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Background: Liraglutide is a glucose-lowering medication used to treat type 2 diabetes
and obesity. It is a GLP-1 receptor agonist with downstream metabolic changes beyond
the incretin system, such as reducing the risk of cardiovascular complications. The
understanding of these changes is critical for improving treatment outcomes. Herein,
we present a post hoc experimental analysis using metabolomic phenotyping to discover
molecular mecphanisms in response to liraglutide.

Method: Plasma samples were obtained from The LiraFlame Study (ClinicalTrials.gov
identifier: NCT03449654), a randomized double-blinded placebo-controlled clinical trial,
including 102 participants with type 2 diabetes randomized to either liraglutide or placebo
treatment for 26 weeks. Mass spectrometry-based metabolomics analyses were carried
out on samples from baseline and the end of the trial. Metabolites (n=114) were
categorized into pathways and linear mixed models were constructed to evaluate the
association between changes in metabolites and liraglutide treatment.

Results: We found the free fatty acid palmitoleate was significantly reduced in the
liraglutide group compared to placebo (adjusted for multiple testing p-value = 0.04).
The activity of stearoyl-CoA desaturase-1 (SCD1), the rate limiting enzyme for converting
palmitate into palmitoleate, was found significantly downregulated by liraglutide treatment
compared to placebo (p-value = 0.01). These metabolic changes have demonstrated to
be linked to insulin sensitivity and cardiovascular health.

Keywords: liraglutide, GLP-1 RA, palmitoleate, palmitoleic acid, stearoyl-CoA 9-desaturase 1 (SCD1), type 2
diabetes (T2D), monounsaturated fatty acid (MUFA)
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INTRODUCTION

An increasing number of people worldwide are diagnosed with
type 2 diabetes and are in need of pharmaceutical therapy to
manage their blood glucose (1). However, with multiple anti-
hyperglycemic therapies available, an improved mechanistic
understanding of these drugs is needed for their efficient use
(2, 3). Liraglutide is a GLP-1 receptor agonist and a medication
utilized for lowering blood glucose in people with diabetes and
for inducing weight loss in people with obesity. Liraglutide was
designed to mimic endogenous GLP-1 and binds to the GLP-1
receptor triggering insulin secretion (4), yet displaying effects
beyond the incretin system. Liraglutide shows additional effects
such as weight loss (5-10), reduces the risk of cardiovascular
diseases (11-13) and improves the lipid profile (14-17). These
mechanisms, while crucial to sustain long-term health, are not
well understood. Using lipidomics we reported widespread
changes to the circulating lipidome after liraglutide treatment;
particularly unsaturated triglycerides, phospholipids and
ceramides were reduced by liraglutide (18). Given these
observations, we hypothesized that small polar and bioactive
lipids could be further involved in liraglutide induced
metabolism. To this end, we have also measured polar small
molecules using metabolomics to discover novel insights in this
complex mechanism (19, 20).

In the present study, we aimed to investigate the metabolic
changes that follows liraglutide treatment compared to placebo
in people with type 2 diabetes, using mass spectrometer
approaches and uncovered palmitoleate and SCD1 metabolism
as possible mediator in lipid changes induced by liraglutide.

MATERIALS AND METHODS

Clinical Trial

Plasma samples were acquired from the clinical trial The
LiraFlame Study which has previously been described in detail
(21) and registered at ClinicalTrials.gov with the identifier:
NCT03449654. In brief the trial consisted of 102 participants
with type 2 diabetes, age > 50 years and HbA;¢ > 48 mmol/mol.
Participants were randomized to receive daily subcutaneous
injection of liraglutide (up to 1.8 mg daily) or placebo treatment
for 26 weeks. The maximum dosage of 1.8 mg/day were reached in
70 of the 102 participants as per protocol in an average of 18 days.
From the remaining 32 participant 8 were given full dose by the
end of the trial, 12 had their dose reduced and 12 discontinued
treatment before week 26. An overview can be found in
Supplementary Table 1. The Primary outcome of change in
vascular inflammation assessed by FDG PET/CT was not
reached (21). Participants were receiving standard care in
addition to the trial. Plasma samples were collected for analysis
at baseline and end of treatment. Participants were told to be
fasting for 4 hours prior to blood sampling. Five participants
dropped out and did not have blood samples taken at the end of
the trial and was therefore not included for the statistical analysis.

This study was carried out in concordance with the principles
of the Declaration of Helsinki and ethics approval was granted by
local ethics committee (H-16044546) and the Danish Medicines
Agency (2016110109). Participants provided written informed
consent before being included.

Metabolomics

Metabolites were measured post hoc in the blood plasma with an
untargeted approach using two-dimensional gas chromatography
coupled to a time-of-flight mass spectrometer (GCxGC-TOFMS)
from LECO Corp. This technique has been fully explained by
Pedersen et al. (20). Data preprocessing, peak matching, alignment
and normalization were performed using ChromaTOF software
from LECO Corp. and Guineu (22).

A panel of 31 metabolites associated with diabetes and metabolic
dysregulation were also measured and quantified using a targeted
method based on ultra-high-performance liquid-chromatography
linked to a triple-quadrupole mass spectrometer (UHPLC QQQ-
MS/MS) from Agilent Technologies as reported by Ahonen et al.
(23). Metabolites measured in both methods were compared for
technical validation.

Statistics

Pathway Analysis

Metabolites were classified into pathways adapted from Green
et al. (24). Pathways with less than 4 metabolites were not
included, resulting in 8 investigated pathways. Metabolites
within each pathway were z-transformed, the mean was then
used to create a combined score for each pathway. Linear mixed
models for each pathway was constructed, explaining pathway
score as a function of treatment and time, allowing random
effects between participants to evaluate which pathways were
changed by treatment.

Single Metabolite in Selected Pathway

To determine which metabolites were affected by liraglutide
treatment compared to placebo we created linear mixed
models for each metabolite, explaining metabolite level as a
function of treatment and time, allowing random effects
between participants. Adjustment for sex, change in BMI,
change in HbA;. Treatment dose, use of lipid lowering
medication (statins) and thiazolidinedione treatment was also
evaluated. Data analysis and visualization were performed with R
(25). Linear mixed models were fitted using the Ime4 package in
R (26) and the models were visualized using ggplots and ggeffects
also in R (27, 28). P-values were corrected for multiple testing
using FDR correction. All metabolites were logl0 transformed
prior to analysis. Effect size between the two treatment groups
were calculated using the effsize package in R (29).

Enzyme Activity

The ratio of plasma fatty acid product and substrate were used as
surrogate for enzyme activity. SCD1 activity was calculated as the
product-to-precursor ratio between palmitoleate and palmitate
(30-33).
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Metadata Exploration

Correlations of metabolites and clinical measurements were
investigated and visualized using corrplot package in R (34)
with a cutoff of minimum 30% correlation, this analysis
integrated lipids from our previously reported lipidomics data
(18). A mediation analysis was carried out on metabolites of
interest, testing if their association to liraglutide treatment
compared to placebo was mediated by change in BMI, this was
done using linear regression models, the effect and significance
was estimated by generating 500 sets of bootstrapped data using
the mediator package in R (35).

RESULTS

In this study, metabolomics analyses covering 114 small polar
molecules were carried out on plasma from participants with
type 2 diabetes (n=102), randomized to receive either liraglutide
or placebo treatment for 26 weeks on top of their current
treatment (Table 1) (21). We found that the free fatty acid
palmitoleate was significantly lower in the liraglutide treated
group compared to placebo (adj. p-value = 0.04) and in
extension, that the enzymatic activity of SCD1 was significantly
downregulated after liraglutide treatment compared to placebo
(p-value = 0.01) as visualized in Figure 1.

Palmitoleate Is Lowered by Liraglutide

Polar metabolites were measured applying untargeted
metabolomics and targeted (n=31) molecules were fully
quantified using heavy labeled isotopes (19, 23). Initially, the
association between the metabolite profile and liraglutide

treatment was investigated by mapping metabolites to
metabolic pathways. Pathways containing four or more
measured metabolites were included for further analysis.
Notably, we did not observe any significant change in
glycolysis, gluconeogenesis or pyruvate metabolism
(Supplementary Table 2). The pathway containing four
molecules pertaining to SCD1 metabolism showed nominal
downregulation in response to liraglutide treatment compared
to placebo (p-value = 0.08), which led to further investigation of
the metabolites within. Fatty acid changes were investigated
using linear mixed models, all showed a lower (1-2%)
concentration at the end of the trial compared to the baseline
in the group treated with liraglutide, this was not the case for the
placebo group (Table 2). Palmitoleate showed a significant
decrease of 4.2% (adj. p-value = 0.04) following liraglutide
treatment compared to placebo (Table 2). Adjustments for sex,
change in HbA ¢, treatment dose, lipid lowering medication and
thiazolidinedione treatment did not affect this result
(Supplementary Table 3). Adjustment for change in BMI

TABLE 1 | Clinical characteristics of participants in The LiraFlame Study

at baseline.
Randomized to

Liraglutide Placebo
Number 51 51
Women (%) 6 (11.8%) 10 (19.6%)
Mean age in years (SD) 65.9 (8.6) 66.9 (7.8)
BMI in kg/m? (SD) 30.5 (5.3) 29.3 (3.8)
HbA ¢ in mmol/mol (SD) 58.7 (9.6) 58.0 (10.6)

Percentage change in palmitoleic acid

Placebo

Liraglutide

-0.75

-0.80

-0.85

Modeled SCD1 activity

-0.90

Treatment
0 Liraglutide
@ Placebo

-0.95

0 2 4 6 8 10 12 14 16 18 20 22 24

Weeks

FIGURE 1 | Level of paimitoleate and SCD1 activity. Change in levels of Paimitoleate and SCD1 after treatment with Liraglutide. (A) Change in paimitoleate during
the trial in percentage, comparing distribution between liraglutide treatment and placebo. (B) SCD1 activity with liraglutide treatment and placebo in participant with
type 2 diabetes (n =97). The SCD1 activity is fitted to observation at baseline and after 24 weeks of therapy using a linear mixed model that allows for random effects

between individuals. SCD1 activity ~ Treatment*Time + (1|Patient ID).
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TABLE 2 | Change in SCD1 metabolites and association to liraglutide and placebo treatment.

Average percentage change (SD)

Liraglutide Placebo
Palmitate (C16:0) -1.3% (4.6) -0.3% (4.0)
Palmitoleate (C16:1 n-7) -4.2% (14.3) +3.1% (15.9)
Stearate(C18:0) -1.6% (4.6) -0.5% (3.9)
Oleate (C18:1 n-9) -1.8% (7.7) +0.5% (6.4)
SCD1 activity +14.5% (43.1) -4.1% (22.6)

Linear mixed model effect of treatment Cohens ds (Cl)
Coefficient p-value Effect size

0.05 0.18 -0.4(0.0-0.8)

0.23 0.04* -0.5(-0.1 -0.9)

0.05 0.18 -0.2(0.2-0.6)

0.12 0.11 -0.4(0.0-0.8)

0.01 0.01* -0.5(-0.1 -0.9)

Average percentage change is calculated for each individual as (end of the trial - baseline)/baseline * 100. Then average and standard derivation was calculated. Linear mixed models were
constructed for each metabolite (and SCD1 activity) with the following formular: x ~ treatment type*time point + (1|patient ID). Linear mixed models were fitted using the Ime4 package in R.
All metabolites where adjusted for multiple testing, SCD1 activity was not. Standardized mean difference of two treatment groups were calculated using the effsize package in R.

*Signifies a p-value <0.5; ** signifies a p-value <0.01.

changed the adjusted p-value from 0.04 to 0.06 (Supplementary
Table 3). Participants receiving liraglutide showed significant
improvements in body weight (21), prompting us to investigate if
the effect of liraglutide on palmitoleate was mediated by change
in BMIL Spearman correlation showed no strong correlation
between level of palmitoleate and BMI (Supplementary
Figure 1). Mediation analysis resulted in a non-significant
casual mediation effect (p=0.09) indicating that change in BMI
was not mediating the effect of liraglutide on palmitoleate
(Supplementary Table 4).

SCD1 Activity Is Decreased by Liraglutide
Since lower levels of palmitoleate could be indicative of
dampened SCDI1 activity, we focused on understanding the
association between SCD1 activity and liraglutide treatment.
SCD1 is the rate limiting enzyme for converting saturated fatty
acids (SFAs) into monounsaturated fatty acids (MUFAs),
specifically the conversion of palmitate (also called palmitic
acid or C16:0) into palmitoleate (palmitoleic acid or C16:1n7)
and stearate (stearic acid or C18:0) into oleate (oleic acid or
C18:1n9). SCD1 activity has been accurately approximated as the
ratio between circulating palmitoleate and palmitate (31, 33).
SCD1 activity was downregulated by liraglutide treatment
compared to placebo (p-value < 0.01) (Figure 1), adjustment
for sex, change in BMI, HbA ¢ and lipid lowering medication did
not affect this result (Supplementary Table 3).

Correlation matrices were computed to further explore
metabolic changes. Lipidomic data from our previous work was
added for these additional multi-layer analyses (18). Palmitoleate
correlated with other free fatty acids such as palmitate, oleate, and
tetradecanoate (myristic acid), to several phosphtatidylcholines
and to alcohol intake (Figure 2). The SCD1 activity associated to
fatty acids and phosphtatidylcholines similar to palmitoleate
(Supplementary Figure 2).

DISCUSSION

In the present study we found that palmitoleate showed a
significant decrease with liraglutide treatment. However, there
is conflicting evidence when reviewing the bioactivity of
palmitoleate in the literature. Several clinical studies found that
increased palmitoleate was associated with increased insulin

sensitivity (36-38), suggesting for it to be a lipokine with
protective metabolic properties (39). On the other hand, have
other clinical studies reported that higher levels of palmitoleate
were associated with increased insulin resistance (40-42). The
discrepancies could be ascribed to differences in cohorts with
varying health status and BMI, being the reason why in our study
we analysed the data by adjusting for several variables including
BMI (42, 43). We observed that the levels of circulating
palmitoleate associated to alcohol intake in concordance with
previous observations (41, 44).

Here we showed that the SDCI activity was significantly
reduced in the liraglutide group compared to placebo.
Interestingly, an equivalent activity reduction to the levels
found here, was achieved by Corpeleijn et al. in a lifestyle
intervention of diet and exercise which improved insulin
sensitivity and reduced SCD1 activity as measured in serum
(30). Studies performed in rodent models have also shown that
inhibition of SCD1 improved insulin sensitivity and prevented
diet-induced obesity (45-47). While the opposite direction of
change, increased level of palmitoleate and SCD1 activity, has
been associated with a higher risk of heart failure (32) and
mortality (48).

SCD1 is regulated by multitude of factors and the two major
influencers are insulin and leptin (49, 50). SCD1 is activated by
insulin (51, 52) and inhibited by leptin (53-55). Iepsen et al.
found that liraglutide caused leptin to be retained in circulation
for longer (56), which might help explain the inhibition of SCD1
we observe. Other studies found the amount of leptin decrease
after liraglutide treatment (17, 57). It is possible that glucagon
(and thus glucagon mimicking compounds) can affect SCDI
directly as one study showed impaired SCD1 gene expression
following glucagon treatment in chicken hepatocytes (58).
Statins and thiazolidinediones have been observed to lower
SCD1 expression in cell cultures (59, 60), adjustments for
statins (lipid lowering medications) and thiazolidinediones did
not affect the results presented here (Supplementary Table 3).

It is worth noting that the reduction in palmitoleate and
SCD1 activity was observed without accumulations of the
precursor, palmitate, in circulation. Palmitate is known to
induce apoptosis in beta-cells and endothelial cells leading to
insulin resistance and atherosclerosis, respectively (61-63).
Liraglutide has been shown to protect against the lipotoxicity
induced by palmitate in both beta-cells and endothelial cells, this
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@ Palmitoleate
0@ a(R)-OHB & a(S)-OHB

Palmitoleate
a(R)-OHB & a(S)-OHB
b-OHB

Myo inositol
Stearate @
Oleate @ ® @
Linoleate @ ©® ®
Palmitate @ ® ®
Citrate
3-Hydroxybutyrate © ® @
alpha-ketoglutarate ®
2-Hydroxybutyrate ~ @ ®
Arachidonate
2,3-Dihydroxybutanoate
9-Octadecenoate (Z)-, methyl ester
Doconexent ®
Dodecanoate @
Heptadecanoate @
Hexadecanoate, methyl ester
L—(-)—Arabitol
Tetradecanoate @
Stearoyl-coA desaturase activity @
Alcohol consumption

31 targeted metabolites. Visualized using the corrplot package in R.

have been suggested to be part of the cardio-protective attributes
of liraglutide (64, 65). Here we show that the ratio of palmitoleate
to palmitate is decreased by liraglutide treatment in a clinical
trial, however the decrease in palmitate was not significantly
different between the treatment and placebo group.

It is expected that regulation of SCD1 activity could affect the
entire lipidome (49, 66). For instance, palmitoleate and oleate are
important substrates for the biosynthesis of larger lipids,
especially triglycerides, phospholipids and cholesterol esters
(49). Dobrzyn et al, 2005 found that SCD1 deficiency reduced
the amount of ceramides by around 40% (67). We previously
reported decreases in phosphtatidylcholines, triglycerides and
ceramides after liraglutide treatment compared to placebo in this
cohort (18), the decrease was stronger in highly unsaturated
lipids, suggesting that a reduction in SCDI activity and
availability of MUFAs is involved.

To our knowledge this is the first time liraglutide has been
shown to impact MUFA dynamics in humans. The
downregulation of palmitoleate and SCD1 activity observed
could help explain a favorable cardiovascular profile observed
with GLP-1 RA treatment. A major strength of our findings is
that metabolomics was carried out in a well characterized
double-blinded randomized clinical trial. The LiraFlame Study
showed improvement in HbA;¢ and body weight, but reduced
vascular inflammation was not observed (21). Technically
experiments were performed in two metabolomics platforms

32 5
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FIGURE 2 | Correlation matrix for palmitoleate. Variables correlated with paimitoleate. Correlation matrix plotting Pearson correlations for variables with more than
30% correlation to palmitoleate. Showing 33 out of 816 variables: 214 clinical measurement, 261 lipids, 117 untargeted metabolites, 193 unannotated metabolites,

and molecules measured in both showed high correlation, for
example, glutamic acid corr = 0.90 (0.87-0.93, p-value < 2.2e-16)
due to accurate analytical pipelines.

Here we report that Liragutide reduces the levels of
palmitoleate and SCD1 activity suggesting that this mechanism
could explain in part downstream metabolic changes beyond the
incretin system such as improving lipid profile and reducing the
risk of cardiovascular complications.
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