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This contribution highlights the complex role of sexual and genetic differences,

behavioral habits, and learning of new skills in shaping the circuitry and the

neuroanatomy of the perceptual and sensory human brain. Research in recent years

has shown that the brain does not necessarily develop in a predetermined way, and

that certain structures and circuits observed in different types of individuals may

appear differently in others. In the last 20 years, cognitive neuroscience has made great

progress in the identification of the neural circuits underlying the ability to perceive

sensory stimuli, recognize them perceptually, categorize them, and imagine them, in

the various sensory modalities. A major impetus for the development of this knowledge

was given by the development of increasingly sophisticated neuroimaging techniques

such as cellular microscopy, Positron Emission Tomography (PET), functional Magnetic

Resonance Imaging (fMRI, reaching 7-tesla, e.g., Allen et al., 2022), MEG, diffusion

tensor imaging (DTI, Rouw and Scholte, 2007), optogenetics (Day-Cooney et al., 2022).

It proved particularly fruitful to compare data obtained with different techniques both in

order to overcome their individual technical limitations, and to approach the subject of

investigation from different points of view, as in Peelen and Downing’s (2007) paper on

visual body perception, for example. There are four aspects of the perceptual brain that,

in our opinion, need to be investigated from a more dynamic and flexible perspective, to

provide a more realistic view of the neural mechanisms under investigation:

Neuroplasticity modifies perceptual networks at
the level of gray and white matter

It is known that perceptual and sensory processes are not prefixed and stereotyped,

but strongly affected by learning, familiarity, and the development of new skills. The

examples are innumerable. For example, musical education results in macroscopic and

well-documented neuroplastic changes in the processing of linguistic andmusical sounds

at the level of the primary and secondary auditory areas. Music skills also change the

way brainstem processes auditory information, by strengthening oscillatory mechanisms
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designed for processing the temporal structure of speech and

music (Doelling and Poeppel, 2015). Again, musicianship can

alter the way the superior temporal area processes audiovisual

information (as in the McGurk effect, e.g., Proverbio et al.,

2016). Musical expertise can modify the neural circuitry of word

recognition, through the development of a right-sided visual-

word form area for reading notes and words (Proverbio et al.,

2013). In the same way, motion perception is enhanced in deaf

native signers (Quandt et al., 2021), subcortical encoding of

sound is enhanced in bilinguals (Krizman et al., 2012), visual

recognition of actions is more accurate in skilled dancers or

athletes (Proverbio et al., 2012; Orlandi and Proverbio, 2019;

Orlandi et al., 2020), and so far and so on. These behavioral

changes are accompanied by changes in neuronal networks,

connectivity, and brain volume, all referable to neuroplasticity

so that there is no single way of perceiving sensory stimuli in the

human brain.

Of course, also pathological factors can affect cerebral

neuroplasticity at molecular, cellularm, and structural levels,

thus resulting in severe disruptions in emotional, cognitive,

and social behavior. As the population ages, an extraordinary

effort would be needed to more satisfactorily treat the genetic

and molecular causes of dementia and neurodegenerative

diseases, thanks also to the recent identification of many reliable

biomarkers (Gatto, 2020).

Sensory analysis is modulated by
higher-order factors (attention,
arousal, emotion) since the earliest
stage of processing

Recent findings have provided evidence of an early filter

of sensory information at thalamic and amygdala levels: ∼40–

70ms of post-stimulus latency. Kastner et al. (2020) have

highlighted the role of the pulvinar thalamic nucleus in gating

sensory inputs within and between cortical areas, synchronizing

cortical activity across brain regions, and controlling cortical

excitability. Consistently, through a simultaneous EEG-fMRI

study, Müller-Bardorff et al. (2018) have shown how the

amygdala nuclei modulate visual response to facial expressions

thus rapidly biasing stimulus processing as a function of its

emotional valence. Again, converging neurophysiological and

neuroimaging findings suggest that thalamus and pulvinar,

and cortico-striatal projections might serve early attention and

alertness modulation of visual processing (regulated by fronto-

parietal top-down control), active as early as 30ms post-stimulus

latency, and as reflected by N40 response of visual evoked

potentials (Proverbio et al., 2021).

These data suggest that the distinction between early visual

processing (objective, photographic analysis) and late perceptual

analysis (modulated by top-down factors) is more subtle

than previously thought, and perhaps limited to pre-thalamic

visual processing.

Atypical functioning might alter
neuroanatomy and not always the
contrary (i.e., that anomalous
neuroanatomy causes deficits)

A paradigmatic case of this relationship is the hypo-

activation of the fusiform face area (FFA) observed in people

with Autistic Spectrum Disorder (ASD). Sometimes this is

accompanied by a reduced volume and hypo-activation of

other brain areas involved in face processing, such as the right

amygdala, the inferior frontal cortex, the superior temporal

sulcus, and the premotor cortex (mirror neurons) (Hadjikhani

et al., 2007). These neuroanatomical anomalies of ASD

individuals are believed to be causally related to their deficits

in social behavior, including the abnormal visual processing of

human faces, the tendency of avoiding people’s faces and eyes,

and the lack of imitative behavior and reciprocity. However,

persistent and early social avoidance might be the cause of the

hypo-activation of the face and the social areas of the brain.

In this regard, a recent study has shown the possibility to

train participants with ASD to achieve up-regulation of the

FFA activation using neurofeedback based on real-time fMRI

(Pereira et al., 2019). This data is quite relevant in suggesting

how specific training can reduce the anatomical alterations,

which would therefore not be the cause but the effect of some

of these deficits.

A similar case is the magnocellular theory of dyslexia (Stein,

2001), according to which certain forms of developmental

dyslexia would be caused by an anomalous development of

the visual magnocellular system, also resulting in: deficits in

contrast sensitivity, motion processing, binocular control, and

visuospatial attention. This deficit would also determine a

hypo-activation of the parietal cortex (V5/MT) during motion

processing. Using fMRI, it was more recently demonstrated

that when dyslexics are matched to younger inexperienced

readers, no metabolic differences emerge, thus suggesting that

the hypoactivation of V5/MT might not be the real cause of

dyslexia. In a further test, dyslexics underwent a phonological-

based reading intervention followed by new fMRI scanning,

and it was found that V5/MT activity increased along with

intervention-driven reading skills (Olulade et al., 2013). These

findings provide strong evidence that visual magnocellular

dysfunction is not the cause of developmental dyslexia but

may instead be consequential to impoverished reading and

insufficient visuomotor and ocular training.

These are two very strong examples of how neuroplastic

changes induced by behavioral habits can modify genetically

determined functional neuroanatomy and produce new deficits
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FIGURE 1

Simplified model of the interplay between genetic and environmental factors in perception. Genetic factors (such as for example, being a

female, or having an atypical connectivity or functional lateralization) may result in a bilateral activation of FFA during face processing, or to an

insu�cient activation of the left VWFA during letter processing. The development of new skills, due to an extensive practice (e.g., studying

music) or to neuro-rehabilitation (e.g., a phonological-based reading intervention) can in turn modify neuroanatomy (neuroplasticity interacts

with genetics). Higher order mental functions such as emotion, motivation, attention and arousal also modulate the way sensory and perceptual

areas of the brain process the incoming inputs.

(e.g., the hypoactivation of FFA or of MT) or reduce previous

shortcomings (e.g., as in the case of neuro-rehabilitation

or neuro-training).

Diversified functional circuits and
lateralization of perceptual
processes in the two sexes

After many influential papers (e.g., see Cahill and Aswad,

2015; Gur and Gur, 2017), editorials, and special topics

devoted to this issue (e.g., P, rager2017), the time has come

that sex differences should finally be taken into consideration

in neuroscientific research. This paragraph regards sex

differences in hemispheric functional lateralization. As is

well known, some mental functions are more lateralized

in one of the two hemispheres in humans (e.g., memory

encoding vs. retrieval, language, spatial attention, music

processing (etc...). Nevertheless, lateralization seems less

pronounced in women especially for language (e.g., Kansaku

et al., 2000). This sexual dimorphism might explain the

lower incidence of aphasia in women (Sharma et al.,

2019), and, more in general, the many sex differences in

neurological and psychiatric disorders (Young and Pfaff,

2014).

The most paradigmatic example of sex differences in

perception concerns face processing, which appears differently

wired in the two sexes (Proverbio, 2021a). Much evidence

has shown that the Fusiform Face Area (FFA) is active

bilaterally in women and mainly over the right side in men

(e.g., Proverbio et al., 2006, 2010; Liu et al., 2020). This leads

to obvious consequences in the case of brain injuries and

prosopagnosia. A recent meta-analysis, conducted from an

initial database of 250 Event-related potentials (ERP) and

MEG articles, dated between 1985 and 2020, and involving

strictly right-handed and healthy participants aged 18–35

years (from Asia, Europe, and America continents), found

a marked right-sided asymmetry of the N170 bioelectrical

activity in males, and a bilateral or left-sided activity in females,

during the processing of neutral upright faces (Proverbio,

2021b). Only female participants showed significantly larger left

hemispheric responses compared to right (in the right visual

field stimulation), whereas male participants always showed a

right-sided activation. Consistently, a systematic meta-analysis

of functional neuroimaging data (Liu et al., 2020) using two

independent structural-neuroimaging datasets (n > 2,000), has
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reported a sex difference in the concentration of human gray

matter volume (GMV) within brain regions subserving face

processing, with a statistically significant male-minus-female

GMV over the right hemisphere in face areas. Overall, it seems

that FFA is not just randomly more active over the right side or

bilaterally depending on the study or the experimental setting,

but it is consistently more active over the right hemisphere

in men, and bilaterally in women during face perception,

due to biological sex. Indeed, by imaging-transcriptomic

analyses, Liu et al. (2020) showed that GMV sex differences in

face areas were specifically coupled to regional expression of

sex-chromosome genes.

Another perceptual domain where the effect of sex and

sex hormones seems to affect performance and hemispheric

lateralization is the visuo-spatial rotation of 3D shapes, which is

the ability to identify how a tridimensional object would appear

if rotated in space. Studies have investigated the hormonal

basis in males favoring spatial abilities and have suggested

a role for testosterone, both at the intrauterine level, during

neurodevelopment (e.g., in puberty, Vuoksimaa et al., 2012)

and in adult life. Meta-analysis of individuals with congenital

adrenal hyperplasia (exposing the fetus to excessive amounts

of testosterone), evidenced sex-specific effects of testosterone

on visuospatial abilities (Puts et al., 2008). Again, females with

adrenal hyperplasia have better spatial abilities than control

females. Interestingly, a study on twins reported significantly

better mental rotation test performance in females with a male

twin compared to females with a female twin (Vuoksimaa

et al., 2010). This pattern of results might be due to prenatal

exposure to higher levels of testosterone in females with a

male twin. These sex differences in performance seem to be

associated with an anatomo-functional difference. For example,

Hahn et al. (2010) found a bilateral parietal activation during

3D rotation in preschool boys, and a left-sided activation

in girls. Partly in agreement, the fMRI study by Hugdahl

et al. (2006) reported a bilateral activation of the superior

parietal cortex in men and a right-sided parietal activation

in women.

If neuroscientists have found a sexual dimorphism in

the anatomy of FFA, structural MRI studies have also

reported sexual dimorphism in the parietal cortex anatomy

(Gur et al., 1999). For example, Koscik et al. (2009)

found that men compared to women had proportionately

greater parietal lobe surface area (especially over the left

hemisphere), and this morphologic difference was associated

with a performance advantage on mental rotation tasks.

However, the literature is not homogeneous on this matter,

since, for example, Hänggi et al. (2010) reported that in

women visuospatial cognition was correlated with left parietal

GMV differences, while in men with right parietal white

matter volume differences. In general, males seem to generally

outperform females on 3D shape rotation tasks (e.g., Astur

et al., 2004), and females usually outperform males on

facial expression recognition tasks (Proverbio, 2017). In both

cases, this might possibly be associated with a bilateral

(vs. unilateral) recruitment of devoted brain areas, due to

genetic and/or hormonal factors, but this hypothesis deserves

further investigation.

The cases of sexual dimorphism in hemispheric

lateralization for processing faces and 3D shapes are emblematic

of how genetics can differently shape the perceptual brain in

human individuals.

In conclusion, new and exciting research is needed

and sought to better comprehend how the perceptual

and sensory brain is modulated and shaped in various

individuals, in the multiple possible ways allowed by

our adaptive and plastic brain. In this regard, Figure 1

offers a simplified model of neuroplasticity in perception

(not including, for example, epigenetics), showing

how perceptual processes are not prefixed abilities

in humans but depend on the complex interaction

between genetic and “environmental” factors during an

individual’s lifetime.
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