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The novel severe acute respiratory distress syndrome-coronavirus 2 (SARS-CoV-2) has
caused one of the most substantial pandemics that has affected humanity in the last
century. At the time of the preparation of this review, it has caused the death of around 5
million people around the globe. There is ample evidence linking higher mortality risk rates
from Coronavirus disease-19 (COVID-19) with male gender, advancing age and
comorbidities, such as obesity, arterial hypertension, cardiovascular disease, chronic
obstructive pulmonary disease, diabetes mellitus, and cancer. Hyperglycemia has been
found to be accompanying COVID-19 not only in individuals with overt diabetes. Many
authors claim that blood glucose levels should also be monitored in non-diabetic patients;
moreover, it has been confirmed that hyperglycemia worsens the prognosis even without
pre-existing diabetes. The pathophysiological mechanisms behind this phenomenon are
complex, remain controversial, and are poorly understood. Hyperglycemia in the setting of
COVID-19 could be a consequence of deterioration in pre-existing diabetes, new-onset
diabetes, stress-induced or iatrogenic due to substantial usage of corticosteroids within
the context of a severe COVID-19 infection. It is also plausible that it might be a result of
adipose tissue dysfunction and insulin resistance. Last but not least, SARS-CoV-2 is also
claimed to trigger sporadically direct b-cell destruction and b-cell autoimmunity. Pending
further validations with longitudinal data are needed to legitimize COVID-19 as a potential
risk factor for the development of diabetes. Hereby, we present an emphasized critical
review of the available clinical data in an attempt to unravel the complex mechanisms
behind hyperglycemia in COVID-19 infection. The secondary endpoint was to evaluate the
bidirectional relationship between COVID-19 and diabetes mellitus. As the worldwide
pandemic is still expanding, demand for answering these questions is arising. It will be of
immense help for the management of COVID-19 patients, as well as for the
implementation of post-discharge policies for patients with a high risk of
developing diabetes.
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INTRODUCTION

The novel SARS-CoV-2 has caused one of the most substantial
pandemics that has affected humanity in the last century. At the
time of compiling this present review, globally, it has caused the
death of around 5 million people (1). Its rapid spread has
attracted medical specialists’ attention to its relationship with
other common comorbidities such as obesity, arterial
hypertension, cardiovascular disease, chronic obstructive
pulmonary disease, diabetes mellitus (DM) and cancer (2–6).

Diabetes, particularly type 2 diabetes mellitus (T2DM), has
been reported as the second most common comorbidity of
COVID-19 after hypertension (7–12). There is burgeoning
evidence that comorbidities increase the morbidity and mortality
in SARS-CoV-2 infection and that the DM patients are frequently
found to have severe infection (13–16). However, the data
regarding outcomes classified according to glycemic control is
scarce. A couple of studies have demonstrated worse outcomes in
patients with poor-controlled diabetes (17–19). Additionally,
several pieces of research have demonstrated that pre-existing
diabetes, newly detected diabetes, prediabetes, and uncontrolled
hyperglycemia are significant determinants of COVID-19
prognosis (20–24). However, hyperglycemia has been found to
be accompanying COVID-19 not only in patients with pre-
existing diabetes. Hereby, we present an emphasized critical
review of the available clinical data in an attempt to elucidate
the complex mechanisms behind hyperglycemia in COVID-19.
The secondary endpoint was to evaluate the bidirectional
relationship between COVID-19 and diabetes mellitus.

The presence of diabetes in COVID-19 patients has been
frequently established, and diabetes patients are a known high-
risk group in COVID-19 disease (21, 25, 26). Furthermore, an
abrupt increase of plasma glucose regardless of prior diabetes
and acute deterioration in the glycemic control of pre-existing
diabetes in the setting of COVID-19 is found to be a common
case scenario. These findings suggest a bidirectional relationship
between stress-induced hyperglycemia and COVID-19.

The CoviDIAB Project has been started by leading diabetes
professionals and is dedicated to establishing and managing a
global registry of patients with COVID-19-related diabetes (5, 27).
However, a growing body of literature suggests that ‘‘new-onset”
hyperglycemia is a common phenomenon at hospital admission of
COVID-19 patients, who had neither prior history of dysglycemia
or diabetes nor current corticosteroid administration (28). It could
be categorized as – 1.) “stress hyperglycemia”; 2.) “new-onset
diabetes” in previously unrecognized dysglycemia; 3.)
hyperglycemia, associated with SARS-CoV-2 direct impact on
endocrine system; and 4.) in-hospital hyperglycemia due to
glucose-altering medications such as glucocorticosteroids, etc.
(28). This new-onset hyperglycemia was found by many authors
to be an independent predictor for mortality and would be of
particular interest to this scientific review (28, 29).

STRESS HYPERGLYCEMIA
Stress hyperglycemia is most commonly defined as hyperglycemia
that spontaneously resolves after overcoming a critical condition
Frontiers in Clinical Diabetes and Healthcare | www.frontiersin.org 2
(30, 31). This expression addresses patients predominantly
without prior diabetes. However, some people with diabetes
could also develop stress hyperglycemia. This often remains
unnoticed in many studies comparing in-patients with or
without diabetes (30, 32–34). Transient elevation of blood
glucose has been thought to be unhazardous or even beneficial
(31, 35, 36). No guideline specifically defines its cut-offs. The
Diabetes in Hospitals Writing Committee of the American
Diabetes Association (ADA) has published a report in which in-
hospital hyperglycemia is classified into known diabetes, newly
diagnosed diabetes, and hospital-related hyperglycemia (37).

Furthermore, Dungan et al. (2009) proposed two types of
stress hyperglycemia – hospital-related hyperglycemia in
concordance with the ADA consensus definition and
deterioration of glycemic control in pre-existing diabetes (30).
They also suggested that the most suitable cut-off for stress
hyperglycemia in diabetic patients has to be clarified. However,
a patient with glycosylated hemoglobin (HbA1c) within target
(<7%), whose blood glucose levels are steadily more elevated
than the cut-off defined for hospital-related hyperglycemia,
would also qualify (30). In North America, one-third of people
with diabetes are unaware of their clinical condition (38). Thus,
many patients presenting at hospital admission with stress
hyperglycemia could have had a pre-existing carbohydrate
disturbance (30, 39–45).

The three major pathways for the development of stress
hyperglycemia are:

1. Increased hepatic gluconeogenesis by means of elevated
contrainsulatory hormones

2. Peripheral insulin resistance
3. Beta-cell dedifferentiation

The illness may impact the scale of cytokine production and
hormonal imbalance, which could lead to excessive hepatic
glucose output, mainly via gluconeogenesis and insulin
resistance (IR) (46, 47). Gluconeogenesis is primarily induced
by glucagon, but epinephrine and cortisol also contribute (48–
50). During illness, the observed insulin resistance is mainly due
to the inability of insulin to inhibit liver gluconeogenesis (30).

Peripheral insulin resistance is a consequence of defects in
post-receptor insulin signaling and downregulation of glucose
transporter (GLUT)-4 (30, 51). Furthermore, epinephrine also
leads to insulin receptor phosphorylation and impedes its
tyrosine kinase activity, thus causing immediate and protracted
inhibition of pancreatic insulin secretion (52, 53). Cytokines such
as TNFa and interleukin 1 inhibit post-receptor insulin signaling
(48, 54). The more severe the condition is, the more considerable
increase in cytokines levels and insulin resistance is observed (55,
56). Glucotoxicity in the context of an acute state is facilitated by
upregulated GLUT-1 and GLUT-3 transporters, allowing
uncontrolled glucose cell entering despite downregulation
mechanisms (57, 58).

Finally, hyperglycemia is presumed to be the significant
determinant causing b-cells to lose differentiation, resulting in
dysfunctional insulin secretion (59). Some authors also suggest
that stress hyperglycemia indicates relative insulin deficiency
April 2022 | Volume 3 | Article 826006
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attributed to enhanced lipolysis and elevated circulating free fatty
acids, observed in the acute state (60). Glucotoxicity, lipotoxicity,
and inflammation are significant contributors to the global
insulin-resistance syndrome in critical illness (30).

SARS-CoV-2 infection and the pancreas
As previously established, DM was found to be an independent
predictor of unsatisfactory outcomes even during previous
coronavirus outbreaks (61, 62). Moreover, acute diabetes was
frequently encountered during the SARS-COV-1 epidemic in
individuals who had neither a prior history of diabetes nor any
glucocorticoid administration; furthermore, it was an
independent prognostic factor for mortality (61). The
pathophysiological mechanism behind the sudden spike of
plasma glucose levels was confirmed to be a result of massive
pancreatic islet damage, following the docking of SARS-CoV-1 to
angiotensin-converting enzyme 2 (ACE2) receptor (63).
Additionally, Niu et al. (2008) proved that ACE2 knockout
experimental animals develop acute diabetes (64, 65).

There is burgeoning evidence of ACE2 expression in multiple
tissues throughout the body, namely intestines, kidneys,
myocardium, vasculature. However, pancreatic ACE2 expression
is of particular interest due to a rising number of reports pointing
out a surge in patients with new-onset hyperglycemia and
ketoacidosis and giving rise to questions about whether COVID-
19 actually induces diabetes via b-cell injury (27, 66–70). A certain
number of study groups have investigated non-diabetic, diabetic,
and COVID-19 pancreatic tissue samples for the expression of
various entry factors in assessing SARS-CoV-2 diabetogenic
potential (71, 72). Most of them concur that ACE2 and
transmembrane protease, serine 2 - TMPRSS2 proteins are
established in pancreatic ducts and microvasculature endothelial
cells, which could promote indirect impairment of pancreatic
endocrine function in COVID-19 (73). Nevertheless,
comprehensive data regarding ACE2 and TMPRSS2 expression
in exocrine cells remain discrepant because researches that
discover entry factors outside b-cells do not identify SARS-CoV-
2 nucleocapsid protein in COVID-19 pancreas tissues (71, 72).

Conversely, some authors claim that after endocytosis of the
virus complex, ACE2 expression is downregulated, acting dually.
To begin with, this may provoke islet function impairment,
leading to b-cell damage (65). Secondly, its downregulation
causes uncontested angiotensin II action, which could impede
following insulin secretion by blood flow restriction and increase
of oxidative stress in b-cells (65). Additionally, aberrant
glycosylation of the ACE2 receptor fosters the consolidation of
the SARS-CoV-2 virus and the ACE2 receptor, thereby
worsening COVID-19 severity (74–76). This finding could be
induced by hyperglycemia, pointing to a vicious cycle. A recent
report documented that hyperglycemia permits SARS-CoV-2
replication and ACE2 expression in monocytes accumulated in
the lung of COVID-19 patients, thus prompting mitochondrial
reactive oxygen species (ROS) production by stabilizing hypoxia-
inducible factor-1a (HIF-1a) and promoting glycolysis (77).
These observations could partially elucidate the greater
propensity of hyperglycemic and diabetic patients for SARS-
CoV-2 infection and severe illness (78, 79).
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Interestingly, a recent study by Steenblock et al. (2021)
demonstrated in cadavers that 70% of the COVID-19 patients
have vasculature ACE2 expression, but just 30% showed ACE2-
expression in insulin-producing islet cells. Even when new-onset
diabetes is not present, necroptotic cell death, immune cell
infiltration, and SARS-CoV-2 viral infection of pancreatic b-
cells may promote metabolic imbalance in COVID-19
individuals (80). Utilizing human islets and cadaver pancreatic
samples from patients that died of COVID-19, they clearly
demonstrated that b-cells are permissive to infection with
SARS-CoV-2 (80). However, the mechanisms of virus entry are
not totally understood so far, as b-cells ACE2 expression is not
detected in all patients. Hence, other factors may facilitate the
uptake of SARS-CoV-2 into b-cells (80). It seems that the answer
to the question “How SARS-CoV-2 induces hyperglycemia?” is
not straightforward, and there could be not only one
correct answer.

In an attempt to unravel that question, Clark and Mirmira
(2021) discuss the current evidence and implications in SARS-
CoV-2 infection of islet b-cells (81). Two of the commented
studies were lately presented by Wu et al. (2021) and Tang et al.
(2021) (81–83). In the study of Wu et al. (2021), the authors
verify the previously established low levels of ACE2 and
TMPRSS2 in b-cells but propose other entry factors, such as
NRP1 and TRFC which may serve as viral entry points (82, 84–
86). The authors postulated that pancreatic endocrine
dysfunction with decreased insulin secretion in response to
glucose might be related to the viral SARS-CoV-2 invasion (81,
82). Remarkably, insulin-producing cells self-destruction
mechanism was found to be also involved, as a result of
signaling and further triggering of the mitogen-activated
protein kinase (MAPK)/c-Jun N-terminal kinase (JNK)
pathways. Researchers ruled out that inhibition of NRP1
prevents an additional mechanism for SARS-CoV-2 to achieve
cell invasion (81, 82).

Furthermore, Tang et al. (2021) indicate the presence of the
same entry factors — ACE2 and NRP1 — in human b-cells and
prove that SARS-CoV-2 is able to infect them in vitro (83). They
also demonstrate in infected cells that the reduction in insulin
levels is followed by an increase in glucagon (a typical feature
of a-cells) and trypsin1 (a typical feature of exocrine cells)
and that upon infection, b-cells underwent eIF2-mediated
transdifferentiation (83). However, these studies have some
limitations. Namely, both were performed utilizing human
islets infected in vitro, and it is not clear whether their findings
are valid in vivo in COVID-19 individuals. Even though both
provided conclusive proof of viral antigens in COVID-19
cadavers, the feasibility that this is actually absorbed viral
debris still remains. Moreover, the probability that in vitro
infectivity might be limited to certain people is also durable.

Collectively, the results from Wu et al. (2021), Tang et al.
(2021) and a recent study by Muller et al. (2021) emphasize on
several controversial key points in regards to diabetes
pathogenesis in the context of COVID-19 infection (82, 83,
87). It was suggested for the first time that the viral infection
with SARS-CoV-2 could trigger an autoimmune process against
b-cells (82, 83, 87). Studies suggesting an extensive amount of
April 2022 | Volume 3 | Article 826006

https://www.frontiersin.org/journals/clinical-diabetes-and-healthcare
http://www.frontiersin.org/
https://www.frontiersin.org/journals/clinical-diabetes-and-healthcare#articles


Gerganova et al. COVID-19 and Hyperglycemia
entry factors in b-cells not only identify SARS-CoV-2
nucleocapsid protein in COVID-19 pancreatic tissues but show
that human islets could be infected with SARS-CoV-2 ex vivo to
disorganize insulin homeostasis and provoke b-cell apoptosis.
The latter could result in extensive pathology that could drive
T1D-associated hyperglycemia (71, 72). This theory is based on
virus-mediated damage of b-cells and release of hitherto
sequestered antigens that cause the activation of autoreactive
T-lymphocytes, resulting in an autoimmune response that
significantly damages the b-cell remnant (88).

Moreover, Qadir et al. (2021) recently reported pancreatic
fibrosis and thrombosis in new-onset diabetes in humans and
primates with COVID-19 (89). A cytokine storm in COVID-19
patients is a prothrombotic, highly inflammatory pathological
state that is able to, directly and indirectly, affect b-cells (90). It is
presumed that in the context of COVID-19, stress hyperglycemia
could be more pronounced on account of the cytokine storm
(90). Another study demonstrated in three cadavers, who died
from COVID-19, degeneration of pancreatic islets (91). Research
from Wuhan (n=121) found that individuals with mild COVID-
19 had elevated pancreatic enzymes (1.85%), but those with
severe COVID-19 had much greater levels (17%) (92). A part of
them also was symptomatic of acute pancreatitis. However,
despite these findings, no evident tendency of increase in type
1 DM incidence during the pandemic has been documented (81,
93). Moreover, an Indian longitudinal study investigated the
deterioration of b-cell function, insulin resistance and glycemic
progression and did not prove any of them (94). However, the
authors enrolled mainly mild/asymptomatic SARS-CoV-2
patients, which could potentially bias the experimental findings
(94). Pending further validations with longitudinal data are
needed to legitimize COVID-19 effect on type 1 and type 2
diabetes development. Moreover, additional data is required to
assess the subset of patients that potentially develop COVID-19
induced diabetes, their risk and predisposing factors.

SARS-CoV-2 infection and the
adipose tissue
Adipose tissue (AT) has been revealed to have upregulated ACE2
receptor activity making it a target for SARS-CoV-2 invasion.
Obesity and advancing age are often accompanying
comorbidities of T2DM and IR, that are highly linked to severe
COVID-19 (2, 3, 5). They are also associated with visceral AT
enlargement which induces low-grade inflammation (95). AT
produces inflammatory adipokines and cytokines that regulate
blood sugar levels and IR; inflammatory T2DM agents, including
TNF-a, IL-6, MCP-1, and angiotensin, which are increased in
critically ill COVID-19 individuals (95, 96). COVID-19 could
adversely impact adipocytes and worsen chronic low-grade
inflammatory state which deteriorates IR, elevated blood sugar
levels and outcomes in SARS-CoV-2 infected DM patients (73).
Individuals with SARS-CoV-2 infection and uncontrolled
glycemia have higher concentrations of inflammatory
biomarkers than patients without diabetes, including C-reactive
protein (CRP), ferritin, and IL-6 (17). Only one report so far
documented SARS-CoV-2 in 62.5% of postmortem ATs and
Frontiers in Clinical Diabetes and Healthcare | www.frontiersin.org 4
detected nucleocapsid protein surrounding the cytoplasm of lipid
droplets (97). Unfortunately, they did not estimate it (97).

In addition, Reiterer et al. (2021) found that among 4,102 US
hospitalized COVID-19 patients, those with acute respiratory
distress syndrome (ARDS) had a higher prevalence of
hyperglycemia with poor outcomes (85%) than those without
ARDS (37%) (98). They also report that serum levels of C-
peptide and amylin were increased in COVID-19 patients with
ARDS, indicative of b-cell hypersecretion that is inconsistent
with the theory of widespread b-cell failure in COVID-19 (98).
SARS-CoV-2 infected patients with ARDS (62% of them had no
prior diabetes history) also had high C-peptide–to–glucose
ratios, supporting rates of IR that were three-to-six fold higher
than those of the control group (98). Additionally, a reduction of
serum adiponectin levels by 50–60% was observed. In contrast,
leptin was increased in COVID-19 patients with ARDS, resulting
in adiponectin-to-leptin ratios that would support AT
dysfunction in IR (98). Similarly, Ceriello et al. (2020) and
Apicella et al. (2020) proposed insulin resistance and possibly
insulin secretory abnormalities, which could precipitate
hyperglycemia in patients with COVID-19, even in the absence
of pre-existing diabetes (99, 100).

In keeping with these findings, the study of Montefusco et al.
(2021) merits a mention. They investigated long-term glucose
homeostasis deterioration after acute SARS-CoV-2 infection
(101). In 253 out of 551 hospitalized Italian patients (46%)
with no prior diabetes history, new-onset hyperglycemia was
established during acute COVID-19. Among them, 35% still had
hyperglycemia 6 months after COVID-19 recovery, while an
additional 2% were found to have T2DM, suggesting that new-
onset elevation of blood glucose can prompt patients to long-
term glycemic abnormalities (101). In accordance with the
results of Reiterer et al. (2021), patients with T2DM, those
with acute COVID-19, and those who recovered from COVID-
19 all were found to yield greater insulin and C-peptide secretion
following arginine administration, consistent with acute and
long-term b-cell hypersecretion and IR following COVID-19
(98, 101). More extensive studies of such kind are necessary to
verify whether these long-term abnormalities change new-onset
diabetes incidence rates.
METABOLIC OUTCOMES
OF COVID-19
The impact of stress hyperglycemia on the clinical outcomes of
COVID-19 in-patients has been thoroughly studied. COVID-19,
like any other viral infection, induces a stress reaction. However,
there is no likelihood that it can influence the HbA1c but could
potentially elevate blood glucose levels. Thus, an isolated fasting
plasma glucose (FPG) value of ≥ 7.0 mmol/L in the presence of
HbA1c < 6.5% has been classified by some researchers as new-
onset hyperglycemia without diabetes. It is important to
highlight that the latter term easily fit both “stress
hyperglycemia” and “new-onset diabetes” in previously
unrecognized dysglycemia.
April 2022 | Volume 3 | Article 826006
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Similarly to Singh, Singh (2021), for the sake of clarity, we
stratified the available data so far about COVID-19 outcomes
and carbohydrate disturbances into four categories: a. new-onset
hyperglycemia without diabetes versus normoglycemia; b. new-
onset hyperglycemia without diabetes versus diabetes (new-onset
and pre-existing); c. new-onset diabetes versus normoglycemic
patients; and d. new-onset diabetes versus pre-existent (28).

New-Onset Hyperglycemia Without
Diabetes Versus Normoglycemia
Firstly, Bode et al. (2020) focused the attention on stress
hyperglycemia in COVID-19 patients. They established that
elevated plasma glucose in people with DM (HbA1c ≥ 6.5%)
or uncontrolled hyperglycemia without prior diabetes was
related to an increase in mortality in comparison to
normoglycemic subjects (28.8% vs 6.2% respectively; p < 0.001)
(20). Uncontrolled hyperglycemia was defined as two or more
blood glucose measurements > 10,0 mmol/l occurring within any
24-hour period with an HbA1c < 6.5%, or no HbA1c testing
done during hospitalization (20). Zhang et al. (2020) showed a 5-
fold increase in composite outcome risk (mechanical ventilation
[MV], admission in intensive care unit [ICU] and death) in
people with a secondary elevation of plasma blood glucose
(defined as FPG ≥ 7.0 mmol/L before glucocorticoid
administration, but HbA1c < 6.5%) and COVID-19, in
comparison with normoglycemic patients (102). Hereinafter
for all of the studies and their respective results, the composite
outcome should mean MV, ICU admission and death.

Concurrently, in severe COVID-19 individuals, a 71% relative
mortality risk reduction was demonstrated for individuals with
normal blood glucose levels (with or without diabetes) as
opposed to those with at-admission hyperglycemia (new-onset
hyperglycemia without diabetes or pre-existing diabetes, with
FPG > 7.77 mmol/l) (103). Additionally, Mamtani et al. (2020)
retrospectively reported in 403 COVID-19 patients that the
prevalence of hyperglycemia was 56.6%, utilizing the cut-off
value of > 7,78 mmol/l (21). This finding is slightly higher
than the prevalence reported in non-COVID-19 in-patients -
38–40% (21, 104). They also have found that hyperglycemic
hospitalized non-diabetic COVID-19 patients as a subgroup
(20.6%) are associated with higher mortality risk and poor clinical
outcomes (21). They implied that hyperglycemia within the first 48
hours of admission could be used as an independent predictor of
COVID-19 prognosis, and early stress hyperglycemia in non-
diabetic patients could indicate increased systemic stress (21).
They even conjectured that hyperglycemia might contribute to
the development of cytokine storm (21).

Likewise, Wang et al. (2020) observed more than double
increase in the 28-day in-hospital complication rate of
hyperglycemic non-diabetic COVID-19 subjects (FBG 6.1–6.9
mmol/L), in comparison to normoglycemic ones (22). At the
same time, Li et al. (2020) confirmed a negative tendency in all-
cause mortality (HR 2.64; 95% CI, 0.50–14.0) at a 30-day-follow-
up in hyperglycemic patients without DM (FPG 5.6–6.9 mmol/L
and/or HbA1c 5.7–6.4%), contrary to those with normal plasma
glucose (FPG < 5.6 mmol/L and HbA1c < 5.7%) (23). Moreover,
Frontiers in Clinical Diabetes and Healthcare | www.frontiersin.org 5
Coppelli et al. (2020) found that mortality was substantially
increased in hyperglycemic individuals without diabetes (defined
as no prior diabetes and FPG ≥ 7.78 mmol/L at admission) in
contrast to normoglycemic COVID-19 individuals (at-admission
blood glucose < 7.78 mmol/L) - 39.4% vs 16.8% respectively; HR
2.20; 95% CI, 1.27–3.81; p = 0.005 (105). In their study, 21% had
DM (n=271), and slightly more (24%) had at-admission
glycemia ≥ 7.78 mmol/L. There was no one with new-onset
hyperglycemia who had a prior DM diagnosis (105). All of them
were not taking any glucose-altering medication, supporting the
recent development of hyperglycemia (105).

In one of the most recently published studies, Haymana et al.
(2021) performed a retrospective analysis of 12,817 non-diabetic
COVID-19 patients that were stratified in regards to their blood
glucose levels, as follows: group 1 - < 5,5 mmol/l; group 2 - 5,5 –
7,7 mmol/l and group 3 – 7,8 – 11,0 mmol/l (7). They recorded
plasma blood glucose measurements within 24 hours of COVID-
19 diagnosis regardless of fasting state. Patients in group 2 (5%)
and group 3 (14%) were found to have higher mortality rates
than group 1 (2,1%). Furthermore, glucose levels in the range of
7,8 - 11,0 mmol/l were an independent associate of mortality (2.7
fold increased risk compared to normoglycemia) and the
composite of ICU admission and/or MV (2.3 fold increased
risk compared to normoglycemia) (7). Similarly, Ilias et al.
(2021) documented that both COVID-19 patients in the wards
and in the ICU may manifest with higher-than-expected
glycemia, even in the absence of diabetes (86% without prior
history of diabetes) (106). Their findings lend credence to
suggestions of compromised insulin secretion and lowered
sensitivity to insulin in COVID-19 patients (106).

In summary, most of the aforementioned studies were
performed in the initial stages of the global COVID-19
pandemic and/or investigated glucose levels at hospital
admission. Their results are not potentially biased by any
glucose-altering medications and unequivocally demonstrate
that stress hyperglycemia/new-onset hyperglycemia without
diabetes in COVID-19 patients is related to increased mortality
risk. The risk is even higher in patients without prior DM, as
confirmed by the meta-analysis of Lazarus et al. (2020). They
demonstrated 75% increased risk for poor outcome in patients
without history of DM (107). However, each of the studies has its
own cut-off value of elevated blood glucose, which should be
considered as a significant confounding factor.

New-Onset Hyperglycemia Without
Diabetes Versus Diabetes (New-Onset
and Pre-Existing)
Firstly, Bode et al. (2020) among 1122 patients acknowledged an
increase in mortality of COVID-19 individuals with new-onset
hyperglycemia without diabetes, in comparison to those with
pre-existing DM (41.7% vs 14.8% respectively; p < 0.001) (20).
Moreover, Zhang et al. (2020) reported that the composite
risks for new-onset hyperglycemia (FBG ≥ 7.0 mmol/L once or
HbA1c < 6.5%) and new-onset diabetes were as follows 5,47 and
2,61 (102). Supposedly, it was one of the first studies that
recommended clinicians to pay close attention to blood glucose
April 2022 | Volume 3 | Article 826006
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levels in COVID-19 patients, even in those without prior
diabetes. Conversely, they revealed an increasing tendency,
however not statistically significant, in composite outcomes
between patients with new-onset hyperglycemia without
diabetes and with diabetes (new-onset or pre-existing).

New-Onset Diabetes Versus
Normoglycemic Patients
Regarding the outcome of COVID-19 patients with new-onset
diabetes versus normoglycemic ones, new data is constantly
emerging. Firstly, Zhang et al. (2020), in their retrospectively
enrolled 166 COVID-19 patients from Wuhan, established new-
onset diabetes (FBG ≥ 7.0 mmol/L twice before glucocorticoid
therapy administration or HbA1c ≥ 6.5%) in 16% of the cases (26/
166) (102). In the new-onset diabetes group, the authors
highlighted that they prioritized the results of HbA1c over FPG
in the grouping criteria to exclude the possibility of overestimating
the incidence of diabetes (102). Notably, no significant increase in
composite outcomes risk was observed in diabetic patients (both
new-onset and pre-existing) in comparison to SARS-CoV-2
infected individuals with normal blood glucose (102). Li et al.
(202) retrospectively analyzed 453 patients and demonstrated
incidence of new-onset diabetes (FPG ≥ 7 mmol/L and/or
HbA1c ≥ 6.5%) corresponding to 21% (n=94) (23). They
demonstrated a significant increase (30 days mean follow-up) in
all-cause mortality (HR 5.63; 95% CI, 1.22–26.0) in comparison
with normoglycemic COVID-19 patients (23). Likewise, Wang
et al. (2020) reported similar incidence of new-onset diabetes
(FBG ≥ 7.0 mmol/L) - 29% of cases (176/605) with statistically
significant complication rate (OR 3.99; 95% CI, 2.71–5.88) and all-
causemortality (HR 2.30; 95%CI, 1.49–3.55; p = 0.002), contrary to
COVID-19 patients with normal blood glucose (22). Yang et al.
(2020) retrospectively reviewed 120 patients and found that 69 had
new-onset diabetes (108). New-onset diabetes (FBG ≥ 7.0 mmol/L
for two times during hospitalization) was demonstrated as an
independent predictor for death (HR 3.75; 95% CI 1.26–11.15; p
= 0.017) even after amultivariable analysis (108).However, it seems
that both cases with secondary hyperglycemia and new-onset
diabetes in the last three papers fit the criteria for new-onset
diabetes. It is important to note that in all of them, individuals on
glucocorticoid therapy were excluded.

Another research from last year of Fadini et al. (2020) on the
contrary showed that 5% out of 413 had new-onset diabetes
(HbA1c ≥ 6.5% or a random glucose level ≥ 11.1 mmol/L with
symptoms of elevated blood glucose) (67). There was a substantial
elevation (RR 3.06; 95% CI, 2.04–4.57) in severe COVID-19 rates
(ICU admission and death) in people with new-onset diabetes, as
opposed to normoglycemic individuals (67). Last but not least, Sun
et al. (2021) retrospectively analyzed a total of 268 COVID-19
patients; 19,3% of those with comorbidities had diabetes (n=21)
(9). The study yielded interesting results that could possibly
associate severe SARS-CoV-2 infection in patients with present
clinical laboratory findings of serum glucose levels ranging from
normal (5.53 mmol/l) to slightly elevated (7.27 mmol/l) (9). The
authors’ collective noticed better survival rates in patients with
plasma glucose levels < 5.53 mmol/l than in individuals with
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laboratory findings over the previously mentioned cut off. A
possible pathophysiological link was proposed to be present
between the severe course of the disease, the abnormal blood
glucose levels and the unfavorable outcome (9). Therefore, there
might be a rationale behind the necessity for tight supervision of
elevated blood glucose in pneumonia cases (9).

In keeping with these results, some latest meta-analyses and
studies showed sufficient data regarding the topic (109–112). The
first one demonstrated associated DM and hyperglycemia in
19.70% (CI: 10.93-32.91) and 25.23% (CI: 19.07-32.58) of
COVID-19 cases, respectively (110). The observed mortality rate
remained significantly higher (15.36%) in spite of their DM and its
status.Ontheotherhand, adecreased tendencyofmortality ratehas
been confirmed in non-diabetic and patients with SARS-CoV-2
related hyperglycemia (110). Additionally, higher death rates and
adverse events were observed in patients with new-onset DM and
elevated plasma glucose than in the non-diabetic population (110).
The second meta-analysis enrolled 9045 patients from 12 studies
and reconfirmed that fasting hyperglycemia is related to mortality
in COVID-19 patients, with or without diabetes (109).

New-Onset Diabetes Versus Pre-Existent
So far, we are lacking extensive data comparing outcomes of
patients with new-onset and pre-existing DM. As previously
mentioned, Li et al. (2020), in the early stages of COVID-19
pandemic, reported a nearly 2-fold higher risk of all-cause
mortality in patients with new-onset diabetes (fasting glucose ≥7
mmol/L and/or HbA1c ≥ 6.5%) - HR 9.42; 95% CI, 2.18–40.7,
compared to pre-existing diabetes (HR 4.63; 95% CI 1.02–21.0) vs
COVID-19 normoglycemic individuals (23). Concurrently, Fadini
et al. (2020) also demonstrated a stronger association in ICU
admission rate or death in people with new-onset diabetes (RR
3.06; 95% CI, 2.04–4.57) in comparison to individuals with a prior
diagnosis of diabetes (RR 1.55, 95%CI 1.06–2.27) (67). Last but not
least, there is a fascinating recent cross-sectional prospective study
by Farag et al. (2021). They studied 570 COVID-19 patients and
classified them as non-diabetic or newly discovered DM according
to HbA1c and fasting insulin after exclusion of known DM cases
(113). Interestingly, 77 patients were diagnosed with DM (13.5%);
12 (2.1%) - with pre-existing DM, 7 (1.2%) - with new-onset type 1
DM, and 58 (10.2%) - with new-onset T2DM.Moreover, COVID-
19was related to a new-onset ofDM in11.4%of all participants and
expression of pre-existing DM in 2.1% of all participants, both
related to severe COVID-19 (113). Elevated plasma glucose and the
necessity for glucose-lowering medication remained in 73% of
diabetic cases (46/63), whereas anti-diabetic treatment could be
terminated in 17 patients (27%) (113). High blood glucose
remained in all survivors with pre-existing DM (n = 9) and in
68,5% of survived patients with new-onset DM types I and II (n =
54) (113). Furthermore, the death rate within the COVID-19
patients was substantially increased among newly diagnosed DM
than non-diabetic patients (18.2% vs 9.7%, p = 0.046) (113).

Analyzing the available data about SARS-CoV-2 and
hyperglycemia, it is clear that new-onset hyperglycemia and new-
onset diabetes are related to higher mortality risk. Additional data
regarding the abovementioned studies are summarized in Table 1.
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TABLE 1 | Summary of studies dedicated to new-onset hyperglycemia/new-onset diabetes.

Outcome

ts • Death occurred in 41,7% of patients with
uncontrolled hyperglycemia vs. 14,8% of those
with diabetes (p < 0.001)

• Increased mortality in the group with uncontrolled
hyperglycemia/diabetes in comparison to subjects
with normoglycemia (28.8% vs 6.2% respectively;
p < 0.001)

re • OR 5.47; 95% CI 1.51–19.82; p = 0.010 for
composite outcome risk in people with secondary
hyperglycemia and COVID-19 in comparison
to normoglycemic patients

• OR 2.61; 95% CI 0.86–7.88; p = 0.09 for
composite outcome risk in people with diabetes
and COVID-19 in comparison to normoglycemic
patients

• Relative mortality risk reduction was demonstrated
for patients with no hyperglycemia HR 0.29; 95%
CI, 0.08–0.96; p = 0.04

• Compared to the reference group (no-DM/no-HG),
the no-DM/HG patients demonstrated increased
mortality - adjusted OR 21.94 (95% CI 4.04–
119.0), P < 0.001]; improved prediction of death
(P = 0.01) and faster progression to death (P <
0.01).

• Compared to the reference group (no-DM/no-HG),
the DM/HG patients showed increased mortality
[OR 17.06 (95% CI 3.46–84.1), P < 0.001).

l/l • Group with at admission FBG <6.1 mmol/l vs.
those with admission FBG ≥7.0 mmol/l - OR 3.99
(95% CI 2.71 - 5.88) for in-hospital complications

• Group with at admission FBG <6.1 mmol/l vs.
those with 6.1– 6.9 mmol/l - OR 2.61 (95% CI
1.64 - 4.41) for higher levels of in-hospital
complications

% • All-cause mortality - HR 2.64; 95% CI, 0.50–14.0)
at a 30-day-follow-up for hyperglycemic patients
without DM vs normoglycemic patients*

• All-cause mortality - HR 5.63; 95% CI, 1.22–26.0)
at a 30-day-follow-up for newly diagnosed
diabetes without DM vs. normoglycemic patients*

• Increased mortality rates for hyperglycemic
patients without diabetes in comparison to
normoglycemic COVID-19 individuals - HR 2.20;
95% CI, 1.27–3.81; p = 0.005

(Continued)
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Authors, year,
country

Time frame of
enrollment

N Study design Age, years, mean, SD Hyperglycemiа cut-off

Bode et al. (2020),
USA (20)

01.03 – 06.04.2020 1122 Diabetes and/or uncontrolled
hyperglycemia vs. Absence of
diabetes or uncontrolled
hyperglycemia

65 (24-95) - group with
DM and uncontrolled
hyperglycemia; 61 (18 -
101) - group without DM
and hyperglycemia

Uncontrolled hyperglycemia 2 measuremen
of BG ≥ 10,0 mmol/l within 24-hour period
Diabetes HbA1c ≥ 6,5%

Zhang et al.
(2020), China
(102)

08.02 – 21.03.2020 166 Control group vs. Secondary
hyperglycemia vs. Diabetes

62,7±14, 2 No diabetes history, FPG ≥ 7,0 mmol/L be
glucocorticoid administration, but HbA1c <
6.5%

Sardu et al.
(2020), Italy (103)

Since 20.02.2020 –

till manuscript
preparation

59 Normoglycemia vs.
Hyperglycemia (18% of them
with previous history of
diabetes)

68,5±5,8 –

hyperglycemia group;
66,6 ± 11,5 –

normoglycemia group

FPG > 7,77 mmol/l

Mamtani et al.
(2020), USA
(21)

15.03 – 03.05.2020 403 No-DM/no-HG vs. No-DM/
HG vs. DM/HG vs. DM/no-HG

54,9±13,55 FPG ≥ 7,78 mmol/l

Wang et al.
(2020), China (22)

24.01 – 10.02.2020 605 Normoglycemia vs. IFG vs.
Hyperglycemia

59 FBG 6,1–6,9 mmol/L and FPG ≥ 7,00 mmo

Li et al. (2020),
China (23)

22.01 – 17.03.2020 453 Normal glucose vs.
hyperglycemia vs. newly
diagnosed diabetes vs known
diabetes

61 FPG 5,6–6,9 mmol/L and/or HbA1c 5,7–6,
for hyperglycemia

Coppelli et al.
(2020), Italy (105)

20.03 – 30.04.2020 271 Normoglycemia vs. known
diabetes vs. new-onset
hyperglycemia

N/A FPG ≥ 7,78 mmol/L
;

fo
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TABLE 1 | Continued

rs, mean, SD Hyperglycemiа cut-off Outcome

dy population
; group 2 –

3 - 55

group 2 - 5,5 – 7,7 mmol/l and group 3 – 7,8 –

11,0 mmol/l
• Increased death rates in group 2 (5%) and group

3 (14%) in contrast to group 1 (2,1%); p < 0,05
• Increased mortality rates in group 2 in comparison

to group 3; p < 0,05
No/History of diabetes • COVID-19 individuals without diabetes in the ICU

had higher glucose than patients without diabetes
in the wards (p= 0.0077)

Newly-diagnosed diabetes - HbA1c value of
6.5% or higher; in the absence of an HbA1c
measurement, a RBG of 11,1 mmol/l or higher,
accompanied by signs and symptoms of
hyperglycemia.

• Composite outcome risk for new-onset diabetes
vs normoglycemia – OR 3,06 (2,04 – 4,57), p <
0,001

Group 2 - 5,53 to 7,27 mmol/L and group 3 -
≥ 7,27 mmol/L

• Better survival rates for those with BG <5.53
mmol/L in contrast to those with BG ranging from
5.53 to 7.27 mmol/L (HR 6.34; 95% CI, 1.45-
27.71) and ≥ 7.27 mmol/L (HR, 19.37; 95% CI,
4.68-80.17)

Newly diagnosed DM - no preceding history of
DM with FPG ≥ 7,0 mmol/l or RBG ≥ 11,1
mmol/l and HbA1c < 6.5%; newly discovered
unrecognized DM FPG ≥ 7,0 mmol/l or RBG ≥

11,1 mmol/l and HbA1c ≥ 6,5%

• Higher mortality in patients with newly discovered
DM in comparison to non-DM individuals (18,2%
vs. 9,7%, p = 0,046 )

RBG, random blood; composite outcome risk - MV, admission in ICU and death; MV, mechanical ventilation, ICU - intensive care unit;
for age, sex, smoking, systolic blood pressure, total cholesterol, admission to ICU, usage of - antihypertensive drugs, lipid-lowering
and corticosteroids.
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enrollment

N Study design Age, yea

Haymana et al.
(2021), Turkey (7)

11.03 – 30.05.2020 12817 Normoglycemia vs. BG of 5,5
– 7,7 mmol/l vs. BG of 7,8 –

11,0 mmol/l

Whole stu
- 44 years
45; group

Ilias et al. (2021),
Greece (106)

04 – 10.2020 157 No history of diabetes in the
wards vs. History of diabetes
in the wards vs. No history of
diabetes in the ICU vs. History
of diabetes in the ICU

60,2±15,3

Fadini et al.
(2020), Italy (67)

02 – 04.2020 413 Normoglycemia vs New-onset
diabetes vs. Diabetes

64,9±15,4

Sun et al. (2021),
China (9)

02.02 – 25.03.2020 268 Normoglycemia vs. patients
with 5,53 – 7,27 mmol/l vs.
subjects with BG ≥ 7,27
mmol/L

57,75

Farag et al (2021),
Egypt (113)

01.04 – 31.05.2020 570 Non-diabetic individuals vs.
Newly discovered DM

47,9±10.9

BG, blood glucose; FBG, fasting blood glucose; OR, odds ratio; CI, confidence interval; HR, hazard ratio
HG, hyperglycemia; DM, diabetes mellitus; IFG, impaired fasting glucose; N/A, not available. * - adjuste
agents, invasive mechanical ventilation, glucose-lowering drugs before inpatients and during inpatients,
;
d
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Gerganova et al. COVID-19 and Hyperglycemia
It is evident that different cut-offs (slightly higher/slightly lower),
which do not cover standard criteria for abnormal blood glucose,
could lead to over/underestimation of the observed findings. More
scientific data is necessary to define how COVID-19 actually
impacts carbohydrate metabolism and whether this finding is
transient or indicates actual diabetes.
IATROGENIC HYPERGLYCEMIA
Steroid-induced hyperglycemia is frequently encountered in
hospitalized patients. Past researches have demonstrated that
53–70% of patients without diabetes develop steroid-induced
hyperglycemia (114). A study performed in Australia
documented that 70% (n=80) of non-diabetic hospitalized
people had no less than one blood glucose measurement of ≥
10 mmol/L (115). The utilization of glucocorticoids in the setting
of COVID-19 infection, mainly following RECOVERY trial
publication, has increased (116). It could also be associated
with an increased risk of developing diabetes, primarily due to
the delayed or blunted recovery of b-cell damage (90).

Although high dosage therapeutic regimens of corticosteroids
are well-known to be associated with the onset and deterioration
of diabetes, hyperglycemia is not included in the list of remdesivir
side effects. However, the medical society has been alarmed about
the potential role of remdesivir in increasing blood sugar levels
(117, 118). Supposedly, such associations and the possible
mechanisms behind them are needed to be clarified via further
investigations. It is evident that those implications have to be
proven and has to be legitimated whether they are contributed
only by remdesevir or mainly by the SARS-CoV-2 infection itself.
POST-DISCHARGE CONSIDERATIONS
As the data regarding the exact mechanisms and epidemiology of
new-onset diabetes related to SARS-CoV-2 infection is scarce, it
is challenging to advise any particular recommendations for
post-discharge. Stress hyperglycemia may be transient in some
people, and it may revert to normoglycemia following COVID-
19 recovery (101, 113). Thus, they may not be classified as having
diabetes and may not require any glucose-altering therapy.
However, we presume that all COVID-19 hyperglycemic
patients will require follow-up at 1st month and at intervals of
3-6 months during the first-year post-discharge to determine if
the new-onset diabetes is permanent or transient. Nevertheless,
we strongly suggest that medical personnel should consider the
likelihood that the non-diabetic COVID-19 hyperglycemia
might be a harbinger of new or unmasked diabetes.

Prospective studies fol lowing COVID-19 related
hospitalization are scarce. A systematic review from 2016
concluded that at a 3-month follow-up, 18,8% of patients with
in-hospital hyperglycemia were with newly diagnosed diabetes.
However, its results could potentially be biased due to different
definitions of stress hyperglycemia, heterogeneity of enrolled
participants, follow-up intervals and lack of COVID-19
pandemic (119). Regarding SARS-CoV-2 infection, in particular,
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a Chinese collective showed an incidence of 3,3% of new-onset
diabetes at 6 months follow-up (120). The data from a healthcare
registry of the US Department of Veterans Affairs showed an
increased frequency of new-onset diabetes 6 months after
COVID-19 infection (121). Additionally, Ayoubkhani et al.
(2021) analyzed data from 47,780 people discharged following
hospital admission for COVID-19 and reported that 4.9%
developed diabetes at a mean follow-up of 140 days (60).

Considering the above-mentioned points, we may presume
that new-onset diabetes associated with SARS-CoV-2 infection
is a new potential risk to be expected in the post-COVID
period. Moreover, it allows us to observe these patients in the
long term and conduct research studies that include
epidemiological and interventional approaches. Additionally,
the CoviDIAB Project has been started by leading diabetes
professionals and is dedicated to establishing and managing a
global registry of patients with COVID-19-related diabetes
(27). Hence, additional international collaborative research
programs are essential to elucidate the natural disease
epidemiology of COVID-19 and its consequences concerning
carbohydrates metabolism.
CONCLUSION

In brief, the extensive results of all aforementioned researches
suggest that hyperglycemia in COVID-19 infection is a complex
phenomenon. On one side, it could be new-onset hyperglycemia
without diabetes as a result of stress, SARS-CoV-2 infection itself
or unmask/latent diabetes. Conversely, it could be, of course, due
to a deterioration of pre-existent diabetes. Nevertheless, it should
be considered that the new-onset hyperglycemia without
diabetes is associated with a poorer outcome and substantially
higher rates of complications and overall mortality compared to
normoglycemic individuals and those with prior diabetes.

In summary, it seems that the new-onset hyperglycemia
without diabetes increases the composite outcome risk nearly
6-fold and the mortality risk approximately 3-fold compared
to people without carbohydrate disturbances. Additionally,
the mortality risk is nearly two times higher in COVID-19
patients with new-onset hyperglycemia without diabetes vs
those with preexistent diabetes. Finally, new-onset diabetes
is presumed to increase mortality risk 4-10 fold in contrast
to normoglycemic patients. Worse outcomes were observed
2-4 times more frequently in patients with new-onset diabetes
than those with pre-existent diabetes. It is worth, noting that
there exists a significant inter-study variability of the
aforementioned results.

So far, the available data is insufficient to clarify whether
COVID-19 infection and associated stress hyperglycemia have
any specificity with age, sex, ethnicity, and socioeconomic profile.
To the best of our knowledge, only Coppelli et al. (2020)
demonstrated that hyperglycemia, not DM remained a mortality
predictor with an independent role for age and male sex.
Additionally, Mamtani et al. (2020) demonstrated adjusted OR
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for hyperglycemia and age of 1.05 (21). Inmost other cases, studies
have adjusted their results to age, sex, etc., but did not assess
specificity for COVID-19 and stress hyperglycemia Further,
prospective studies with larger cohorts are required to elucidate
the pathophysiological mechanisms behind hyperglycemia in
COVID-19 patients fully and to clarify whether hyperglycemia
is a consequence or a causal primary factor.
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