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The Inner Mongolia section of the Yellow River Basin is a critical ecological barrier 
and core production base (energy, agriculture, animal husbandry) in northern 
China, where water resource security and ecological sustainability directly 
affect regional and national development. Drought is a major constraint on the 
basin’s ecosystem and production activities, but its long-term spatial-temporal 
patterns and driving mechanisms remain insufficiently understood. Here, we used 
MOD16 evapotranspiration data (2001-2024) to construct the Crop Water Stress 
Index (CWSI), aiming to clarify drought evolution in the region, and applied the 
Geodetector model to identify key drivers of CWSI spatial heterogeneity and their 
interactions. Our results showed that: (1) Potential evapotranspiration (PET) and 
CWSI had stable interannual fluctuations, while actual evapotranspiration (ET) 
exhibited significant interannual variability; the average CWSI was 0.85, indicating 
long-term severe drought in the study area. (2) Spatially, most regions were in 
severe drought, but >76% of the area showed a significant downward CWSI trend 
(drought alleviation). (3) All land use types had decreasing CWSI; water bodies had 
the highest CWSI and cropland the lowest—opposite to the ET ranking. (4) NDVI 
and air temperature were the primary drivers of CWSI spatial variability (average 
q-values >0.5). The strongest interactive effects on CWSI heterogeneity were 
between precipitation and temperature (q: 0.72-0.95) and between precipitation 
and DEM (q: 0.78-0.93), with both interactive q-values >0.81. These findings reveal 
that drought in the basin is regulated more by ET than PET, and is driven by the 
synergy of meteorological factors (precipitation, temperature) and topographic 
factors (DEM). They provide a scientific basis for drought prediction, water resource 
management, and ecological protection in the Yellow River Basin, and offer a 
reference for similar arid/semi-arid regions globally.
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1 Introduction

Drought, as the natural disaster with the longest duration, the 
highest frequency, and the widest area involved, has caused great harm 
to the survival wealth of human beings and the sustained economic 
and social development globally (Ren H. et al., 2024; Suo et al., 2024). 
Under the background of global warming, the degree, frequency, and 
impact range of drought are further increasing (Niazkar et al., 2025; 
Wu F. et al., 2024) The Inner Mongolia section of the Yellow River 
Basin is in the arid and semi-arid transition zone in the northern part 
of China, with a fragile ecological environment, prominent 
contradiction between the supply and demand of water resources, and 
the frequent occurrence of droughts severely restricts the local 
agricultural and animal husbandry production and ecological security 
(Abu Arra and Şişman, 2024; Ge et  al., 2024; Peng et  al., 2024). 
Therefore, clarifying the spatial and temporal characteristics of 
droughts in the Inner Mongolia section of the Yellow River Basin is of 
great significance for safeguarding agricultural production and food 
security (guiding irrigation, crop yield estimation), maintaining the 
stability of ecosystems (curbing desertification, protecting 
biodiversity), optimizing the management of water resources 
(balancing supply and demand, responding to climate change), and 
guarding against secondary disasters and supporting the 
implementation of national strategies.

Currently, many relatively effective drought monitoring methods 
have been developed. The traditional drought monitoring method is 
based on station data to calculate drought index, to monitor the 
occurrence and development of drought; however, the traditional 
method is often due to the uneven distribution of stations and limited 
data, so it is not able to carry out large-scale drought monitoring, and 
cannot reflect the characteristics of regional drought spatial and 
temporal changes in a timely and effective manner (Kumar and Chu, 
2024; Mukhtar et al., 2024; Zhang et al., 2024a). Compared with the 
traditional methods, the development of remote sensing science and 
technology can make up for these shortcomings. Drought monitoring 
indices based on remote sensing data include Vegetation Condition 
Index (VCI) (Yin et al., 2024), Temperature Vegetation Dryness Index 
(TVDI) (Khosravi et  al., 2024), Vegetation Supply Water Index 
(VSWI) (Wei et al., 2024), Crop Water Stress Index (CWSI) (Kim 
et al., 2025), and so on. Among them, CWSI integrates the roles of 
climatic elements such as surface wind speed, sunshine hours, water 
vapour pressure, air temperature and so on, based on the theory of 
energy balance principle, which has high measurement accuracy and 
clear physical significance, and has been widely used in drought 
research (Chen H. et al., 2024; Irik et al., 2024; Yi and Wenjiao, 2024). 
However, most of these studies did not consider the influence of 
multidimensional factors such as climate elements, soil texture, land 
use and other factors in the drought formation mechanism on the 
dependence of CWSI, which will inevitably lead to errors in the 
accurate monitoring of drought by CWSI.

Drought is affected by a variety of factors, including meteorological 
(precipitation, air temperature), environmental factors such as soil 
(soil texture, topographic factors) and vegetation (vegetation type), as 
well as human activities (Alzurqani et al., 2024; Wu H. et al., 2024; 
Zhao W. et al., 2024). Many scholars have carried out a series of studies 
on the drivers of drought change, and the main methods include 
Pearson correlation, partial correlation, complex correlation, etc. 
Correlation analysis can quickly clarify the degree of influence of each 

driver on drought from the whole (Li L. et  al., 2024). However, 
traditional correlation analyses mostly focus on the independent 
effects of a single factor, making it difficult to accurately reveal the 
interactive effects among multiple factors, and there are limitations in 
dealing with nonlinear relationships and spatial heterogeneity. For 
example, it is not possible to quantify the synergistic or antagonistic 
effects of different factor combinations on drought, and it is also 
difficult to reflect the differences in driving effects with geographic 
regions, which leads to a lack of in-depth analysis of drought-driving 
mechanisms, and it is difficult to satisfy the refined needs of drought 
causation research in complex environments (Wu J. et  al., 2024). 
Compared with the correlation analysis method, the parametric 
optimal geoprobe can clarify the dominant factors affecting drought 
changes by comparing the explanatory power of each driving factor 
on drought, and also reveal the driving force behind it, without the 
limitation of time lag effect, and at the same time, it is able to analyse 
the analysis by coupling the natural and other influencing factors, and 
the results of the study have a higher reliability and practicality (Li 
et al., 2024b; Wang and Yang, 2024; Zhao X. et al., 2024).

Drought is one of the most common natural disasters in the Inner 
Mongolia section of the Yellow River Basin, which has a serious 
impact on agricultural and animal husbandry production as well as 
the lives of farmers and herdsmen in general, as the soil moisture is 
poor and crop yields are reduced in light cases, and the surface of the 
ground is cracked in heavy cases, with crop extinction and difficulties 
in drinking water for both humans and animals. In view of this, the 
main research objectives of this paper are (1) to study the spatial and 
temporal evolution patterns of ET, PET and CWSI, and to reveal the 
drought changes; (2) to analyse the spatial variability characteristics 
of CWSI and the future trends of the changes; and (3) to quantitatively 
evaluate the digital elevation model (DEM), Aspect, Slope, Clay, Sand, 
Silt, normalized difference vegetation index (NDVI), precipitation 
(Pre), temperature (TEM), land use and land cover change (LUCC), 
and other 10 factors on CWSI and the effects of these factors on CWSI 
and the interactions among the factors were investigated. The results 
of this study can provide a scientific basis for the ecological protection 
and optimal allocation of water resources in the Yellow River Basin.

2 Materials and methods

2.1 Study area

The Inner Mongolia section of the Yellow River Basin 
(106°59′E ~ 110°10′E, 38°26’N ~ 42°50’N) is in the middle and upper 
reaches of the Yellow River, with a watershed area of 155,000km2, 
including 7 alliance cities and 42 flag counties (districts) in the Inner 
Mongolia Autonomous Region. The main stream of the Yellow River 
enters the Inner Mongolia Autonomous Region from the junction of 
Ningmeng and Mongolia, and flows through Alashan League, 
Bayannur, Ordos, Baotou and Hohhot in turn. The length of the main 
stream of the Yellow River in Inner Mongolia is 843.5 km (Figure 1).

2.2 Data sources

The actual evapotranspiration and potential evapotranspiration 
(PET) data used in this paper are obtained from the remote sensing 
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product MODIS dataset (MOD16A2) (download URL: https://
lad-sweb.modaps.eosdis.nasa.gov/), which has a temporal resolution 
of 8 d and a spatial resolution of 500 m. The DEM data were obtained 
from the digital elevation map of China on the Spatio-Temporal 
Tri-Polar Environmental Big Data Platform,1 with a spatial resolution 
of 1 km, and the slope gradient and direction were calculated with the 
help of the Slope and Direction Toolbox in ArcGIS Pro. Slope and 
aspect were calculated with the Slope and Aspect Toolbox in ArcGIS 
Pro; NDVI data were obtained from the 1 km resolution month-by-
month dataset of the MOD13A2 product of MODIS, which is a 16-d 
synthetic 1 km L3 data product; temperature and precipitation data 
were obtained from the 1 km resolution annual mean temperature and 
annual precipitation data of China from the National Geosystems 
Data Centre;2 and the annual precipitation data were obtained from 
the National Environmental Data Platform (see text footnote 2), with 
a spatial resolution of 1 km. Soil texture (Clay, Sand and Silt) data were 
obtained from the Resource and Environment Science and Data 
Centre of the Chinese Academy of Sciences.3 The land use data were 
MCD12Q1 at 500 m resolution, and the global vegetation classification 
scheme of IGBP was adopted, combined with the main surface 
features of the Inner Mongolia section of the Yellow River, this study 
reclassifies it into four categories: farmland, grassland, water body and 
bare land. To unify the spatial resolution, this study used ArcGIS 
software to resample all the data to 1,000 m by bilinear interpolation, 

1  https://poles.tpdc.ac.cn/en/

2  https://www.geodata.cn/

3  http://www.resdc.cn

which was consistent with the resolution of CWSI data. At the same 
time, the data were subjected to preprocessing steps such as projection 
transformation, cropping and mean calculation to ensure the 
consistency of the data in space and time.

2.3 Methods

2.3.1 Crop water stress index (CWSI)
This index is based on energy balance and fully considers 

meteorological parameters such as vegetation coverage of the 
underlying surface, vapor pressure, ground wind speed, and solar 
radiation. Equation 1 is as follows (Bai et al., 2017):

	
= −1 ETCWSI

PET 	
(1)

Where ET and PET represent actual evapotranspiration and 
potential evapotranspiration, respectively. The value of CWSI ranges 
from 0 to 1. The larger the value, the more arid the climate. According 
to the agricultural drought classification standard for soil relative 
humidity adopted by the National Meteorological Bureau of China, 
CWSI is divided into 5 drought grades (Table  1), the multi-year 
average CWSI drought grade distribution is shown in Figure 2.

2.3.2 Analysis of trends in changes
The combination of Theil-Sen Median trend analysis and Mann-

Kendall test has been successfully applied in the analysis of long time 
series of hydrology, vegetation, meteorology, etc., and has achieved 

FIGURE 1

(a) Geographical location of the Inner Mongolia section of the Yellow River Basin, (b) Topographic and hydrological characteristics, and (c) land use 
types (2023).
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good results in the analysis of temporal changes and trends and the 
test of trend significance. The Theil-Sen Median method was used to 
analyze the trend of CWSI, ET, and PET in the Inner Mongolia section 
of the Yellow River Basin from 2001 to 2024, respectively, and the use 
of this method does not require the data to obey the normal 
distribution, and at the same time, it can exclude the interference of a 
small number of outliers, and it can effectively circumvent the 
measurement error. Equation 2 is as follows (Wang et al., 2022a):

	
β

− 
= ∀≤ ≤ ≤ 

− 
edian i jx x

M j i n
i j 	

(2)

Where: β is the trend rate of change; xi and xj denote the values 
corresponding to variable x in year i and year j, respectively; and n is 
the length of the study time series. When β < 0, it indicates a 
decreasing trend in CWSI (ET or PET) and vice versa.

Mann-Kendall can be used to determine the trend significance 
and mutation of the data series, which has the advantages of not being 
bound by the sample distribution and being less affected by outliers, 
and has been widely used in hydrological, meteorological and 
ecological trend changes (Wang et al., 2022b). The Mann-Kendall 
significance test statistic Z was used for trend testing (Wang et al., 
2023). When |Z| > 1.96 indicates that it passes the 95% confidence test. 
In this paper, the significance of change tendency and trend is judged 
at the confidence level α = 0.05, i.e., significant when |Z| > 1.96 and 
not significant when |Z| < 1.96, as shown in Table 2.

2.3.3 Coefficient of variation
Stability was analyzed using the Coefficient of Variation 

(CV), which quantifies the degree of variation in the observations 
and can accurately represent the degree of dispersion of the unit 
mean. Equation 3 is as follows (Han et al., 2022):

	
σ

=CV
X 	

(3)

Where: σ and X  represent the standard deviation and mean value; 
CV is the coefficient of variation; the larger the CV value, the larger 
the data fluctuation and the more discrete the data distribution; on the 
contrary, it means that the data fluctuation is small and the more 
centralized the data distribution.

2.3.4 Prediction of future changing trends
The simplest linear extrapolation method was used to predict 

future trends in CWSI. Specifically, for each like element of the CWSI 
time series (2001 to 2024), a linear regression was performed using 
ordinary least squares (OLS) with year as the independent variable 
and CWSI value as the dependent variable, predict the drought 
situation in 2030 and 2035. Equation 4 is as follows (Usman 
et al., 2013):

	 = +CWSI a bx	 (4)

Where, a is the intercept, b is the slope, and X represents the rate 
of change of CWSI over time.

2.3.5 Geographic detector
Geographic Probe Model is a kind of statistic approach that 

can measure the difference in space and discover its motive 
power. The fundamental theory of this paper is to determine the 
degree of similarity between two variables in space from the 
point of view of heterogeneous space level. The model is 
composed of four types (Liu et al., 2025). This thesis focuses on 
the application of the Element Detector and the 
Interactive Detector.

(1) Factor detection: used to detect the influence of driving factor 
X on CWSI changes, represented by q, Equation 5 is as follows:

	

σ

σ
== − = −
∑ 2

1
21 1

L

h h
h

N
SSWq
SSTN 	

(5)

In this case, h = 1,2, …, L is the grading or division of the 
variable Y or Factor X, N and Nh are the number of cells in the 
entire area and in the entire area, and SSW and SST are the sum of 

TABLE 1  CWSI drought classification.

Classification CWSI Type

1 0 ~ 0.6 No drought

2 0.6 ~ 0.7 Light drought

3 0.7 ~ 0.8 Moderate drought

4 0.8 ~ 0.9 Severe drought

5 0.9 ~ 1.0 Extreme drought

FIGURE 2

Multi-year average CWSI drought classification, 2001–2024.

TABLE 2  Mann-Kendall test trend division.

Theil-Sen Median Z value Slope

β > 0 |Z|>1.96 Significant increase

|Z| ≤ 1.96 No significant increase

β < 0 |Z|>1.96 Significant decrease

|Z| ≤ 1.96 No significant decrease
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the inner and outer areas, respectively. The value of q is between 
[0,1] and the greater the value, the more strongly the driver is 
affected by CWSI.

(2) Interaction Detection: Used to determine the interaction 
among the drivers, that is, if the co-driving forces X1 and X2 have an 
impact on CWSI, or if they affect CWSI independently. Interactions 
have been classified in 5 groups (Table 3).

3 Result and analysis

3.1 Spatiotemporal dynamics of drought 
(CWSI) and its driving components

3.1.1 Temporal evolution of drought and the role 
of ET and PET

Figure 3 shows the interannual changes in evapotranspiration 
and the dry-wet index (CWSI) in the Inner Mongolia section of 
the Yellow River basin. From a temporal perspective, the study 
area exhibits a significant trend toward alleviated drought 
conditions, despite fluctuations, with the CWSI showing an 
overall downward trend. This is primarily attributed to the 
combined effects of actual evapotranspiration (ET) and potential 
evapotranspiration (PET). Although PET exhibits relatively stable 
interannual fluctuations, ET demonstrates greater variability and 
a significant growth trend. It is the rapid growth of ET that drives 
the decline in CWSI. The figure shows that the interannual 
variation in evapotranspiration (ET) is very pronounced, with 

variation rates ranging from −30% to 37%. In contrast, the 
interannual fluctuations in potential evapotranspiration (PET) 
and CWSI are not significant, with variation rates ranging from 
−5% to 7% and −7% to 11%, respectively. The maximum value of 
CWSI is 0.92 (2005), the minimum value is 0.78 (2023), and the 
average value is 0.85; The maximum value of evapotranspiration 
(ET) was 289.01 millimeters (2024), the minimum value was 
119.56 millimeters (2001), and the average value was 176.01 
millimeters. By analyzing the annual variation rates of interannual 
variability for each indicator, the trends of CWSI and PET are 
consistent. The trends of CWSI and PET are consistent. From the 
perspective of interannual variability in CWSI, the Inner 
Mongolia section of the Yellow River basin has been in a state of 
severe drought from 2001 to 2024. During this period, the rate of 
change in CWSI ranged from 0% to 10%, indicating that the 
interannual variability in drought conditions in the basin was 
relatively stable, with relatively mild fluctuations.

3.1.2 Spatial patterns of drought as explained by 
ET and PET

From the spatial distribution of evapotranspiration (ET), potential 
evapotranspiration (PET), and crop water stress index (CWSI) 
(Figure 4), it can be seen that the CWSI in the Inner Mongolia section 
of the Yellow River basin exhibits a clear distribution pattern, with the 
agricultural areas along the Yellow River being the least arid, while 
areas farther from the river are more arid. ET exhibits a pattern of 
higher values in the east and lower values in the west, with high-value 
areas highly overlapping with riverine farmland (such as Dengkou 
County and the southern part of Hangjin Banner). These regions have 
ample irrigation water sources, ensuring high actual 
evapotranspiration and effectively reducing water stress. This 
corresponds to the lower CWSI values in these areas. PET distribution 
characteristics show higher values in the southwest and central regions 
and lower values in the northeast. PET is generally higher in the 
southwest and central regions and lower in the northeast, with high-
value areas primarily distributed in the northern part of E’ertuoqi, the 
northwestern part of Hangjinqi, and Wulatehouqi. The trend 
coefficients of different indicators show significant spatial differences. 
The trend coefficient range for evapotranspiration (ET) is from 

TABLE 3  Type of interaction between two factors.

Interaction type q value relationship

Non-linear reduction q(X1∩X2) < min(q(X1), q(X2))

Single factor non-linear 

reduction

min(q(X1), q(X2)) < q(X1∩X2) < max(q(X1),q(X2))

Bi-factor enhancement q(X1∩X2) > max(q(X1), q(X2))

Independent q(X1∩X2) = q(X1) + q(X2)

Non-linear enhancement q(X1∩X2) > q(X1) + q(X2)

FIGURE 3

Mean values of indicators in the Inner Mongolia section of the Yellow River Basin from 2001 to 2024 (a) annual scale time change characteristics, (b) 
annual change rate.
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21.25 mm∙a−1 to −18.07 mm∙a−1,with an unclear upward trend 
primarily concentrated in central and eastern China, a downward 
trend mainly appearing in northern and southern regions, and no 
significant changes in other areas (p < 0.05) The trend coefficients for 
PET range from 47.21 mm∙a−1 to −71.07.07 mm∙a−1. ~-The trend 
coefficients for PET ranged from 47.21 mm∙a−1 to −71.07.07 mm∙a−1, 
with a large overall trend, mainly upward, but not downward, and the 
trend for CWSI varied less throughout the basin, with trend 
coefficients ranging from 0.0138∙a−1 to −0.016∙a−1.

To quantitatively analyze the spatiotemporal characteristics and 
interannual stability of indicators within the study area, the Sen slope 
estimation method was first employed. This method calculates the 
trend of the preferred drought index during the study period using 
image elements to estimate long-term trend changes in time series 
data. Additionally, the spatial coefficient of variation for each 
indicator was calculated, collectively reflecting the spatial distribution 
and interannual trend characteristics of drought indices within the 
study area. Furthermore, the Mann-Kendall test was used to assess 

the significance of trend changes, ensuring the statistical reliability of 
the trend analysis. The Sen slope value S reflects the rate of change in 
the drought index, while the Mann-Kendall significance statistic p 
value is used to determine the significance level of the trend. Based 
on the combination of the Sen slope value S and the p value, the 
trends of the selected drought indices in the study area were classified 
(Table 4).

TABLE 4  Classification of change trends.

Sen Significance 
statistic

Trend classification

S > 0 p < 0.01 Highly significant increase

S > 0 0.01 ≤ p < 0.05 Significant increase

– p > 0.05 No significant change

S < 0 0.01 ≤ p < 0.05 Significant reduction

S < 0 p < 0.01 Highly significant reduction

FIGURE 4

Interannual spatial distribution and trends of indicators (ET, PET and CWSI) in the Inner Mongolia section of the Yellow River Basin from 2001 to 2024.
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Combining Figure 5 and Table 5, the evapotranspiration trends in 
the Inner Mongolia section of the Yellow River basin exhibit significant 
differences across different regions. Areas with no significant spatial 
trend changes account for approximately 41.71% of the total area. Next 
are areas with a significant increasing trend, accounting for 
approximately 34.31% of the total area, primarily distributed in the 
southeastern part of the region. Meanwhile, areas with significant 

decreasing and very significant decreasing trends are not significant 
across the entire region, accounting for only 2.08% of the total area. PET 
trends show no significant overall spatial trend, accounting for 
approximately 87.29% of the total area; a significant increase trend 
accounts for approximately 7.07% of the total area, while regions with 
significant decrease trends and very significant decrease trends are 
primarily concentrated in  localized areas around urban areas, 

FIGURE 5

Spatial distribution of interannual trend rank and coefficient of variation of indicators (ET, PET and CWSI) in Inner Mongolia section of the Yellow River 
Basin, 2001–2024.

TABLE 5  Proportion of change trend of each indicator.

Trends Highly significant 
increase

Significant 
increase

No significant 
change

Significant 
reduction

Highly significant 
reduction

ET 34.31% 22.41% 41.00% 1.18% 0.90%

PET 2.44% 4.63% 87.29% 2.17% 2.77%

CWSI 0.26% 0.72% 22.36% 14.55% 62.11%
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accounting for only 4.94% of the total area. The CWSI trend shows a 
significant decreasing trend overall, accounting for approximately 
62.11% of the total area; the areas with a significant decrease are mainly 
distributed in parts of the northeastern region, accounting for 
approximately 2.08% of the total area. Overall, the CWSI shows a highly 
significant decreasing trend, accounting for 62.11% of the total area; 
significantly decreasing regions are primarily concentrated in the 
northeastern regions, accounting for 14.55% of the total area; regions 
with significantly increasing and highly significantly increasing trends 
account for a relatively low proportion, only 0.98% of the total area. 
Additionally, evapotranspiration (ET) in the Inner Mongolia section of 
the Yellow River basin exhibits high variability, with few low-variability 
regions, and the remaining regions primarily characterized by high 
variability. Potential evapotranspiration (PET) exhibits high and 
moderate volatility, with low-volatility regions primarily located in the 
southeastern part of the area. CWSI exhibits low volatility and low 
volatility characteristics. This indicates that actual water loss (ET) is far 
more sensitive to environmental changes than potential 
evapotranspiration demand (PET) or final water stress (CWSI).

3.1.3 Calculate the spatial trend values and 
coefficient of variation values of the three 
indicators under different land uses

To explore the distribution of spatial trends and coefficients of 
variation of ET, PET and CWSI of different land use types, the 
corresponding ET, PET and CWSI of each land use type were 
extracted year by year from 2001 to 2024, and the regional average 
values were calculated. As shown in Figure 6, the spatial trend of ET 
corresponding to each land use type is in the following order: 
farmland > bare land > grassland > water body, and the trend of all 
types of ET is basically the same as the trend of ET in the whole 
region, whereas the ET of farmland shows an obvious increasing 
trend, and the trend of ET of water body is not obvious. The 
differences in PET values for each land use type were small, with the 
following order of magnitude: water body > grassland > bare land > 
farmland. Among them, water bodies showed a significant decreasing 
trend. The change trend of CWSI for each land use type is consistent 
with that of the whole region, with an obvious downward trend in 
general. In addition, the corresponding CWSI value of each land use 
type is: water body > grassland > bare land > farmland, which is 

opposite to the corresponding ET size of each land use type. The 
CWSI showed little volatility across land use types, while ET showed 
the greatest fluctuation. ET fluctuated most significantly in water 
areas (CV = 0.43), while grassland, cultivated land, and bare land 
showed relatively stable drought conditions.

3.2 Forecast of future trends in CWSI

Based on the regression coefficients obtained from the fitting, the 
CWSI values for future years (e.g., 2030 and 2035) can be predicted as 
shown in Figure 7, which shows that the future prediction of the basin 
will be mitigated to a certain extent, and the drought will continue to 
be slowed down in the agricultural planting areas along the Yellow 
River, while the drought in the northern and southern parts of the 
country will continue to occur.

3.3 CWSI drive factor detection

3.3.1 Single-factor detection results
The calculation results, classification methods and number of 

classifications of single-factor detections of geodetectors in the 
watershed are shown in Table 6. In this study, a total of 10 influencing 
factors, X₁ ~ X10, were selected, and the optimal geodetectors were 
utilized to assess the degree of influence of each factor on the change 
of CWSI in the study area. Among them, X₁ ~ X3 (DEM, Aspect, 
slope), represent the topographic factors, which reflect the influence 
of topography and geomorphology on the CWSI; X4 ~ X6 (proportion 
of chalk, sand and clay in the fine soil fraction) represent the soil 
texture, which influences the CWSI, and X7 ~ X10 (NDVI, PRE, TEM, 
and LUCC) represent the influence of the vegetation status and the 
hydrothermal conditions on the CWSI. In performing the geodetector 
analysis, this paper adopts the optimal classification method to reduce 
the bias caused by the inconsistency of data scales of different factors. 
The results show that the classification method for each influence 
factor is mainly based on quartile classification, but due to the 
differences in data scales, some variables are discretized with 5, 6 or 7 
categories, while most variables still use 8 classification numbers. This 
optimization process helps to enhance the comparability between the 

FIGURE 6

The spatial trend and coefficient of variation of each index under different land use conditions in the Inner Mongolia section of the Yellow River Basin. 
(a) Trend statistics, (b) Coefficient of variation statistics.
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factors, reduce the error caused by the uneven classification of the 
factors, and improve the explanatory power of the factors influencing 
the changes in CWSI.

Since the value ranges and distribution characteristics of different 
influencing factors are significantly different, the classification method 
and the number of categories need to be adjusted according to the 
characteristics of the data. Optimized classification of parameters can 
effectively reduce the comparison error between factors and improve 
the rationality of the explanatory power of different factors on CWSI 
changes. In addition, the optimized classification method can also 
more accurately capture the dominant factors of CWSI variation, 
which provides a more scientific basis for exploring the spatial 
differentiation mechanism of CWSI.

The results of different climate zoning based on the single-factor 
detector are shown in Figure 8, with different levels of q-values of the 
drivers in the study area. The combined ranking of the q-values of the 
driving factors was: precipitation > NDVI > temperature > land use 

type > DEM. among them, the average q-values of precipitation and 
temperature were above 0.5, which belonged to the main driving 
factors of CWSI, and this result was closely related to the typical 
agricultural characteristics of irrigation areas in this region. 
Precipitation and NDVI among the natural factors had the most 
significant effect on CWSI, and this climatic region has a high 
evapotranspiration intensity and soil moisture is mainly dependent on 
atmospheric precipitation recharge. Since evaporation is much greater 
than precipitation in the desert climate of the study area, changes in 
precipitation directly determine soil moisture supply, which in turn 
affects the fluctuation of the CWSI. NDVI represents the greenness and 
growth of vegetation, which is an important variable affecting the 
evapotranspiration process. Vegetation types in the study area are 
mainly desert vegetation with low cover. Therefore, changes in NDVI 
can directly affect soil evapotranspiration, surface albedo and water 
cycling, which in turn trigger changes in CWSI.

FIGURE 7

Single-factor detection results of geographic detectors in the Inner Mongolia section of the Yellow River Basin.

TABLE 6  Classification results of single factor detection by optimal 
geographic detector.

Factor Explanatory 
power

Classification 
method

Number of 
classifications

X1 0.2705 Quartiles 8

X2 0.4151 Quartiles 8

X3 0.2571 Quartiles 8

X4 0.5925 Natural breaks 8

X5 0.8407 Standard deviation 7

X6 0.1866 Geometric breaks 6

X7 0.0611 Geometric breaks 5

X8 0.1318 Standard deviation 8

X9 0.9021 Quartiles 8

X10 0.5860 Quartiles 8

FIGURE 8

Single-factor detection results of geographic detectors in the Inner 
Mongolia section of the Yellow River Basin.
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3.3.2 Interaction detection results
The results based on the interaction detector show that the 

interaction between different drivers enhances the explanatory power of 
the spatial heterogeneity of CWSI. As can be seen in Figure 9 although 
the explanatory power of DEM, slope and slope direction in the single-
factor detector results is extremely limited, their q-values are improved 
to different degrees when they interact with factors such as precipitation 
and air temperature, and especially the q-values are significantly 
enhanced by the interaction between DEM and precipitation 
(0.78 ~ 0.93). Precipitation and temperature were the two factors with 
the most significant enhancement in the explanatory power of other 
factor interactions, and the q-values of the interactions between these 
two meteorological factors also reached the highest level (0.72 ~ 0.95). In 
the study area, the interaction between the pairs of precipitation and air 
temperature and precipitation and elevation had the most significant 
effect on the CWSI, respectively, with the q-values exceeding 0.81, 
indicating that natural precipitation recharge played a dominant role in 
the drought variability in the region. In addition, temperature is also a 
key driver of CWSI in the Central CWSI, and the q-values of its 
interactions with all the drivers are in the range of 0.82 to 0.95. This 
suggests that the form of action of these factors on the CWSI in the study 
area is not monolithic, and that they indirectly affect the drought 
conditions within the entire watershed by influencing the changes in the 
other drivers.

4 Discussion

In this study, we  constructed the Crop Water Scarcity Index 
(CWSI) based on MOD16 evapotranspiration (ET) and potential 
evapotranspiration (PET) data from 2001 to 2024, systematically 
investigated the spatial and temporal dynamics of drought in the Inner 
Mongolia section of the Yellow River Basin, and elucidated the driving 
forces behind the spatial heterogeneity of the CWSI using geoprobes. 
The results reveal the complex interactions between climate and 
subsurface factors, which together shape the drought characteristics of 
the region.

4.1 Spatial and temporal dynamics of 
drought and its underlying mechanisms

Time series analysis indicates that the study area has experienced 
severe drought overall over the past two decades (average CWSI = 0.85), 
but more than 76% of the area has observed a significant downward 
trend in CWSI, suggesting that the severity of drought has generally 
decreased. The core physical mechanism lies in the fact that the growth 
rate of ET exceeds that of PET. The interannual variability of PET within 
the study area is relatively stable, while ET exhibits greater variability. 
This is primarily because the actual amount of water available for 
evapotranspiration is a more dynamic factor in determining water stress 
conditions, rather than atmospheric evaporation demand (Li et  al., 
2024a). The observed large-scale upward trend in PET (though not 
always statistically significant) aligns with predictions of increased 
evaporation demand under global warming scenarios (Wang W. et al., 
2024). However, the concurrent decline in CWSI (where CWSI = 1-ET/
PET) indicates that in some regions, the increase in evapotranspiration 
(ET) may have exceeded the increase in potential evaporation (PET), or 
the increase in PET was less than that of ET, or the decrease in ET was 
smaller than that of PET, leading to a net decrease in the water stress 
index (CWSI) (Zhang et  al., 2024b). Combined with geographic 
detectors, human activities (particularly agricultural irrigation) are the 
dominant driver of ET growth, and the upward trend in 
evapotranspiration is more pronounced in cultivated land, which may 
reflect the combined effects of agricultural activities, improved irrigation 
practices, changes in crop structure, and vegetation greening (NDVI) on 
evapotranspiration, as supported by the lower CWSI values in the 
agricultural areas along the Yellow River (Afshar et al., 2022; Ding et al., 
2024a; Ding et al., 2024b; Feng et al., 2025; Jin et al., 2024). Conversely, 
higher CWSI values in areas farther from rivers reflect the limited water 
resources in these regions dominated by arid and semi-arid landscapes 
(Du et al., 2024; Qin et al., 2024; Wang Y. et al., 2024). From a spatial 
distribution perspective, the pattern of lower CWSI values along the 
Yellow River basin and higher values in other regions highlights the 
critical role of the Yellow River as an irrigation water source, effectively 
alleviating drought in surrounding agricultural areas (Chen W. et al., 
2024; Fan et al., 2024; Wang Z. et al., 2024). The spatial pattern of high 
evapotranspiration (ET) in the east and low ET in the west is particularly 
pronounced in agricultural areas such as the Hetao Irrigation District, 
consistent with land use patterns and water supply conditions. Spatial 
trend analysis shows that the CWSI overall exhibits a declining trend, 
with a significant decline observed in 62.11% of the regions. This 
widespread mitigation may be attributed to the combined effects of 
multiple factors, including potential changes in precipitation patterns, 
vegetation greening, and potentially effective water management 
strategies in irrigation areas (Shi et al., 2024; Wang et al., 2025; Yu et al., 
2025). The continued increase in actual evapotranspiration (ET) in 
irrigated agricultural areas has outpaced changes in potential 
evapotranspiration (PET), reducing the ET/PET denominator and 
leading to an overall downward trend in the CWSI. Furthermore, 
precipitation in the region has rebounded in some years over the past 
two decades. This, combined with increased vegetation cover, 
adjustments to crop planting structures, and improved water resource 
management practices, has contributed to improved soil moisture 
conditions and a reduction in drought severity. These changes are 
particularly pronounced in irrigated farmland along the Yellow River, 
reflecting the combined effects of human activities and climatic factors.

FIGURE 9

The multi-factor detection results of the geographic detector in the 
Mongolian section of the Yellow River Basin.
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4.2 Main drought drivers and their 
interactions

Geoprobe analyses provide quantitative findings on the drivers 
of spatial patterns of CWSI. The effect of precipitation (with the 
highest q-value) is relatively common for an arid and semi-arid 
region, as moisture input is the main limiting factor for vegetation 
growth and soil water content (Pei et al., 2024; Ren X. et al., 2024; 
Zhou et al., 2025). In the desert climate of a typical arid and semi-
arid region, evapotranspiration is much greater than precipitation, 
allowing changes in precipitation to directly influence soil moisture 
availability and CWSI (Alasow et al., 2024; Li B. et al., 2024; Zhang 
Q. et  al., 2024). The significant role played by NDVI, which 
represents the greenness and cover of vegetation, highlights the 
strong coupling between vegetation and drought. Dense vegetation 
can increase ET, but may also improve soil water retention and 
reduce evaporation from bare soil, which can have complex effects 
on CWSI. Temperature, which mainly affects PET, is also a key direct 
driver (Hassan et al., 2025; Li D. et al., 2024; Mohammadi et al., 
2024). Meanwhile interaction probes showed that the combined 
effect of factors usually has a stronger explanatory power for the 
spatial variability of CWSI than a single factor (Xiao et al., 2024). 
The interaction between precipitation and DEM (q-values 0.78–0.93) 
is particularly strong. This suggests that although the direct effect of 
DEM alone is weak, its role becomes more important when 
considered in combination with precipitation (Yu'an, 2025), which 
may be related to the influence of topography on rainfall distribution, 
runoff generation, and moisture pooling in low-lying areas (Yan 
et al., 2024). Similarly, the strong interaction between precipitation 
and temperature (q values ranging from 0.72 to 0.95) highlights that 
the impact of precipitation on water stress is regulated by 
atmospheric evaporation demand, which is in turn significantly 
influenced by temperature. The interaction between temperature 
and all other factors is also notably high (q values ranging from 0.82 
to 0.95), indicating its universal role in altering the influence of other 
environmental variables on drought conditions (Ahmad et al., 2024). 
Land use/cover change (LUCC) also significantly impacts drought 
patterns. The results show that water bodies generally have the 
highest CWSI values, while cultivated land has the lowest, a ranking 
opposite to evapotranspiration. This suggests that despite high 
evapotranspiration from cultivated land, drought intensity is 
mitigated by irrigation and vegetation cover, resulting in a lower 
CWSI. Grassland, which has some vegetation cover but lacks 
irrigation support, has a moderate CWSI. Bare land, however, has a 
relatively high CWSI due to its poor water retention and sparse 
vegetation. This demonstrates that LUCC plays a decisive role in 
regulating the balance between water supply and demand. For 
instance, the impact of land use type on CWSI may be influenced by 
temperature, as different land cover types respond differently to heat 
stress and evaporation demand (Ma et al., 2024). These findings are 
consistent with previous research, which suggests that drought is a 
complex phenomenon driven by multiple interacting factors, and 
single-factor analysis may underestimate these intricate relationships 
(He et al., 2025). The interaction between LUCC and temperature 
indicates that different land types respond differently to rising 
temperatures. Cultivated land can buffer heat stress through 
irrigation, while grassland and bare land are more susceptible to 
drought exacerbations due to increased evaporation. Similarly, the 

interaction between LUCC and NDVI suggests that vegetation 
dynamics across different land use types can amplify or mitigate 
drought effects, with areas with higher land cover exhibiting greater 
drought resistance. The application of the Geodetector has enabled 
the quantification of these synergistic effects, providing a more 
comprehensive understanding of drought formation in the Inner 
Mongolia section of the Yellow River Basin.

4.3 Uncertainties and limitations

The results of this study are of great significance for water 
resource management and ecological protection in the Inner 
Mongolia section of the Yellow River Basin. The identification of 
key drivers and their interactions can inform the development of 
targeted strategies. For example, the dominance of precipitation 
highlights the region’s vulnerability to climate variability and 
change, emphasizing the need for strong water conservation 
measures and the promotion of drought-resistant agricultural 
practices. The significance of NDVI suggests that vegetation 
restoration and conservation efforts can play a role in mitigating 
the effects of drought. The significant decline in CWSI in many 
areas is a positive sign, but given the upward trend in PET and the 
inherent aridity of the region, continued monitoring is critical. 
However, there are limitations to this study. The CWSI model, 
while widely used, relies on MOD16 estimates of ET and PET, 
which have inherent uncertainties and spatial resolution issues of 
their own. Although major natural factors were considered, direct 
quantitative impacts of human activities, such as specific irrigation 
schemes, groundwater extraction rates, or reservoir scheduling, 
were not explicitly incorporated into the geoprobe model, and 
human interventions can significantly alter local and regional 
hydrologic conditions and drought conditions. Additionally, the 
use of a simple univariate linear model to predict future CWSI 
represents a highly simplified trend extrapolation, whose results 
are indicative rather than precise scientific predictions. Future 
drought conditions will be  influenced by complex nonlinear 
climate changes and human activity regulation, which exceed the 
predictive capabilities of this model. Future research should focus 
on combining higher-resolution remote sensing data with more 
detailed ground-based observations to predict future droughts 
using machine learning algorithms. Incorporating explicit data on 
human water use and management practices into driver analyses 
will contribute to a more comprehensive understanding of 
drought mechanisms.

5 Conclusion

In this study, the spatial and temporal characteristics of drought 
and its driving factors in the Inner Mongolia section of the Yellow 
River Basin from 2001 to 2024 were comprehensively assessed using 
methods such as CWSI and geoprobe models. The main conclusions 
are as follows:

	(1)	 The study area continues to be in a state of severe drought, with 
an average CWSI of 0.85. However, the CWSI shows a 
significant mitigating trend, and the CWSI shows a statistically 
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significant decrease in more than 76.66% of the watershed area 
(of which 62.11% is a highly significant decrease and 14.55% is 
a significant decrease)

	(2)	 Spatially, droughts were less severe in irrigated agricultural 
areas along the Yellow River, demonstrating the key role of the 
Yellow River in alleviating water stress; areas far from the river 
had higher CWSI values and more severe droughts. ET was 
generally higher in the eastern agricultural areas, and PET was 
the highest in the southwestern and central parts of the 
country. There were differences in the spatial trends of the two, 
but the decreasing trend of CWSI was widely distributed. The 
CWSI of different land use types showed a decreasing trend, 
with the lowest CWSI value for arable land (the least stressful) 
and the highest for water bodies (the most stressful), which 
may be related to the way of calculating CWSI for the dynamics 
of ET and PET on the surface.

	(3)	 Precipitation is the most dominant influence in determining 
the spatial distribution of CWSI (with the highest q-value), 
followed by NDVI and air temperature. Together, these three 
factors constitute the main climate- and vegetation-related 
controls on regional aridity patterns, with average q-values 
exceeding 0.5. Land use type and DEM alone have relatively 
little direct influence.

	(4)	 The interaction of precipitation with temperature (q-values of 
0.72–0.95) and precipitation with DEM (q-values of 0.78–0.93) 
is the strongest, with q-values consistently exceeding 0.81. 
Highlighting the fact that the influence of DEM is significantly 
stronger when it is considered in conjunction with climatic 
variables, reflecting how topography can modulate local 
climatic and hydrological conditions. Temperature also shows 
strong synergistic effects when interacting with other drivers.
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