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Di�erential e�ects of location
and object overlap on new
learning

Benjamin Chaloupka1,2 and Dagmar Zeithamova1,2*

1Department of Psychology, University of Oregon, Eugene, OR, United States, 2Institute of

Neuroscience, University of Oregon, Eugene, OR, United States

Introduction: Overlap with prior experience facilitates learning in some cases

while hindering it in others. As facilitation and interference are typically studied in

separate lines of research, using distinct paradigms, it is unclear what key factors

drive the opposing behavioral outcomes.

Methods: In two experiments, we tested whether both e�ects can be

observed within a single task, depending on what overlaps between experiences.

Participants completed a novel task in which they learned a grid of object-

location associations, followed by a second grid that overlapped with the first in

locations and/or objects. We hypothesized that overlap of locations would serve

as a spatial schema, facilitating new learning, while overlap of objects would

create interference.

Results: In line with our hypothesis, we found that location overlap facilitated

learning of the second grid, while object overlap hindered learning of the second

grid. We replicated these findings in a second experiment, additionally showing

that both e�ects remain largely stable across two distinct grid shapes.

Discussion: These results demonstrate that the e�ect of overlap can be

manipulated within a single task, pinpointing one factor that determines the

direction of the e�ect and highlighting the di�erential roles of “what” and “where”

in the organization of memory.
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1 Introduction

Overlap of experiences can facilitate new learning by allowing us to integrate new

experiences within an established framework. For example, imagine that you are visiting

a friend’s house for the first time. You are quickly able to orient yourself to the rooms in the

house because you already have a framework, or schema, of how a house is laid out. You

know that the kitchen and living room are likely on the ground level, the bedrooms are

upstairs, and so on. In this case, your prior knowledge of houses facilitates your learning

of the layout of your friend’s house. However, overlap of experiences can also hinder new

learning via proactive interference. Imagine that you head into your friend’s kitchen to

grab a spoon for a snack. You keep your utensils in the drawer next to the stove, but your

friend keeps theirs in the drawer next to the dishwasher. Even after you find the utensils the

first time, you keep going to the wrong drawer every time you come back to your friend’s

house. In this case, your prior knowledge (where you keep your utensils) interferes with

your learning of the new information (where your friend keeps their utensils). How can

overlap of experience facilitate new learning in some cases while hindering it in others?

Facilitation has often been studied in the context of schemas. A schema is a structured

mental representation of a concept or other complex stimuli that allows us to quickly

integrate new information into memory. The term “schema” was first applied to the field of
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cognitive psychology by Bartlett (1932), defining it as the

mechanism of learning by which new experiences are overlaid upon

prior experiences. Attneave (1957) demonstrated that participants

with prior knowledge of two kinds of schemas–letter patterns and

polygons–performed better on a paired-associates task compared

to participants without prior knowledge of the schemas. Building

on this work, Posner et al. (1967) showed that the degree of overlap

among stimuli directly related to the rate of new learning, such that

learning was faster when overlap was higher. These effects have

been replicated across a plethora of contexts (van Kesteren et al.,

2014; for a review, see van Kesteren et al., 2012) and modalities

(King et al., 2019). While it has been thought that schemas take

a long time to develop (Sommer, 2016), more recent research

suggests that schemas may develop quickly, even when not called

upon until the episodic memory for a specific event begins to fade

(Tompary et al., 2020).

In a seminal study that brought schema research back into

the spotlight, Tse et al. (2007) found that spatial schemas provide

a framework that facilitates new learning in rats. In this study,

rats were trained over several months to learn six flavor-location

associations in an arena, until they learned the associations well

and presumably developed a spatial schema of the arena and all

the relevant locations in it. Once a spatial schema was formed,

two of the flavor targets were replaced by new flavors and moved

to neighboring locations. The rats were given a single training

trial in which the new flavor-location pairs were rewarded. Despite

receiving only one trial to learn the new associations, the rats

successfully learned and retained the new pairs. This indicates

the facilitatory effect of a spatial schema on new learning. This

pattern has been replicated in humans, demonstrating that an

experimentally-learned spatial schema effectively facilitates new

learning (van Buuren et al., 2014). Collectively, this research

demonstrates that overlap with prior memories, particularly spatial

schemas, can facilitate new learning.

An equally established consequence of an overlap with prior

memories is interference. Specifically, proactive interference–

the memory of old information hindering the learning of new

information–was first described by Maslow (1934) nearly a century

ago. Later, Melton and von Lackum (1941) found that learning

of consonant strings was slower when they overlapped highly

with previously learned consonant strings. This was one of the

first studies that demonstrated that greater stimulus overlap leads

to greater interference. Wickens et al. (1963) confirmed this

effect by showing that proactive interference only persists so

long as the stimuli are of a similar kind; switching stimuli types

(consonant strings to number strings, or vice versa) did not lead

to interference. The finding that overlap with prior memories can

hinder new learning has been extended to semantic categories

(Wixted and Rohrer, 1993) and languages (Goggin and Wickens,

1971) and has been confirmed using a variety of tasks (Bunting,

2006; for a review, see Kliegl and Bäuml, 2021). Additionally,

overlap can be detrimental to associative memory, as demonstrated

in a classic AB/AC paradigm: after learning one set of paired-

associates (AB), participants have greater difficulty learning a

new set overlapping (AC) associations than non-overlapping (DE)

associations (Postman et al., 1974; Tulving and Watkins, 1974;

Wahlheim and Jacoby, 2013; Caplan et al., 2022). Taken together,

these findings indicate that overlap with an existing memory makes

it more difficult to encode a new one, and competition between

two overlapping memories makes the retrieval of a target memory

more difficult (Kuhl et al., 2007, 2011). Thus, a large body of

work has demonstrated that overlap with prior memories can

hinder learning.

As both the beneficial and detrimental effects of information

overlap on new learning have been well documented, how can we

reconcile these findings? As the schema research and interference

research have proceeded largely in parallel, using distinct task

paradigms, stimuli, timing, length of training, etc., it is challenging

to discern which differences are critical for the distinct behavioral

outcomes—facilitation vs. interference—across studies. In the

present study, we ask if it is possible to observe both facilitation

and interference within a single task by manipulating what overlaps

across experiences. Notably, many previous studies showing the

facilitatory effect of overlap did so using overlap with spatial,

conceptual, and relational schemas (Tse et al., 2007; van Buuren

et al., 2014). In contrast, many previous studies showing the

interference effect of overlap utilized list learning or associative

memory paradigms (Wickens et al., 1963; Goggin and Wickens,

1971; Postman et al., 1974; Wixted and Rohrer, 1993; Bunting,

2006). We thus developed a novel object-location association task

that allowed us to test the effect of two types of overlap, spatial

locations and object set, within a single task. Participants learned

one grid of object-location associations, and then learned a second

grid of object-location associations that overlapped with the first

in objects and/or locations. Given prior work showing facilitatory

effects of overlap with existing spatial schemas, we hypothesized

that location overlap will facilitate new learning. In contrast, given

prior work showing detrimental effect of overlap for word lists and

object pairs, we hypothesized that object overlap will interfere with

new learning. By manipulating these two factors together, we aim

to bridge the gap between schema and interference research and

reconcile the conflicting findings regarding the effect of overlap on

memory. In a second experiment, we aim to replicate the findings

from Experiment 1 and extend our findings by manipulating a

third variable.

2 Experiment 1

2.1 Materials and methods

2.1.1 Participants
Participants were recruited from the University of Oregon

human subjects pool and received course credit for their

participation. Informed consent was obtained from all participants

and experimental procedures were approved by Research

Compliance Services at the University of Oregon. We recruited

102 in-person participants (79 female, 22 male, 1 other), age 18–25

years (M = 19.33, SD = 1.52). Four participants were excluded for

failing to complete the task, and 13 were excluded for failing to

learn at least one of the grids within the allotted number of trials.

The target sample size was determined to be 160 based on a power

analysis (α = 0.05, power = 0.80, partial η
2
= 0.05 estimated

for each main effect). However, the COVID-19 pandemic halted
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in-person data collection before a full sample could be collected.

Thus, we recruited an additional 273 online participants. Due to

experimenter error in pivoting to online data collection amidst

the pandemic, demographic information was not collected for the

online participants. Since both in-person and online participants

were recruited through introductory psychology courses at

the University of Oregon, we are confident that the in-person

demographic information collected is representative of the overall

sample. Of the online sample, 50 were excluded from analyses for

failing to complete the task or failure to follow instructions, 13

were excluded for failing to learn one or both grids, and 6 were

excluded for failing to pass the attention check. After exclusions, 85

in-person participants and 204 online participants were included in

all analyses, for a total of 289 participants. For brevity and clarity,

we report analyses from the full sample, including both in-person

and online participants. However, we also analyzed the data with

setting as an additional factor to verify that the pattern of results

was the same for both the in-person sample and the online sample.

2.1.2 Procedure
2.1.2.1 Overview

Participants completed a novel grid learning task in which

they learned grids of object-location associations. Each 8 x 8 grid

contained eight objects in various locations throughout the grid

(see Figure 1). Each participant sequentially learned two object-

location grids, where the second grid would overlap with the

first in the objects, locations, both, or neither. By measuring

how long it took participants to learn each grid, we could

evaluate if overlap in each of these factors was facilitatory or

detrimental to new learning. The grid task was administered

using PsychoPy (RRID:SCR_006571) for in-person participants

and Pavlovia (RRID:SCR_023320) for online participants.

2.1.2.2 Stimuli

We combined two sets of objects and two sets of locations

to create eight distinct grids to be used in the study. To create

each location set, we pseudo-randomly selected locations from

the grid, with the constraint that no location was selected at the

border (edge of the grid) and no two locations were immediate

neighbors vertically or horizontally (diagonal contact ok). Each

object set was then randomly placed within each location set, for

a total of four object-location grids. The objects in each of these

grids were then randomly shuffled (with no object in the same

location across the two grids) to create a second version of each

object-location grid, for a total of eight possible grids used in the

study across participants. All grids were constructed in Microsoft

Excel (RRID:SCR_016137).

Participants were randomly assigned one of these grids

to be their starting grid, and the starting grid was roughly

counterbalanced across participants and conditions. Their second

grid was chosen from the remaining grids based on the condition

that the participant was randomly assigned to (see Figure 1). In the

no overlap control group, the second grid used a new set of objects

and a new set of locations (Figure 1B). In the object overlap group,

the second grid contained the same set of objects, but placed in a

new set of locations (Figure 1C). In the location overlap group, the

second grid contained a new set of objects, but in the same locations

as the first grid (Figure 1D). In the full overlap group, the second

grid used the same set of objects and the same set of locations,

but the objects were shuffled so that the grids were not identical

(Figure 1E).

2.1.2.3 Grid learning

First, participants learned their starting grid. The grid learning

procedure is depicted in Figure 2A and was the same for Grid 1

and Grid 2 (Figure 2B). The grid was displayed on screen for 8 s

followed by 4 s of a fixation cross. Then, a blank grid appeared with

the eight objects displayed beneath the grid. Participants attempted

to recreate the grid by dragging and dropping the objects to their

correct locations within the blank grid. The test was self-paced.

Participants submitted each attempt by pressing the spacebar.

Following each attempt, participants received feedback in the form

of the number of correctly placed objects (out of eight). If all eight

objects were correctly placed, they moved on to the next phase of

the task. Otherwise, they repeated this process until they correctly

placed all eight objects with a maximum of eight attempts. We

recorded the number of trials it took each participant to learn the

grid. The duration of each grid (8 s) and the maximum number

of trials to learn the grid (8 attempts) was based on pilot data

collection to ensure that the majority of participants need more

than 1 attempt but fewer than 8 attempts to learn. Participants

who failed to learn the grid after eight attempts were categorized

as “non-learners” and excluded from analysis. Prior to the actual

task, participants received instructions and practiced the task using

a simplified training grid with just two objects (not used in the

main experiment).

2.1.2.4 Math distractor task

Next, participants completed a math distractor task. On each

trial, participants were shown a simple arithmetic expression and

asked to evaluate if the expression was true or false using the “T”

and “F” keys, respectively. For example, “3 + 5 = 9” required a

response of “F.” Each arithmetic problem was displayed on screen

for 4 s during which participants made their response. They then

received feedback on screen for 2 s indicating if they were correct,

incorrect, or too slow to respond. Participants completed 20 trials

for a total of 2min. This served as an attention check and working

memory flush, preventing participants from actively rehearsing the

previously learned grid. To ensure engagement, participants with

less that 75% accuracy on this task were excluded from analyses.

2.1.2.5 Second grid learning

Following the math distractor task, participants learned their

second grid using the same procedure as the first. Participants

were randomly assigned to one of four groups, dictating whether

Grid 2 overlaps with the previously learned Grid 1 in objects,

locations, both objects and locations, or neither objects nor location

(Figure 1). In addition to recording the number of trials it took for

each participant to learn Grid 2, we also calculated the difference

in the number of trials to learn the two grids by subtracting the

number of trials to learn the second grid from the number of trials

to learn the first grid (Grid 1minus Grid 2). Thus, a difference score

of 0 indicated that they took the same number of trials to learn both

grids, a positive score meant that they learned the second grid faster

(in fewer trials) than the first, and a negative number indicated
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FIGURE 1

The grids of object-location associations used in Experiment 1. (A) Example starting grid. (B) No overlap condition; di�erent stimulus set and

locations. (C) Object overlap condition; same stimulus set in di�erent locations. (D) Location overlap condition; di�erent stimulus set but same

locations. (E) Full overlap condition; same stimulus set and locations. Images used in this figure are unaltered images from the BOSS stimulus sets

(Brodeur et al., 2010, 2014) used under the Creative Commons Attribution License (https://creativecommons.org/licenses/by-sa/3.0/).

that they learned the second grid slower (needing more trials) than

the first.

2.1.2.6 Additional cognitive measures

In addition to the grid task, only the in-person participants

also completed a short battery of cognitive tasks (visual working

memory capacity measure: Adam et al., 2015; reading span:

first developed by Daneman and Carpenter, 1980; adapted from

Unsworth et al., 2005; and Raven’s advanced progressive matrices:

Verguts and Boeck, 2002) for a pilot project not discussed in this

paper. The reading span task was administered using PsychoPy,

while the visual working memory task and Raven’s advanced

progressivematrices were administered usingMATLAB. Given that

less than a third of the final sample had these measures collected,

they were not used in any subsequent analyses.

2.2 Results

First, we measured the number of trials to learn the first grid

(M = 4.23, SD = 1.68). Since this grid was learned prior to

experimental manipulation, we predicted no significant differences

between groups. To test this, we ran a 2x2 (object overlap x location

overlap) factorial ANOVAwith the number of trials to learn the first

grid as the dependent variable (Figure 3A). As expected, we found

no main effect of object overlap, F(1, 285) = 0.02, p = 0.882, η2p =

0.00, no main effect of location overlap, F(1, 285) = 2.13, p = 0.146,

η
2
p = 0.01, and no interaction, F(1, 285) = 0.62, p= 0.431, η2p = 0.00,

confirming that there were no between-group differences prior to

experimental manipulation.

Of main interest, we measured the number of trials to learn

the second grid (M = 3.15, SD = 1.58) as well as the within-

subject difference in the number of trials to learn the second

grid in comparison to the first grid. We hypothesized that object

overlap would cause interference, resulting in a greater number

of trials to learn the second grid, while location overlap would

cause facilitation, resulting in fewer trials to learn the second grid.

To test this hypothesis, we ran a 2 x 2 (object overlap x location

overlap) factorial ANOVA with the number of trials to learn the

second grid as the dependent variable (Figure 3B). Consistent with

our hypothesis, we found a main effect of object overlap, F(1, 285)
= 5.91, p = 0.016, η

2
p = 0.02, driven by fewer trials required to

learn the second grid when objects did not overlap (M = 2.92, SD

= 1.51) compared to when objects did overlap (M = 3.40, SD =

1.63). We also found a main effect of location overlap, F(1, 285) =

45.81, p < 0.001, η2p = 0.14, driven by fewer trials required to learn

the second grid when locations did overlap (M = 2.58, SD = 1.25)

compared to when locations did not overlap (M = 3.76, SD= 1.67).
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FIGURE 2

Grid learning task used in Experiment 1. (A) Participants learned each of the two grids using this process. (B) Overview of the timeline of the grid task.

Images used in this figure are unaltered images from the BOSS stimulus sets (Brodeur et al., 2010, 2014) used under the Creative Commons

Attribution License (https://creativecommons.org/licenses/by-sa/3.0/).

FIGURE 3

Results of Experiment 1. (A) The number of trials to learn the first grid by condition, prior to any manipulation. There was no main e�ect of object

overlap (p = 0.882), no main e�ect of location overlap (p = 0.146), and no interaction (p = 0.431). (B) The number of trials to learn the second grid by

condition, after manipulation. There was a main e�ect of object overlap (p = 0.016), a main e�ect of location overlap (p < 0.001), and no interaction

(p = 0.667). (C) The di�erence between the number of trials to learn the two grids (grid 1–grid 2). A positive number indicates faster learning of grid

2. There was a main e�ect of object overlap (p = 0.038), a main e�ect of location overlap (p < 0.001), and no interaction (p = 0.703). Error bars

represent 95% confidence intervals for all plots.

These results indicate that overlap with prior experience can have

dissociable effects, depending on the type of overlap. There was no

interaction, F(1, 285) = 0.19, p = 0.667, η
2
p = 0.00, indicating that

the main effects were independent and additive.

To ensure that these effects were not driven by individual

differences in grid learning ability, we calculated the difference

in the number of trials to learn the two grids by subtracting the

number of trials to learn the second grid from the number of trials
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to learn the first grid (Figure 3C). A score of 0 would indicate that

a participant took the same number of trials to learn both grids, a

positive score that they learned the second grid faster than the first,

and a negative score would indicate that they learned the second

grid slower than the first. Averaged across conditions, participants

showed practice effects, learning the second grid about one trial

faster than the first (M = 1.08, SD = 1.98), with overall 63% of

participants improving from the first to the second grid. However,

the magnitude of the practice effect varied across conditions. A 2

x 2 factorial ANOVA with the difference score as the dependent

variable replicated a main effect of object overlap, F(1, 285) = 4.33, p

= 0.038, η
2
p = 0.015, driven by greater improvement across grids

when objects did not overlap (M = 1.33, SD = 1.94) compared

to when objects did overlap (M = 0.81, SD = 1.99). When objects

did not overlap, 68% of participants improved, learning the second

grid in fewer trials than the first, while only 57% of participants

improved when objects did overlap, χ2
(1,N=289) = 3.61, p = 0.057.

We also found a main effect of location overlap, F(1, 285) = 45.62,

p < 0.001, η2p = 0.14, driven by greater improvement across grids

when locations did overlap (M = 1.79, SD = 1.70) compared to

when locations did not overlap (M = 0.31, SD = 1.97). When

locations did overlap, 77% of participants improved, learning the

second grid in fewer trials, while only 48% of the participants

improved when locations did not overlap, χ2(1, N = 289) = 26.62,

p < 0.001. There was no interaction, F(1, 285) = 0.15, p = 0.703,

η
2
p = 0.00, confirming that the main effects were independent

and additive.

To verify that these results were not affected by setting, we also

conducted all the analyses with setting (in-person, online) as an

additional between-subjects factor. In all analyses, we found a main

effect of setting (all p’s < 0.04). Online participants learned the

first grid about 1 trial faster and second grid about 0.5 trials faster.

Importantly, setting did not interact with any other factor and the

main effects of location and object overlap remained the same.

2.3 Discussion

In Experiment 1, we wanted to know if location overlap and

object overlap would have opposing effects, and if we could observe

both effects within a single task. In line with our hypotheses, we

found in an object-location associative learning task that location

overlap facilitates new learning while object overlap hinders

new learning. Additionally, our results indicate that these effects

are independent and additive. While we found significant main

effects of both facilitation and interference, the magnitude of the

interference effect was rather small, with η
2
p at 0.01–0.02. Thus,

we conducted a second experiment to replicate these findings.

Given that observing changes in the number of trials to criterion,

each constrained between 1 and 8, provides a relatively coarse

measure of learning, we reduced the exposure time and increased

the maximum number of attempts to ten in the second experiment.

If we again observe both facilitation and interference effects in a

separate sample, we can conclude that they are robust, even if the

effect size of the interference effect is small.

Additionally, our findings led us to inquire as to how these

effects would hold up to context shifts, operationalized as a change

of the shape of the grid. On one hand, when the context, or

the shape of one’s environment changes, hippocampal place cell

representations undergo remapping, as observed in both rodents

(Lever et al., 2002; Wills et al., 2005) and more recently humans

(Wanjia et al., 2021). Across two different contexts, the same

relative locations are represented by a different set of hippocampal

neurons. However, it is possible that the learned spatial pattern

may itself become the context, or schema. For example, people

may remember the configuration of locations from the first grid,

utilizing that information when it overlaps in the second grid.

In this case, overlap of the spatial pattern may supersede a

shift in grid shape and the facilitatory effect of location overlap

would generalize.

Interference effects are also modulated by shifts in context.

Specifically, interference effects caused by stimulus overlap can

be eliminated by shifting contexts or stimulus types (Goggin and

Wickens, 1971; Wixted and Rohrer, 1993; Bunting, 2006; Unsworth

et al., 2013). Stimulus overlap may no longer be detrimental to new

learning when the context changes. To explore these questions in

Experiment 2, we created two distinct grid shapes to operationalize

a change in the environment. We then explicitly tested whether

changing the grid shape eliminates the facilitatory effect of location

overlap and/or the interference effect of object overlap, or if these

effects are preserved.

3 Experiment 2

3.1 Materials and methods

3.1.1 Participants
Participants were recruited from the University of Oregon

human subjects pool and received course credit for their

participation. Informed consent was obtained from all participants

and experimental procedures were approved by Research

Compliance Services at the University of Oregon. All participants

completed the task online. We recruited 534 participants; 102

participants were excluded for failing to complete the task, 4 were

excluded for failing to learn at least one of the grids within the

allotted number of trials, 21 were excluded for failing to pass the

attention check, and 17 were excluded for learning the first grid on

the first trial (see below). The remaining 390 participants were used

in the following analyses. In Experiment 1, we conducted a power

estimate using a medium effect size since there was no directly

related prior research fromwhich to base the estimate on. However,

the actual effect size for object overlap was smaller. In Experiment

2, we used the effect size from Experiment 1 to motivate our

power analysis. The target sample size was determined to be 387

based on a power analysis (α = 0.05, power = 0.80, partial η
2

= 0.02 estimated for each main effect, based on the results from

Experiment 1). Due to experimenter error in pivoting to online

data collection amidst the pandemic, demographic information

was not collected for these participants. Since all participants

were recruited through introductory psychology courses at the

University of Oregon, we are confident that the demographic

information reported in Experiment 1 is representative of the

overall sample.
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FIGURE 4

Example grids used in Experiment 2. (A) An example grid with one set of objects, one set of locations, and the “t” grid shape. (B) An example grid with

the other set of objects, the other set of locations, and the “x” grid shape. Images used in this figure are unaltered images from the BOSS stimulus sets

(Brodeur et al., 2010, 2014) used under the Creative Commons Attribution License (https://creativecommons.org/licenses/by-sa/3.0/).

3.1.2 Procedure
3.1.2.1 Overview

The task procedure was largely the same as in

Experiment 1. The grid task was administered online using

Pavlovia (RRID:SCR_023320).

3.1.2.2 Stimuli

Here, we manipulated a third factor: grid shape. We used two

distinct grid shapes. To construct the shapes, we started with an 8

x 8 grid and then eliminated two squares on each side. For the first

shape, we removed the two center squares on each edge, creating

an “x”-like shape. For the second shape, we removed each corner

square as well as one adjacent square immediately counterclockwise

to each corner, creating a “t”-like shape (see Figure 4). As in

Experiment 1, we constructed two unique grids for each grid shape,

object set, and location set to allow for the full overlap condition,

resulting in 16 total grids. As in Experiment 1, all grids were

constructed in Microsoft Excel (RRID:SCR_016137). Participants

were randomly assigned one of these grids to be their starting

grid, and the starting grid was roughly counterbalanced across

participants and conditions. Their second grid was chosen from

the remaining grids based on the condition that the participant was

randomly assigned to.

3.1.2.3 Grid learning

The learning procedure was similar but not identical to

Experiment 1. The grids were displayed on screen for 6 s instead

of 8 s, and the maximum number of attempts to learn each grid

was increased from 8 to 10. We also included an additional

exclusion criterion based on the data from the online sample from

Experiment 1. We noticed that several participants learned the

first grid in a single trial. While it is possible for participants with

exceptional memory abilities to achieve such a feat, it is unlikely

and had not occurred in the in-person sample. We suspected

that participants may be taking a picture of the grid and using

that to reconstruct the grid. Thus, we excluded from analyses

any participants who learned the first grid in a single trial but

verified that the pattern of the results would be the same regardless.

Besides these changes, the rest of the task remained the same as in

Experiment 1.

3.2 Results

First, we measured the number of trials to learn the first grid

(M = 3.85, SD = 1.57). Since this grid was learned prior to

experimental manipulation, we predicted no significant differences

between groups. To test this, we ran a 2 x 2 x 2 (object overlap

x location overlap x grid shape) factorial ANOVA with the

number of trials to learn the first grid as the dependent variable

(Figure 5A; Table 1). As expected, we found no significant main

effects or interactions, confirming that there were no between-

group differences prior to experimental manipulation.

Next, we measured the number of trials to learn the second

grid (M = 3.07, SD = 1.58). We hypothesized that object overlap

would cause interference, resulting in a greater number of trials

to learn the second grid, while location overlap would cause

facilitation, resulting in fewer trials to learn the second grid. We

did not have a strong prediction regarding the effect of grid shape.

However, we were interested in the interaction between object

overlap and grid shape. If a change in grid shape resulted in a

release from proactive interference, we would expect to see an

interaction between object overlap and grid shape. However, if

proactive interference persists across grid shapes, then we would

not expect to find an interaction. We were also interested in the
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FIGURE 5

Results of Experiment 2. (A) The number of trials to learn the first grid by condition, prior to any manipulation. There were no significant di�erences.

(B) The number of trials to learn the second grid by condition, after manipulation. There was a main e�ect of object overlap (p = 0.002), a main e�ect

of location overlap (p < 0.001), and an interaction between location overlap and grid shape (p = 0.039). (C) The di�erence between the number of

trials to learn the two grids (grid 1–grid 2), accounting for individual di�erences. There was a main e�ect of object overlap (p = 0.005), and a main

e�ect of location overlap (p < 0.001). Error bars represent 95% confidence intervals for all plots.

interaction between location overlap and grid shape. If a change

in grid shape causes spatial remapping, we would expect to see

an interaction between location overlap and grid shape. However,

if the facilitatory effect of location overlap persists across grid

shapes, then it suggests that participants remember the overall

configuration of locations rather than the locations with respect

to the grid edges. To test these hypotheses, we ran a 2 x 2 x 2

(object overlap x location overlap x grid shape) factorial ANOVA

with the number of trials to learn the second grid as the dependent

variable (Figure 5B; Table 2). Consistent with Experiment 1, we

found a main effect of object overlap, driven by fewer trials

required to learn the second grid when objects did not overlap

(M = 2.82, SD = 1.39) compared to when objects did overlap

(M = 3.34, SD = 1.72). We also found a main effect of location

overlap, driven by fewer trials required to learn the second grid

when locations did overlap (M = 2.60, SD = 1.24) compared to

when locations did not overlap (M = 3.48, SD = 1.73). We found

no main effect of grid shape. However, we found a significant

interaction between location overlap and grid shape, such that the

magnitude of the facilitatory effect of location overlap was larger

when the grid shape remained the same, but smaller when the grid

shape changed.

To ensure that these effects were not driven by individual

differences in grid learning ability, we calculated the difference

in the number of trials to learn the two grids by subtracting

the number of trials to learn the second grid from the number

of trials to learn the first grid, as in Experiment 1. Averaged

across conditions, participants showed practice effects, learning

the second grid nearly one trial faster than the first (M = 0.78,

SD = 1.90). Overall, 56% of participants improved from the

first grid to the second grid. However, the magnitude of the

practice effect varied across conditions. We ran a 2 x 2 x 2

(object overlap x location overlap x grid shape) factorial ANOVA

with the difference score as the dependent variable (Figure 5C;

Table 3). We replicated the main effect of object overlap, driven

by greater improvement across grids when objects did not overlap

(M = 1.05, SD = 1.96) compared to when objects did overlap

(M = 0.47, SD = 1.78). When objects did not overlap, 61% of
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TABLE 1 Experiment 2 ANOVA table with the number of trials to learn grid 1 as the dependent variable and location overlap, object overlap, and grid

shape overlap as independent variables.

Predictor Sum of squares df Mean square F p η
2
p

Location overlap 0.04 1 0.04 0.02 0.900 0.00

Object overlap 0.29 1 0.29 0.11 0.736 0.00

Grid shape 0.77 1 0.77 0.31 0.579 0.00

Location overlap ∗ object overlap 0.03 1 0.03 0.01 0.920 0.00

Location overlap ∗ grid shape 0.74 1 0.74 0.30 0.586 0.00

Object overlap ∗ grid shape 0.82 1 0.82 0.33 0.567 0.00

Location overlap ∗ object overlap ∗ grid shape 0.01 1 0.01 0.01 0.941 0.00

Residuals 953.89 382 2.50

TABLE 2 Experiment 2 ANOVA table with the number of trials to learn grid 2 as the dependent variable and location overlap, object overlap, and grid

shape overlap as independent variables.

Predictor Sum of squares df Mean square F p η
2
p

Location overlap 67.65 1 67.65 30.20∗∗∗ <0.001 0.07

Object overlap 22.10 1 22.10 9.87∗∗ 0.002 0.03

Grid shape 1.98 1 1.98 0.88 0.348 0.00

Location overlap ∗ object overlap 0.01 1 0.01 0.01 0.937 0.00

Location overlap ∗ grid shape 9.65 1 9.65 4.31∗ 0.039 0.01

Object overlap ∗ grid shape 0.55 1 0.55 0.25 0.619 0.00

Location overlap ∗ object overlap ∗ grid shape 1.56 1 1.56 0.70 0.404 0.00

Residuals 855.66 382 2.24

∗p < 0.05. ∗∗p < 0.01. ∗∗∗p < 0.001.

participants improved, learning the second grid in fewer trials than

the first, while only 50% of participants improved when objects

did overlap, χ2
(1,N=390) = 4.58, p = 0.032. We also replicated the

main effect of location overlap, driven by greater improvement

across grids when locations did overlap (M = 1.23, SD = 1.75)

compared to when locations did not overlap (M = 0.37, SD =

1.94). When locations did overlap, 66% of participants improved,

learning the second grid in fewer trials, while only 46% of the

participants improved when locations did not overlap, χ
2
(1,N=390)

= 15.34, p < 0.001. Controlling for individual differences, we no

longer found a significant interaction between location overlap

and grid shape, suggesting that the facilitatory effect of location

overlap persisted across grid shapes. The magnitude of the effect

was still numerically larger when the grid shape remained the

same (d = 0.57) compared to when the grid shape changed (d

= 0.32; Figure 5C), but post-hoc comparisons between location

overlap and no location overlap for both the same grid shape

and different grid shapes reached significance. We again found

no main effect of grid shape and no other interactions. These

comparisons replicated findings from Experiment 1 that location

overlap leads to facilitation of learning the second grid while

object overlap hinders learning of the second grid. In addition,

they demonstrate that these effects remain largely stable across

grid shapes.

3.3 Discussion

In Experiment 2, we aimed to replicate the results of

Experiment 1 and test the degree to which the effect of location and

content overlap are modulated when the overall shape of the grid is

altered. First, the results largely replicated Experiment 1. Location

overlap provided clear facilitation of learning the second grid. The

interference effect driven by object overlap remained relatively

small with η
2
p at 0.02–0.03, but its replication across two studies

indicates it is statistically reliable. Furthermore, in both Experiment

1 and Experiment 2, about 10% fewer participants improved across

grids when objects overlapped. Thus, the interference effects can be

seen in both quantitative (mean number of trials) and qualitative

(improvement or not) measures of learning.

Experiment 2 also explored to what degree these effects are

modulated by or robust to a change of the overall grid shape. We

found that the shift in grid shape did not eliminate the proactive

interference observed due to object overlap. This indicates that

changing the grid shape was not comparable to shifts in context

used in prior studies. When controlling for individual variability,

we also found that the shift in grid shape did not eliminate the

facilitatory effect of location overlap. This suggests that the change

in grid shape did not induce remapping in our participants, since

the spatial pattern was similarly beneficial even in a new grid shape.
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TABLE 3 Experiment 2 ANOVA table with the di�erence in the number of trials to learn the two grids as the dependent variable and location overlap,

object overlap, and grid shape overlap as independent variables.

Predictor Sum of squares df Mean square F p η
2
p

Location overlap 64.43 1 64.43 19.16∗∗∗ <0.001 0.05

Object overlap 27.41 1 27.41 8.15∗∗ 0.005 0.02

Grid shape 5.22 1 5.22 1.55 0.214 0.00

Location overlap ∗ object overlap 0.08 1 0.08 0.02 0.880 0.00

Location overlap ∗ grid shape 5.04 1 5.04 1.50 0.222 0.00

Object overlap ∗ grid shape 2.73 1 2.73 0.81 0.369 0.00

Location overlap ∗ object overlap ∗ grid shape 1.87 1 1.87 0.56 0.457 0.00

Residuals 1284.88 382 3.36

∗∗p < 0.01; ∗∗∗p < 0.001.

Thus, we replicated our findings from Experiment 1 while also

demonstrating that these effects generalize across grid shapes.

4 General discussion

Prior work has shown both beneficial and detrimental effects

of information overlap on new learning. Here, we tested whether

both consequences of overlap can be observed in a single task by

manipulating two types of overlap: spatial (locations) and content

(objects) in an object-location associative learning task. Across

two experiments, we demonstrated that location overlap facilitates

new learning while object overlap hinders new learning. When

controlling for individual variability by focusing on the change in

the number of trials one needs to learn two grids, we found in

Experiment 2 that these effects were largely preserved even when

the grid shape changed. Taken together, our findings identify a

key factor that determines the behavioral consequences of overlap

and indicate a differential role of what information and where

information in memory organization. Associating a second object

with one location was easy for participants; associating a second

location with one object presented a challenge.

Critically, our study is one of the first to dissociate the

effects of these two distinct types of information overlap on new

learning within the same task. The AB/AC task consisting of

overlapping word-word or image-image associations is a classic

paradigm for demonstrating interference resulting from overlap

(for a review, see Kliegl and Bäuml, 2021). Recently, this paradigm

was used to examine both memory enhancement and impairment

by manipulating context using a background scene (Cox et al.,

2021). In the present study, we modified this paradigm to use

object-location associations and demonstrated that the detrimental

effect of overlap is not universal. Consistent with prior work, when

the overlapping (A) items were objects, new learning was hindered.

This effect is consistent with interference theory: overlapping

objects (what information) caused proactive interference. Here, we

newly demonstrate that the detrimental effect of content overlap

generalizes to a situation that requires associating content with their

spatial locations. However, when the overlapping (A) information

involved locations (where information), new learning was facilitated

rather than impaired. Thus, it is possible to manipulate the

direction of the effect of overlap (facilitation or interference) within

a single task by varying the type of information–content or spatial

context–that overlaps across experiences.

Inspired by research on spatial and conceptual schemas, we

hypothesized that location overlap would facilitate new learning.

We indeed found a strong facilitation of subsequent learning by

location overlap, despite our task differing in several ways from

traditional schema research. While further research is needed to

determine the mechanisms underpinning our findings, here we

speculate that given the fixed relationship of the locations to each

other in space, participants may form a generalized representation,

or schema, of the location information. The object information can

then be mapped onto this representation. During learning of the

second grid in the location overlap condition, participants benefit

from being able to “slot” new objects into the same spatial schema,

similarly to how method of loci benefits memory for new material

by associating it with familiar spatial locations (Ross and Lawrence,

1968; Wang and Thomas, 2000). This interpretation aligns with

other work showing that spatial schemas can facilitate rapid new

learning, as demonstrated in rodents by Tse et al. (2007, 2011)

and in humans by van Buuren et al. (2014). The present study

expands on this prior work by showing that memories of spatial

configurations, which may be early formations of spatial schemas,

also facilitate new learning even when all objects are swapped

out. This argument is strengthened by the results of Experiment

2. The facilitatory effect of location overlap was preserved across

two distinct grid shapes, suggesting that participants encoded

the configural organization of the target locations rather than

individual locations with respect to the grid border. Thus, the

spatial pattern itself may serve as the context, or schema.

The work on spatial schemas served as a key motivation for

our study and our predictions regarding facilitation driven by

location overlap. However, one concern regarding interpretation

of our data in the schema framework is the speed at which a

spatial schema can be learned. In prior work (Tse et al., 2007;

van Buuren et al., 2014), participants learned the spatial schemas

over multiple sessions spanning days or weeks. In a more extreme

case, Sommer (2016) utilized a 302-day study design in which

participants learned a semantic schema. Despite the long-term

acquisition phases used in these studies, more recent work has

suggested that schemas may actually be learned quite quickly
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(Tompary et al., 2020). However, we typically rely on episodic

memories until those memories fade, at which time we begin to

rely on schemas and generalized memories. This leads us to believe

that in the present study, participants may be acquiring a spatial

schema while learning the first grid, and this potential schema

facilitates their learning of the second grid when the locations, and

thus the spatial schema, overlap. Of course, one may also consider

the benefits of remembering the spatial configuration of locations

without considering such a configuration to be a spatial schema.

Future research is needed to determine if the current findings

are best understood in terms of spatial schema or rather reflect

some other process. Nonetheless, these findings provide further

evidence that spatial information holds a unique role in memory

organization (Arnold et al., 2011; Robin et al., 2016; Sheldon and

Chu, 2017).

One limitation of the current paradigm is the location-

emphasizing test response modality, asking participants to drag

and drop provided objects to their location. Although this does

not explain the opposing effects of content and location overlap,

it may have led to extra-large benefit of location overlap (greatly

reducing the number of locations that need to be considered) that

may become more modest with a different type of object-location

association test. Thus, future research should replicate the current

findings with a wider range of memory probes. Another finding

that should be revisited in future studies is the preservation of the

facilitation and interference effects across a change in the overall

grid shape. Participants may have been less affected by the change

in grid shape in the current study because no location adjacent to

the border was used for object placement, making it more likely that

participants encode the overall spatial configuration of locations

with limited reference to the grid border. It is possible that a

stronger interaction with grid shape would be observed if border

locations were used, especially if a location were to touch the border

in one grid but not the other.

The interference and facilitation effects of object and

location overlap observed here may also inform conflicting

theories regarding how overlapping events are represented

in the hippocampus, a key memory structure, to support

memory. Facilitatory effects of overlap are thought to stem from

incorporating newmemories into existing memory representations

through memory integration (Zeithamova et al., 2012) and

schema-related memory (Preston and Eichenbaum, 2013; Gilboa

and Marlatte, 2017; Guo and Yang, 2020). As such, increased

similarity of neural representations leads to better memory

of overlapping events (Tse et al., 2007; Schlichting et al.,

2014; Takeuchi et al., 2022). In contrast, interference research

has proposed an opposite representational strategy—minimizing

similarity of neural representations—leading to better memory of

overlapping events. Specifically, hippocampal pattern separation

(Lohnas et al., 2018; for a review, see Yassa and Stark,

2011) or repulsion (Favila et al., 2016; Chanales et al., 2017,

2021) improves memory by representing similar events by

distinct neural codes to minimize interference. The current

findings suggests that both integration and separation may

benefit memory depending on behavioral consequences of

overlap, leading to intriguing questions for future research

regarding how the hippocampus will respond when faced

with both the positive and negative effects of overlap in the

same task.

In summary, we developed a novel paradigm where both

positive and negative effects of information overlap on new learning

can be demonstrated within the same task. We demonstrated that

a key factor determining the behavioral consequences of overlap is

the nature of the overlap: location overlap led to facilitation, object

overlap led to interference. Additionally, these effects persisted

across two distinct grid shapes. These findings help reconcile

prior conflicting research on how overlap affects memory and

offer a new paradigm to study both facilitation and interference

within the same task. More broadly, the opposing effects of object

overlap and location overlap demonstrate qualitative differences

in the processing of content and spatial information, informing

theories on the distinct roles of what and where in the organization

of memory.
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