that initially appeared fragmented in the MAE 
maps become clearly interconnected, revealing more coherent zones 
of high error across the western and southern BLA.

FIGURE 4

Monthly mean precipitation (1981–2012) in the first three columns: observed data, MPI, and REG simulations, respectively (mm month−1). The fourth 
and fifth columns show the respective deviations of MPI and REG from the observed means (mm month−1). From top to bottom: January (a1–a5), 
February (b1–b5), March (c1–c5), April (d1–d5), May (e1–e5), June (f1–f5), July (g1–g5), August (h1–h5), September (i1–i5), October (j1–j5), 
November (k1–k5), and December (l1–l5). The BLA region spans from 5.3°N to 13.7°S latitude and from 74°W to 45.68°W longitude.
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Across the entire study region, MPI exhibited an average MAE 
of 80 mm/month and an RMSE of 97 mm/month. These findings are 
consistent with previous research, Monteverde et al. (2022) reported 
an average RMSE of 68 mm/month for a set of models in northern 
BLA (excluding the specific MPI version used here) and 
approximately 40 mm/month for the southern BLA. This supports 
both the values found in our analysis and the observed gradient, 
with higher RMSE in the north compared to the south. Similarly 
Dias and Reboita (2021), in their evaluation of CMIP6 models 
(including MPI), noted that both the lower-resolution 

MPI-ESM1-2-LR and higher-resolution versions ranked among the 
best-performing models for tropical South America, including the 
BLA. These corroborate our results and further validate the choice 
of using the high-resolution MPI version for bias correction in 
this study.

Overall, the results in Figure 5 indicate low correlations and higher 
errors predominantly in the north-central and western portions of the 
BLA, precisely the region characterized by its highest rainfall. While 
models with spatial resolutions around 100 km, such as the MPI used 
here, represent significant progress in global climate modeling, they still 

FIGURE 5

Spatial distribution of Pearson correlation coefficients between model outputs and observations before bias correction: (a) MPI and (b) REG. Mean 
Absolute Error (MAE) before bias correction for: (c) MPI and (d) REG. Root Mean Square Error (RMSE) before bias correction for: (e) MPI and (f) REG.
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face limitations in adequately representing the physical processes driving 
rainfall, especially those linked to warm cloud formation and maintenance 
(Fan et al., 2018; Shrivastava et al., 2019; Pendharkar et al., 2023). Given 
that precipitation from warm clouds constitutes a substantial portion of 
total rainfall in these BLA sub regions, model deficiencies in simulating 
evapotranspiration and overestimating wind speeds over the Amazon 
canopy can impair atmospheric process representation and, consequently, 
precipitation simulation accuracy.

In the case of REG, the discrepancies are further exacerbated by the 
choice of cumulus parameterization, which presents inherent limitations 
in representing tropical convection processes and, consequently, the 
intensity and spatial distribution of rainfall (dos Santos Silva et al., 2023). 
Initially, a deterioration in the results obtained from MPI was not 
expected; however, as noted in Section 3.1, it is not uncommon for 
dynamic downscaling using regional models to fail to improve global 
model outputs, particularly under certain conditions where local-scale 
phenomena, critical to the annual precipitation cycle, are not well 

represented. In any case, using REG outputs in the face of bias 
amplification relative to MPI, and the resulting increase in precipitation 
estimation errors across the BLA, became both a challenge and a key 
objective of this research. The aim was to assess whether, even under such 
conditions, bias correction techniques would still be effective in adjusting 
the outputs of both models to better match observed data.

3.3 Bias correction using CCA and PCR and 
performance metrics

As demonstrated by Barnston and Tippett (2017), techniques such 
CCA can be applied to correct biases in climate forecasts derived from 
dynamic models, enhancing the correlation between observations and 
hindcasts, thereby improving the reliability of both retrospective and 
future projections. Given that PCR is conceptually similar to CCA, it 
is reasonable to expect that it could serve the same purpose.

FIGURE 6

Spatial loadings of predictor (X) and predictand (Y) for the first mode, showing the dominant correlation pattern in January precipitation between (a) 
MPI model data and (b) observations. Panels (c) and (d) show the analogous patterns for the REG model and observations, respectively.
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FIGURE 7

Scree plots showing the variance explained by the number of modes retained in the principal component analysis for (a) MPI and (b) observations 
(OBS), and similarly for (c) REG and (d) OBS.

Figure 6 illustrates the spatial loadings of the first mode of variability 
for the predictor (X) and predictand (Y), in this case, MPI-simulated and 
observed rainfall, respectively, using January as an example (Figures 6a,b). 
This first mode represents the dominant component of the correlation 
between MPI and observations, indicating that positive canonical 
loadings associated with above-average precipitation in MPI correspond 
to above-average observed rainfall across much of the central-eastern 
BLA, though areas of inverse association are also evident. The canonical 
correlation for this variable pair was 0.78, with the first mode explaining 
over 40% of the variance in observed rainfall.

Similarly, for the REG model and observed precipitation 
(Figures 6c,d), the first mode also emerged as the most dominant, 
displaying a comparable spatial pattern to that seen with 
MPI. However, in this case, the positive canonical loadings 
associated with above-average observed precipitation were more 

concentrated in the central BLA. The canonical correlation for 
this pair was 0.84, with the first mode explaining more than 30% 
of the variance in observed rainfall. According to Lima et  al. 
(2020), retaining modes of variability that cumulatively explain 
over 70% of the variance in the data is generally sufficient for 
constructing a predictive statistical model, as incorporating 
additional modes may introduce noise without necessarily 
enhancing predictive skill.

Figure 7a shows that for MPI (predictor X), the first five modes 
explain a total of 77% of the variance, distributed as follows: 43% for 
the first mode, 14% for the second, 10% for the third, 6% for the 
fourth, and 4% for the fifth. Correspondingly, Figure 7b shows the 
variance explained in observations (predictand Y) for the same five 
modes. The pattern is consistent with the MPI modes but with lower 
percentages: 22, 19, 7, 6, and 4%, respectively. This means that the 77% 
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of variance explained by the MPI modes accounts for about 58% of 
the variance in observed precipitation.

Similarly, for REG, Figure 7c indicates that the first five modes 
explain 63% of the variance in the model data, with 31, 13, 8, 7, and 
4% attributed to modes one through five, respectively. Figure 7d shows 
the corresponding explained variance in observations, also consistent 
with the REG modes but with lower values: 22, 14, 7, 6, and 4%. Thus, 
the 63% variance explained by REG corresponds to approximately 
53% of the observed variance.

The correction of historical biases in MPI and REG models 
yielded highly satisfactory improvements, demonstrated by 
significantly increased correlations and reduced errors. Tables 1, 2 
present monthly comparisons of correlation, MAE, and RMSE for 
MPI before and after correction (MPI-CCA and MPI-PCR), and 

similarly for REG. The PCR method outperformed CCA in 11 out of 
12 months, except for May, where CCA was superior. Notably, bias 
corrections applied to REG showed better performance in 9 months, 
while direct corrections on MPI were more effective in only 3 months. 
This highlights the effectiveness of bias correction methods, especially 
for REG, which initially showed poorer climatological and error 
metrics compared to MPI. Table 3 summarizes the mean values for 
the BLA, indicating the best-performing models and correction 
methods, highlighted in shades of gray in Tables 1, 2.

PCR prioritizes components that account for the greatest variance 
in the predictor variables, which can enhance predictive performance. 
In contrast, CCA aims to maximize the correlation between two sets of 
variables, even if this involves components with low variance, thus 
potentially conveying less informative content for data explanation. 

TABLE 1 Monthly Pearson correlation coefficient (r), mean absolute error (MAE in mm), and root mean square error (RMSE in mm) comparing MPI raw 
simulations, MPI bias-corrected with Canonical Correlation Analysis (MPI-CCA), and MPI bias-corrected with Principal Component Regression (MPI-
PCR) against observed precipitation averages.

MPI MPI-CCA MPI-PCR

Month r MAE RMSE r MAE RMSE r MAE RMSE

January −0.08 113 135 0.47 59 74 0.57 55 69

February 0.12 111 131 0.37 58 72 0.43 56 70

March 0.03 121 142 0.38 57 71 0.47 54 68

April 0.07 104 123 0.29 57 71 0.33 56 70

May 0.09 79 97 0.37 45 58 0.42 44 57

June −0.10 54 68 0.36 31 39 0.43 30 38

July 0.05 47 57 0.42 22 28 0.54 20 26

August 0.07 39 48 0.23 23 29 0.58 18 24

September −0.05 51 63 0.36 27 35 0.47 25 33

October −0.02 69 85 0.32 36 45 0.54 32 40

November −0.04 83 101 0.41 42 52 0.37 42 53

December −0.04 93 115 0.38 54 69 0.44 53 67

TABLE 2 Monthly Pearson correlation coefficient (r), mean absolute error (MAE in mm), and root mean square error (RMSE in mm) comparing REG raw 
simulations, REG bias-corrected with Canonical Correlation Analysis (REG-CCA), and REG bias-corrected with Principal Component Regression (REG-
PCR) against observed precipitation averages.

REG REG-CCA REG-PCR

Month r MAE RMSE r MAE RMSE r MAE RMSE

January −0.06 172 201 0.44 60 75 0.55 56 70

February 0.03 176 203 0.38 57 71 0.51 53 66

March 0.04 188 219 0.29 58 74 0.53 52 65

April 0.01 143 171 0.36 56 70 0.39 56 69

May 0.08 96 117 0.46 44 56 0.43 45 57

June −0.03 59 73 0.27 31 40 0.38 30 38

July 0.07 52 65 0.42 22 28 0.56 20 26

August 0.09 60 74 0.48 21 26 0.57 19 25

September −0.07 81 97 0.48 26 33 0.57 24 31

October 0.00 136 159 0.37 35 44 0.55 31 40

November −0.03 146 176 0.50 40 49 0.58 37 46

December 0.03 130 160 0.48 51 65 0.56 48 62
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Moreover, PCR is generally simpler to implement and interpret, 
especially when the goal is to predict a dependent variable based on a 
set of predictors. CCA, on the other hand, often requires more complex 
interpretation, as it involves pairs of canonical variables that represent 
linear combinations from two distinct sets (X and Y), which may not 
always carry clear practical significance. Nonetheless, CCA has 
advantages in contexts where the primary aim is not prediction but the 
exploration of relationships between two multivariate datasets, such as 
identifying coupled patterns (e.g., SST and precipitation). In climatology, 
CCA is particularly useful for detecting canonical patterns between 
spatial fields (Barnston, 1994; Jolliffe, 2002; Wilks, 2011).

Figure 8 illustrates the spatial distribution of KGE for MPI and 
REG simulations corrected by CCA and PCR, showing that both 
methods significantly improve precipitation estimates during the 
historical period, particularly in the center-south and eastern BLA, 
where KGE exceeds 0.75. While performance in western BLA (AM 
state) is lower, it generally remains “very good,” though some areas 
corrected by CCA fall below 0.5. These results indicate notable 
improvement over raw model outputs (Table 3), reinforcing that CCA 
and PCR effectively reduce biases in CMIP6 precipitation data and can 
be  applied to future climate projections to reduce uncertainties. 

TABLE 3 Summary of the best-performing bias correction method for 
each month applied to MPI and REG models, showing the corresponding 
Pearson correlation (r), mean absolute error (MAE in mm), and root mean 
square error (RMSE in mm).

Month Best 
performance

r MAE RMSE

January MPI-PCR 0.57 55 69

February REG-PCR 0.51 53 66

March REG-PCR 0.53 52 65

April REG-PCR 0.39 56 69

May REG-CCA 0.46 44 56

June MPI-PCR 0.43 30 38

July REG-PCR 0.56 20 26

August MPI-PCR 0.58 18 24

September REG-PCR 0.57 24 31

October REG-PCR 0.55 31 40

November REG-PCR 0.58 37 46

December REG-PCR 0.56 48 62

FIGURE 8

Spatial distribution of Kling-Gupta Efficiency (KGE) values for bi-as-corrected precipitation simulations over the BLA: (a) MPI-CCA, (b) REG-CCA, (c) 
MPI-PCR, and (d) REG-PCR.
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Despite advances in CMIP6 over CMIP5, substantial challenges 
remain, and bias correction techniques like CCA and PCR offer 
computationally efficient ways to enhance model reliability for various 
applications (Taylor et al., 2012; Eyring et al., 2015; Navarro-Racines 
et al., 2020; Di Virgilio et al., 2022; Fall et al., 2023; Risser et al., 2024).

4 Conclusion

This study evaluated precipitation estimates from the MPI-ESM1-
2-HR (MPI) climate model over the Brazilian Legal Amazon (BLA), 
along with its dynamic downscaling using RegCM4.7.1 (REG) driven 
by MPI. Observed precipitation data from 1,695 locations (1981–2012) 
were compared to outputs from both MPI and REG, followed by bias 
correction using canonical correlation analysis (CCA) and principal 
component regression (PCR). The results showed that neither MPI nor 
REG accurately reproduced the annual precipitation cycle. MPI 
exhibited significant biases, overestimating rainfall in the southern 
BLA and underestimating it in the northern region. REG not only 
failed to correct these biases but also amplified errors and reduced the 
correlation with observations.

Despite this, both CCA and PCR bias correction methods 
substantially improved precipitation estimates. PCR outperformed 
CCA in 11 out of 12 months across all metrics (correlation, MAE, 
and RMSE), and REG-PCR delivered the best results in 8 of the 
12 months. Kling-Gupta Efficiency (KGE) analysis also confirmed 
the overall superiority of REG-PCR compared to other 
combinations. Therefore, the recommended approach is to use 
REG for dynamic regionalization of CMIP models, followed by 
bias correction, preferably with PCR, or alternatively with 
CCA. This combination effectively reduces historical biases and 
offers a robust method for improving future climate projections 
under various greenhouse gas emission scenarios.

Finally, it is important to highlight the advantages and disadvantages 
of using bias correction techniques. Among the advantages, bias 
correction adjusts systematic deviations in climate models, improves 
statistical indicators (such as mean, variance, and correlation), reduces 
uncertainties in future projections, and enables the direct use of 
simulations in impact models, all with low computational cost through 
techniques such as CCA and PCR. Among the disadvantages, bias 
correction assumes the stationarity of historical biases, which may not 
hold under significant climate change, may have limitations in 
correcting extreme events, and critically depends on the quality and 
coverage of observational data, particularly in poorly monitored regions 
such as parts of the Amazon. Therefore, robust gridded observational 
analyses, such as the one used in this study, are recommended.
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