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Introduction: Perception under noisy conditions requires not only feature

identification but also a process whereby target features are selected and

noise is filtered out (e.g., when identifying an animal hiding in the savannah).

Interestingly, previous perceptual learning studies demonstrated the utility of

training feature representation (without noise) for improving discrimination

under noisy conditions. Furthermore, learning to filter out noise also appears to

transfer to other perceptual task under similar noisy conditions. However, such

learning transfer e�ects were thus far demonstrated predominantly in simple

stimuli. Here we sought to explore whether similar learning transfer can be

observed with complex real-world stimuli.

Methods: We assessed the feature-to-noise transfer e�ect by using complex

stimuli of human faces. We first examined participants’ performance on a face-

noise task following either training in the same task, or in a di�erent face-feature

task. Second, we assessed the transfer e�ect across di�erent noise tasks defined

by stimulus complexity, simple stimuli (Gabor) and complex stimuli (faces).

Results: We found a clear learning transfer e�ect in the face-noise task following

learning of face features. In contrast, we did not find transfer e�ect across the

di�erent noise tasks (from Gabor-noise to face-noise).

Conclusion: These results extend previous findings regarding transfer of feature

learning to noisy conditions using real-life stimuli.

KEYWORDS

perceptual learning, learning transfer, specificity, face stimuli, complex stimuli, signal in

noise, feature discrimination

1 Introduction

The term perceptual learning refers to change in performance (often improvement)

of perceptual tasks resulting from training or practice, which includes repeated exposure

to a specific stimulus (Fahle, 2005; Gold and Watanabe, 2010). Perceptual learning can

improve detection, discrimination, or identification of visual stimuli. These improvements

usually manifest in increased accuracy or better ability to perform a task with more difficult

stimulus (e.g., lower contrast or shorter durations) at a critical and given level of accuracy

(Dosher and Lu, 2005). Conventional paradigms of perceptual learning research maintain

the concept of learning being often specific to retinal location or to a stimulus feature

such as orientation, spatial frequency or scale (e.g., Karni and Sagi, 1991; Polat and Sagi,

1994; Crist et al., 1997). Nevertheless, generalization (transfer) of perceptual skills has also

been observed (e.g., Dosher and Lu, 2005; Bi et al., 2010; Chang et al., 2013). While the

circumstances in which transfer occurs are still subject to debate, studies in perceptual

learning emphasize that specificity or transfer are related to a number of factors, including:

task difficulty (Ahissar and Hochstein, 1997), number of trials (Aberg et al., 2009), training

protocols (Xiao et al., 2008), and task precision (Jeter et al., 2009).
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One interesting phenomenon in the context of transfer in

perceptual learning is the existence of an asymmetry of transfer

after training on perceptual tasks. In a first example, Dosher and

Lu (2005) demonstrated such asymmetry, where training on a

Gabor orientation discrimination task in the periphery resulted

in reduced contrast thresholds for similar Gabor stimuli when

combined with white, random Gaussian noise, but not vice versa.

Thus, training with “clear” stimuli (without added external noise)

improved performance when external noise was added to the

same stimuli, but training with “noisy” stimuli (embedded in

external noise) did not improve perception of the same stimuli

when the external noise was removed. Later studies demonstrated

that this asymmetric transfer is stable across different perceptual

tasks (Chang et al., 2013). Specifically, Chang et al. (2013) showed

that training on a feature discrimination task with “clear” stimuli

improves participant’s performance on a coarse discrimination

judgement when external noise is added to the stimuli. This

transfer effect was demonstrated in tasks requiring depth, motion

and orientation judgment using random dot stereogram (Chang

et al., 2013). However, transfer from the “noisy” task condition to

the “clear” feature discrimination task condition was considerably

more limited. Such studies highlight both stimulus specific changes

in perception and changes to external noise filtering mechanism

that follow training (e.g., Dosher and Lu, 1998, 1999; Gold et al.,

1999).

These results may indicate that effective performance of tasks

with a noise component rely on two functions: Segmentation of

the visual feature (or noise filtering) and feature representation

(Dosher and Lu, 2005; Chang et al., 2013), while performance

on tasks with clear (no noise) stimuli relies only on feature

representation. Thus, training on feature representation can

transfer to tasks with noise. Interestingly, Chang et al. (2013)

also demonstrated transfer of learning across different noise tasks

requiring different perceptual processes such as depth, motion,

and orientation. This finding points to the potential generality of

the segmentation/noise filtering component that noise tasks rely

on, which is called upon across different perceptual dimensions.

Consequently, feature representation training promotes feature

templates that are important for both tasks (external noise task

and feature difference task) with the same feature dimension.

Noise task training promotes a general process of noise filtering,

independently of stimulus properties (Chang et al., 2013).

While most traditional perceptual learning studies in adults

focused on elementary visual features, including orientation

(Schoups et al., 1995; Crist et al., 1997; Matthews et al., 1999),

patterns and texture (Karni and Sagi, 1991), and other stimulus

features, some studies documented perceptual learning with more

complex visual stimuli (e.g., Gold et al., 1999; Furmanski and

Engel, 2000; Sigman and Gilbert, 2000; Baeck and Op de Beeck,

2010; Bi et al., 2010). In particular, several psychophysical studies

reported perceptual learning effects using face stimuli, including a

face recognition task (Gold et al., 1999); a face view discrimination

task (Bi et al., 2010); and a facial expression recognition task (Du

et al., 2016; Russo-Ponsaran et al., 2016). Aligned with the effects

of perceptual learning with simple visual features, the effect of

perceptual learning with complex stimuli (i.e., real world objects

or faces that incorporate many features together into a whole

identifiable percept) appears specific to the trained feature (Sigman

and Gilbert, 2000), but in several studies a transfer effect from one

task to another was also apparent (objects: Furmanski and Engel,

2000; faces: Bi et al., 2010; Du et al., 2016). For instance, Bi et al.

(2010) measured learning and transfer processes following face-

view training. In their first experiment, participants were trained

to discriminate face views around the face orientation of 30◦.

Two face views were presented successively and participants were

asked to judge whether the second face was tilted to the right or

to the left relative to the first one. In the pre- and post-training

session, face views discrimination thresholds were measured at the

face orientations of −90◦, −60◦, −30◦, 0◦, +30◦, +60◦, +90◦.

The results showed that perceptual learning was specific for the

trained face view orientation. However, in additional experiments

following a similar protocol the authors report transfer of learning

across changes in face size (the test stimuli were bigger in size) and

location (upper and lower visual fields).

The separate mechanisms of segregation (noise filtering) and

feature representation and how they are trained and transferred

in the context of complex visual stimuli has not been investigated

thus far. Furthermore, while there is initial evidence pointing to

the possible generalizability of noise filtering learning (Chang et al.,

2013), the boundaries of this effect are still not completely clear. For

instance, is it the case that noise filtering can transfer from simple

to complex stimuli when both are embedded in similar noise?

To our knowledge, there are currently no experimental results

showing transfer effect from “clear”/features training to “noisy”

tasks using face stimuli, as well as transfer of noise filtering from

simple feature noise task to a face-noise task. If transfer effects from

“clear”/features training to noisy tasks can be replicated within

complex stimuli it may have implications for developing effective

rehabilitation protocols with real-life visual input for those who

suffer from noise filtering deficit (i.e., older adults or individuals

with Attention-Deficit/Hyperactivity Disorder).

Consequently, the main aim of the present study was to

examine the transfer of learning of feature representation to noise

tasks using complex visual stimuli (i.e., faces). We ask whether

the feature-to-noise transfer effect, which has been demonstrated

using simple stimuli, can also be demonstrated in complex real-

life images of faces. Based on previously reported similarities in

perceptual learning between simple and complex stimuli, we expect

to find such a feature-to-noise transfer using our face stimuli.

More specifically we expect to find an improvement in a face

discrimination task when the face is embedded in noise (face-noise

task), following both training in the same task and training in a face

discrimination task without noise (face-feature task).

A second, exploratory, aim of the current study was to examine

noise task generalization between simple and complex visual

features. Previous research found a generalized process of noise

filtering mechanism across tasks involving simple visual stimuli

and with similar characteristics input of the visual features. Thus,

here we ask whether noise task generalization may be found even

across stimulus complexity. Specifically, we assessed if training with

a simple noise task (using a classical orientation discrimination

task using Gabor patches embedded in noise) transfers to a face

discrimination task when the faces are embedded in a similar noise

(the face-noise task). This enabled us to examine whether the noise
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filteringmechanism is completely independent of the visual feature,

as long as the noise itself remains similar.

2 Materials and methods

2.1 Participants

Fifty-five students were recruited as participants for the

study and were all naïve to the purpose of the study and had

never participated in a perceptual learning experiment before.

Participants were excluded from further participation in the study

and analysis if they could not discriminate between the target faces

(nine participants) or if they failed to show perceptual learning

(nine participants). Detailed description of these exclusions steps

is included below (Sections 2.5 and 2.6, respectively). Thus, thirty-

seven participants were included in the analyses (mean age: 24.9

years, age range: 18–35). All were paid for their participation in

the experiment, had normal or corrected-to-normal visual acuity

as measured by the ETDRS acuity chart, and had no neurological

or vision disorders (self-report). All participants gave their written

and informed consent in accordance with the protocol approved

by the ethics committee of Tel Aviv University (ethics protocol

no: 10192340_20170315).

Participants were equally and randomly divided into four

groups. All groups performed the same perceptual tasks before and

after 3 days of training, but each group used a different training

task in those 3 days (see Figure 1): (1) nine participants trained on

face-noise task (six females); (2) 10 participants trained on face-

feature task (eight females); (3) nine participants trained on Gabor-

noise task (six females). Finally, we also included (4) a control

group of nine participants (eight females), who did not perform

psychophysical training during the three training days, and only

attended the pre-training and post-training sessions, in order to

monitor effects attributable to familiarity with the tasks.

2.2 Apparatus and display

The stimuli were presented on a 23-inch. Samsung LED

monitor at a resolution of 1,920 × 1,080 pixels with a refresh

rate of 120Hz. The display was gamma corrected. All stimuli

were presented on a mid-gray background. Custom experimental

software was written in PsychoPy2 Experiment Builder (version

1.81.0). The participants’ head position was stabilized using a

chin rest at a viewing distance of 50 cm, and the experiment was

performed in a dark room, in which the only light source was

the monitor.

2.3 Stimuli and tasks

2.3.1 Face tasks
2.3.1.1 General faces stimuli

One pair of Caucasian men (referred to as source images) was

selected from the Stirling/ESRC 3D Face Database (http://pics.stir.

ac.uk/ESRC/). These two faces, source image 1 and source image 2,

were grayscale and scaled to 270 × 270 pixels (Figure 2). Using a

morphing program, Morpheus Photo Mixer, we located manually

244 points (especially on facial features such as eyes, nose and

mouth) on every source image and created 29 intermediate morph

faces between them in steps of 3.3% from 100/0% to 0/100% (see

Figure 2 for demonstration of the morph sequence).

2.3.1.2 Face-noise task

2.3.1.2.1 Stimuli

For the face-noise task only two exemplar images from the list

of 31 images were used. These were image 7 and image 25 which

represented an 80/20% combination of the two source faces. The

images were 3◦ × 4◦ of visual angles and appeared centrally on

every trial. These images were embedded in additive Gaussian noise

of mean value 0 and SD of 0.33.

The observed noise thresholds on this face-noise task

were varied trial-by-trial according to participants’ responses

and estimated using a staircase procedure (see Figure 3). We

manipulated the observed noise by changing the opacity of the

noise component. The value of the opacity ranged from 0 (invisible)

to 0.99 (opaque). Thus, higher opacity level translates to higher

observed noise. The staircase was set up to ensure a reduction of the

noise opacity after each error and an increase of the noise opacity

after three successive correct responses (a 3/1 staircase). Threshold

estimates were then depicted as 1—opacity. Thus, lower thresholds

(i.e., 1—opacity of the noise) represent higher levels of noise opacity

(higher noise intensity observed on the face stimuli). The opacity

of the face stimuli was kept constant at 0.2 throughout. Weber

Contrast is 0.14.

2.3.1.2.2 Procedure

In the face-noise task, participants were required to dissociate

between two experimental images. Each trial began with a

presentation of a small black central point (0.2◦ of visual angle

in diameter) for 250ms, followed by a blank interval of 300ms.

Afterwards, a target single face stimulus appeared at the center of

the screen for 66.64ms. The inter-trial interval (ITI), from response

to the presentation of the fixation point, was 900ms. Participants

were instructed to identify the faces by response keys on the

keyboard: left arrow key for experimental image 1 and right arrow

key for experimental image 2. Participants were required to respond

as accurately as possible at a comfortable speed.

In the pre/post testing the face-noise task was comprised

of three blocks whereas the training tasks (face-noise/face-

feature/Gabor-noise) included five blocks. Overall, in each block,

trials were presented in two randomly interleaved staircases (Levitt,

1971), with different noise opacity starting points: 0.85 and

0.75 (i.e., 1—opacity of the noise) representing low and high

discrimination thresholds, respectively. In each staircase, step sizes

were progressively adjusted—the step size was 2 dB for the first

two reversals, 0.8 dB for the next three reversals and 0.4 dB for

the remaining reversals. Each block was completed after at least

120 trials (60 trials for each staircase) and at least six reversals for

each staircase occurred. Note that the up and down procedure was

1 dB until the first reversal was reached. This procedure ensures a

threshold estimate equivalent to 80% correct performance. On each

staircase within an experimental block, we excluded the first three

reversals and calculated the discrimination threshold as the average

of all remaining reversals. The overall estimated discrimination
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FIGURE 1

The general protocol of the di�erent training tasks. Participants performed the two noise tasks (face and Gabor) before and after the training they

were assigned to. The study included three active perceptual learning training groups and a passive control group.

FIGURE 2

The morphed faces used in the face-noise and face-feature tasks. The full set of the possible morphs (Morph continuum) is presented in the middle

of the figure. The two source images and the two experimental images are presented separately at the top. Also presented there is the 50%/50%

morph that represents a morph with equal weights of the two source images (i.e., an image that cannot be identified as one identity rather than the

other). The weighting of the morphs appears in percentage (Morph makeup). The numbering at the bottom row depict the distance from the midline

in morph steps. The distance is given in numbers from 0 (50%/50% morph) to 15 (100%/0% or 0%/100% morphs) in both directions. Larger numbers

(distances) mean easier identity identification. Overall, there were 31 face images. Note the actual faces used in the study are not available for

publication and were replaced here with similar images.

threshold for the run was averaged across all staircases across

all blocks.

2.3.1.3 Face-feature task

2.3.1.3.1 Stimuli

For the face-feature (fine discrimination) task we used the

entire set of images, except for the middle image (which represents

50/50% face features from source image 1 and source image 2)

as there is no correct identification of this image. The different

face images were varied trial-by-trial according to participants’

responses using a staircase procedure. Here, we manipulated

the difficulty levels in terms of face discrimination difficulty by

moving along the morph continuum (consequently varying the

weight of face features from the two source images). The levels

of difficulty here was each image on the continuum was defined

as the “distance” in image steps from the midline image (which

is 50/50% of the two source images). For example both Image 5

and Image 27 on the morph continuum are equidistant from the

midline and therefore represent the same level of difficulty−11

(there are 11 intermediate morphs between the midline and both

Image 5 and Image 27). Indeed, in both images the makeup of face

features is 86.67 and 13.33%. Overall, this resulted in 15 morph

levels (and therefore 15 different difficulty levels of discrimination).

For the purpose of establishing a threshold metric, large values

represent large differences (and therefore easier conditions) while

small values reflect small differences (the image is closer to the
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FIGURE 3

Illustration of stimuli from the three training tasks: (A) face-noise task; (B) face-feature task; and (C) Gabor-noise task. Note the actual faces used in

the study are not available for publication and were replaced here with similar images.

50/50% midline point; see Figure 2). Here too the opacity of face

stimuli was kept constant at 0.2 throughout.

2.3.1.3.2 Procedure

In each trial, participants were required to make two alternative

forced choice responses on whether a face target stimulus is

more similar to one source image (source image 1) or to the

other (source image 2). The display sequence and the response

keys were identical to the ones in the face-noise task. The task

procedure with respect to threshold estimation was similar to

the face-noise task (in terms of the two interleaved staircases).

However, here performance threshold wasmeasured as the position

on the morph continuum. Thus, the 3/1 staircase procedure

changed the position on the continuum (the distance from the

50/50% on the continuum in either direction) by one place: change

following an error moved the point one place away from the

50/50% point, and change following three consecutive correct

responses moved the position one place closer to the 50/50%

point. The two starting positions (for the interleaved staircases)

were 6 and 11 on the continuum, which represent difficult (closer

to the 50/50% point) and easy (further away from the 50/50%

point) levels of discrimination, respectively. The step size was

constant for all reversals (1 place on the morph continuum).

Thus, the threshold estimates were given as the position on

the morph continuum (or morph distance). As before, threshold

estimates were calculated by averaging the reversals on each

staircase separately after excluding the first three reversals and

then averaging across all staircases across all blocks. Similar to

the noise tasks, low values of this threshold estimate reflect better

perceptual performance.

2.3.2 Gabor-noise task
2.3.2.1 Stimuli

The Gabor stimuli (3◦ × 3◦ visual angles) were presented with

a spatial frequency of 1.5 cycles per degree, orientated either at 54◦

or 36◦ (±9◦ from 45 degrees) and embedded in additive Gaussian

noise of mean value 0 and SD of 0.33. The opacity of the Gabor

stimuli was kept constant at 0.1 throughout. Weber Contrast is

0.12. In contrast to previous studies (Dosher and Lu, 2005), we used

foveal Gabor stimuli (see Figure 3) instead of peripheral to reduce

the impact of attention processes (particularly dividing attention)

and to keep the noise in a similar position as in the face-noise task.

2.3.2.2 Procedure

Participants discriminated the orientation of the Gabor patches

with reference to a standard orientation of 45◦. The standard

orientation was never shown. Participants were instructed to

identify the orientation of the Gabor patch by pressing the left or

the right arrow keys on the keyboard (two alternative forced choice

responses). The general procedure, including the psychophysical

staircase procedure of the noise opacity, was identical to the

one used in the face-noise task, with two changes: (1) Gabor

stimuli were shown for 41.65ms instead of 66.64, and (2) the two

interleaved staircases started at value of 0.45 and at value of 0.35

(instead of 0.85 and 0.75, respectively). The threshold estimates

were calculated in the same way as those for the face-noise task.

2.4 General procedure

The experiment consisted of three phases: pre-training (first

day), training (days 2 through 4) and post-training (day 5). These

add up to 5 days of testing and training. We have opted to use

this design with three training days in between pre- and post-

training days to align with the protocol used by Chang et al.

(2013), which is a crucial study in the context of the learning

transfer effects we were investigating here. All 28 participants from

the three training groups performed the training phase within

three successive days. Twenty-six participants completed the entire

experiment within five successive days while one participant from

the face-feature task training group and one participant from the

Gabor-noise task training group completed the study within 6 and

8 days, respectively. In the control group, where training was not

conducted, participants completed the experiment (pre-training

and post-training sessions only) within 5 or 6 days (from their first

testing session to their final testing session inclusively).

For the pre-training and post-training sessions, participants

performed three blocks of 120 trials (360 trials in total) on each of

the two noise tasks—face-noise andGabor-noise. The order of these

noise tasks was counter-balanced across participants at the pre-

training session and was maintained at the post training session.

For each of the three training days, participants performed five
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blocks of 120 trials (600 trials in total) of the relevant training task

according to their group affiliation.

At the beginning of each task, participants were provided with

written instructions. Each task started with a short practice session

(10 trials), when visual feedback (a small white central asterisk) was

presented for 400ms after correct responses. The practice session

was repeated if the rate of errors exceeded 30%. Each practice

task was similar to its experimental task in terms of the general

procedure, including the psychophysical staircase procedure. In

each task, participants were required to respond as accurately as

possible and at a comfortable speed. No feedback was provided

during the experimental blocks.

2.5 Face familiarization procedure

Prior to the pre-training session on the first day, participants

participated in a preparation stage designed to familiarize them

with the face images. The face images we used were unfamiliar

faces; therefore, we first exposed our participants to these faces to

make sure they could recognize them. This was done both with the

orignal images and the morphed ones as follows.

The preparation stage was composed of two sub-tasks which

were administered in a fixed order: identification of two source

images (Figure 2, top), and then identification of two experimental

images (Figure 2, top). Each sub-task consisted of one block of 20

trials. In each trial a single face image was located in the center

of the screen, and participants were required to respond “left” for

source/experimental image 1 or “right” for source/experimental

image 2. Both face images on each sub-task were presented in

random order. The stimulus was presented for 66.64ms, preceded

by a 250ms black central fixation point and separated from

it by a blank interval of 300ms. The time for response was

unlimited. The inter-trial interval (ITI) was 900ms, including a

visual feedback (a small white central asterisk) that was given for

400ms after an incorrect response. Accuracy rate for each trial was

recorded. The two sub-tasks were repeated if the rate of errors

had exceeded 20% on the last 10 trials. Participants were excluded

from further participation in the study if they failed to recognize

these faces (errors exceeding 20% after two practice runs). A

total of nine participants were excluded from further participation

following this stage: seven failed to discriminate between the two

source faces and two failed to discriminate accurately between the

experimental faces.

2.6 Data reduction

In order assess learning transfer effects we wanted to make

sure participants in the analysis show learning. Thus, to avoid

contaminating the data with participants who do not show learning

effects participants were excluded from further analysis if they

failed to demonstrate learning. To define a robust criterion that

could be applied across all the different tasks and procedures in

our study we defined this as a failure to improve performance

from the first to the second day the perceptual task was performed.

This resulted in the exclusion of nine participants, as follows: Eight

participants (one from the Gabor-noise task training group and

seven from the face-noise task training group) were excluded due to

no improvement between the pre-training session and the first day

of training. An additional participant did not show improvement

from the first to the second day of training in the face-feature task

training group and was also excluded. The main data analyses were

repeated with the excluded nine participants, resulting in a similar

pattern of findings but with marginal significance levels using

parametric tests and similar significant results using a-parametric

tests (see Supplementary Tables S1, S2).

2.7 Data analysis

To assess the effects of perceptual learning we analyzed the

discrimination thresholds scores in the two noise tasks: faces

and Gabor, before and after training across the four groups by

using a mixed model ANOVA analysis. The data is presented as

mean with Standard Error (SE). Effect sizes are given as partial

eta squared (partial η2) for ANOVA and Cohen’s D for simple

effects. Furthermore, a learning curve, representing discrimination

threshold scores as a function of the time course of training, was

fitted with a power function and evaluated by regression analysis

for each training group separately.

3 Results

To examine learning and transfer of learning in feature

discrimination and noise tasks, we measured thresholds for the

face-noise task before and after a period of training on either the

face-noise task, the Gabor-noise task, the face-feature task or the

control group (no training). First, we focus on the question of

transfer of learning from feature learning to noisy displays within

complex visual stimuli (faces). We analyzed these data using a

mixed model ANOVA with training group (face-noise, Gabor-

noise, face-feature, Control) as a between subject factor and timing

of testing (pre-training vs. post-training) as the within subject

factor (see Figure 4). We found a significant main effect of timing,

F(1,33) = 54.00, p < 0.0001, η2 = 0.62, with a lower threshold

(better performance) after training (M = 0.65, SE = 0.01) than

before it (M = 0.76, SE = 0.02). More importantly, we observed

a significant two-way interaction of type of training and timing of

testing, F (3,33) = 7.52, p < 0.001, η2= 0.4). Simple effects revealed

that prior to training, threshold estimates in the face-noise task

were comparable across the four training groups, F (3,33) = 0.36,

p = 0.78, while significant differences in threshold estimates were

observed after training, F (3,33) = 10.50, p < 0.0001, η2 =0.49. We

have also conducted non-parametric tests over the data and the

results remain the same (see Supplementary Table S3). Specifically,

threshold estimates on the face-noise task were similar following

training on both the face-noise task and face-feature task (Tukey’s

test: p = 0.26), and were both significantly better than for the

control group (Tukey’s test: p < 0.0001, p < 0.05, respectively).

In contrast, threshold estimates following training with the Gabor-

noise task did not differ from the control group (Tukey’s test: p =
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FIGURE 4

Noise threshold estimates before and after training for the two noise tasks, separately for each of the four training groups. Lower thresholds

represent better performance. Threshold estimates were calculated as 1opacity of the noise. Error bars represent ± standard error.

0.96) but were significantly worse than the face-noise task (Tukey’s

test: p < 0.001).

Comparing between the two time points—pre-training and

post-training for each training group separately—revealed the

same pattern of results. Specifically, participants improved their

performance after training in the following groups: face-noise

training [t(8) = 7.295, p = <0.01], face-feature training [t(9) =

3.522, p= <0.01]. Participants from the control group also showed

significant improvement in the face-noise task [t(8) = 2.479, p

= <0.05]. In contrast, the improvement of participants from the

Gabor-noise training group did not reach statistical significance

[t(8) = 2.087, p= 0.07].

The above analysis suggests that improvement in the face-noise

task was more pronounced in the group who trained with the

face-noise and with face-feature task, compared to the Gabor-noise

and control. To further ascertain the changes in performance in

the face-noise task, we quantified the improvement between the

two time points (ratio of change relative to baseline performance).

This improvement index (given as a percentage) was calculated

as follows:

Improvement index =
Pre Training − Post Training

Pre Training
∗ 100

The difference in discrimination estimates in the two time

point (pre trainingminus post training) divided by the pre-training

estimate (and then multiplied by 100 to give percentage). This

measure eliminates differences that may have occurred at baseline

(although no statistical difference was found between the groups in

their baseline performance). For the control group, the magnitude

of improvement in the face-noise task was 5.21%, which reflects

a baseline improvement expected without any training (i.e., as

a result of individuals’ familiarity with the face-noise task). We

therefore used this measure as a baseline for improvement against

which the training groups could be compared through the statistical

Dunnett’s test and found significant difference between the training

groups, F (3,33) = 8.18, p < 0.0001, η2 = 0.43. Specifically,

participants who trained on both the face-noise task and the face-

feature tasks showed significantly higher improvement compared

to the control group (improvement index = 26.65%, p < 0.001;

improvement index = 18.48%, p < 0.05, respectively). There was

no significant difference in the magnitude of improvement between

these two training groups, t(17) = −1.27, p = 0.22, and between

participants who trained on the Gabor-noise task and the control

group (improvement index= 4.76%). Parallel non-parametric tests

revealed similar effects (see Supplementary Table S4).

Next, we quantified the effect of learning across groups by

calculating a transfer index (see Chang et al., 2013) using the

improvement index described above as follows.

Transfer index =
Between

Within

The improvement index in one of the groups who did

not train with the face-noise task (i.e., the face-feature task

and Gabor-noise task; between task improvement) divided

by the improvement observed in the group training with

the face-noise task (within task improvement). A value of

1 expresses a similar improvement between and within (a

full transfer of learning). The results indicated that training

on the face-feature task led to improvement on the face-

noise task, with approximately 70% transfer, whereas the

training on the Gabor-noise task showed similar changes to

participants who did not train (transfer indices of 18 and

19%, respectively).

To further visualize the learning effects in the face-noise task in

each training group, we plotted participants’ performance on the

face-noise task before and after the training session and fitted a

regression line for each group separately (see Chang et al., 2013;

Figure 5). For the Gabor-noise training group and the control

group the slope parameter of the regression line is indistinguishable

from 1 (B = 0.79; B = 0.70, respectively). A slope of unity

(displayed as a diagonal reference line in Figure 5) represents

equal performance in terms of discrimination thresholds in the

pre- and post-training sessions, and thus reflects no learning.
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FIGURE 5

Visualization of the magnitude of improvement on the face-noise task in the four training groups. The threshold estimates are presented for each

participant for the pre (x-axis) and post (y-axis) training sessions. The slopes, which reflect the degree of learning, were calculated across participants

from the same training group. A slope value close to 1 (the diagonal) represents limited learning, while a shallow slope represents more substantial

learning and improvement.

FIGURE 6

Learning curve for each training group. Power function was fitted to discrimination threshold on pre-training (blocks 13), training (blocks 418), and

post-training (blocks 1921) sessions for participants trained on face-noise task (A) and those trained on Gabor-noise task (C). Power function was

fitted to discrimination thresholds from the training session only (blocks 115) for participants trained on face-feature task (B). Error bars represent ±

standard error.

In contrast, for both the face-noise and face-feature training

groups, the slope parameter of the regression line was substantially

different than the diagonal reference line (B = 0.44; B = 0.40,

respectively), indicating a high learning of the face-noise and

transfer of learning between the face-feature and face-noise tasks

(see Figure 5).
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A further consideration was assessing the extent of learning

throughout the course of training (learning curve) in the active

training groups (face-noise group and face-feature training). These

groups showed improvement, which manifested in a gradual

decrease in thresholds throughout the training process (Figure 6).

Particularly, the face-noise group demonstrated a significant

decrease in threshold estimates from 0.74 (SE = 0.04) in block 1

to 0.54 (SE= 0.03) in block 21, F (1,19) = 69.97, p< 0.001, Adjusted

r2 = 0.75 (SE = 0.05) (Figure 6A). The face-feature group also

demonstrated a significant decrease in thresholds from 6.8 (SE =

1.06) in block 1 to 5.10 (SE = 0.62) in block 15, F (1,13) = 12.92, p

< 0.01, Adjusted r2 = 0.46 (SE = 0.10) (Figure 6B). On the face-

feature task, power function was fitted only to 15 training blocks

(blocks 4–18). The pre-training (blocks 1–3) and post-training

(blocks 19–21) section did not include this type of task.

To exclude the possibility that the reason we found no transfer

effects in the Gabor-noise training group is because no learning

was achieved in this training group (in the Gabor-noise task itself),

we also fitted a learning curve to the threshold estimates in the

Gabor-noise task. However, we found that the Gabor-noise group

did demonstrate a significant decrease in thresholds from 0.56 (SE

= 0.06) in block 1–0.43 (SE = 0.03) in block 21, F (1,19) = 50.10,

p < 0.001, Adjusted r2 = 0.71 with SE of 0.06 (Figure 6C). Thus,

participants in the Gabor-noise training group did demonstrate

perceptual learning in the trained task.

Finally, we also considered the magnitude of learning on the

Gabor-noise task across the different training tasks to quantify

learning and possible transfer effects on the Gabor-noise. We

analyzed these data using a mixed model ANOVA with type of

training group as a between subject factor (face-noise, Gabor-

noise, face-feature, Control) and timing of testing (pre-training vs.

post-training) as the within subject factor (see Figure 4). We first

confirmed there was no statistical difference in threshold estimates

prior to training across the four groups of participants, F (3,33) =

0.998, p = 0.41, η2 = 0.08. We found a significant main effect

of timing, F (1,33) = 24.75, p < 0.0001, η2 = 0.43: with a lower

threshold (better performance) after training (M = 0.44, SE =

0.01) than before (M = 0.51, SE = 0.02). However, there were no

significant group differences, F (3,33) = 0.50, p= 0.68, η2= 0.04 and

the interaction between training group and timing of testing was

not significant, F (3,33) = 2.39, p = 0.087, η2 = 0.18 (see Figure 4).

We have also conducted non-parametric tests over the data and the

results remain the same (see Supplementary material). Thus, for

the Gabor-noise task, we could not ascertain learning or transfer

effects that are over and above what can be documented by a simple

repetition of the Gabor-noise (e.g., the control group).

4 Discussion

The main aim of the current study was to examine

the previously documented feature-to-noise perceptual learning

transfer effect (Dosher and Lu, 2005; Chang et al., 2013) in the

context of face stimuli. We therefore estimated noise thresholds

of face stimuli embedded in noise (face-noise) before and

after training in four different training protocols. Critically, we

included both perceptual learning using the same face-noise

task and perceptual learning in a face-feature task (without

noise) as well as a control group where no training took

place. Our data indicate a substantial transfer effect from the

face-feature task to the face-noise task, which provides initial

evidence that feature-to-noise transfer effects are not limited

to simple perceptual judgment and can occur with complex

real-life stimuli too. A secondary (exploratory) aim of the

current study was to examine possible transfer effect across

different stimuli in noise training. In particular, we assessed

whether perceptual learning of a simple perceptual judgment

(orientation) embedded in noise will transfer to complex perceptual

discrimination (faces) embedded in similar type of noise. However,

we found no evidence for such transfer using the current design

and parameters.

Our implementation of four separate groups for the training

stage, enabled us to safely identify learning and transfer effects

over and above improvement in performance that may be shown

in the control group (simply associated with task repetition).

We first established that there were no differences in baseline

performance between the training groups and we then measured

performance differences following training both in absolute

(threshold estimate in the post-training session) and relative (%

change in performance in the post- vs. pre-training session) terms.

In the face-noise task, we observed significant transfer effects.

Notably, we detected no statistical difference in the extent of

improvement between the face-noise training group and face-

feature training group. Training on the face-feature task resulted

in transfer equivalent to 70% of the learning magnitude observed

in the face-noise task, representing a substantial transfer, especially

when compared to the 19% of spontaneous learning seen in the

control group. Conversely, training in the Gabor-noise task did not

yield improvement or transfer to the face-noise task beyond the

spontaneous improvement demonstrated by the control group.

The transfer effects we report are aligned with previous studies

documenting transfer from clear to noisy tasks on simple visual

features (Dosher and Lu, 2005; Chang et al., 2013). Dosher and

Lu (2005) interpreted such results of learning under clear and

noisy conditions as two independent processes of the perceptual

system: (1) Segmentation of the visual feature (or noise filtering);

and (2) feature representation. Training in clear tasks improves

internal feature representation and is used in both clear and

noisy tasks, whereas training in noise tasks impacts only the noise

filtering mechanism. Using brain stimulation, Chang et al. (2014)

demonstrated a double dissociation between these processes with

noise filtering (in a depth perception in noise task) dependent

on left parietal cortex (Mevorach et al., 2010) while feature

representation (in a feature discrimination depth perception task)

implemented in the lateral occipital area (LO). Critically however,

perceptual learning with a feature depth discrimination task

changed the contribution of the parietal and LO areas in the depth

noise task so that after training performance only depended on

LO. Thus, the authors concluded the feature-to-noise transfer was a

consequence of feature representation processes in LO supplanting

noise filtering processes in the parietal cortex (Chang et al., 2014).

Our findings here suggest that these processes are not limited to

simple perceptual features and may be involved when complex

images, such as faces, are judged.
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Another explanation for the feature-to-noise transfer refers

to the different learning efficiencies (Lu et al., 2010). Lu et al.

(2010) applied the augmented Hebbian re-weighting model and

tested it on previous perceptual learning experiments with external

noise (e.g., Dosher and Lu, 1998, 1999, 2005). According to this

model, performance improvement occurs as the system gradually

allocates higher weight to the relevant features and lower weight

to irrelevant features. Different training conditions (clear or noisy)

impact the locus of the adjusted weight allocation. Accordingly, the

asymmetry in transfer is a consequence of different adjustment of

weighting in the clear and noisy conditions with the former leading

to optimal use of a relevant feature over the irrelevant ones and

the latter leading to decreases in the weight given to the irrelevant

features. Thus, training in high-noise cannot lead to optimal weight

allocation to the relevant features because it is not “learned” in

the high-noise condition (Lu et al., 2010). Although our failure

to induce transfer effects between two (very) different noise tasks

should be taken with caution (see below), it may suggest that such

reweighting of noise attributes is still dependent on the target

stimulus, or the combination of noise and signal, and therefore

is not transferable even when the noise itself is repeated across

different tasks.

The transfer effects we report here with complex stimuli

also align with previous reports demonstrating transfer with

complex images. For instance, Baeck and Op de Beeck (2010)

have demonstrated transfer effects when using the same objects

under different perceptual protocols. In fact, the authors reported

that masked object identification partially transferred to conditions

where the same object was presented together with noise. Our

findings of transfer from the face-feature task (without noise) to the

face-noise task can be taken together with such previous findings

to support the notion that the basic finding reported by Dosher

and Lu (2005) with simple visual stimuli, can be replicated in

complex visual stimuli too. However, in the current study the

transfer effect is shown not across identical objects but rather across

the ability to distinguish between two faces using different degrees

of similarity (or distance). Our face-feature training was designed in

a way that will promote learning of feature representation through

increasing the precision. This was then shown to help participants

distinguish between faces needing less precision but embedded in

external noise.

Previous studies have argued that specificity and transfer

in perceptual learning depend on the difficulty or precision

of the training task (Ahissar and Hochstein, 1997, 2004; Liu

and Weinshall, 2000; Wang, 2013; DeLoss et al., 2014). This

aspect may be particularly pertinent to our study, considering

the challenge posed by the face identification task exemplified

by the relatively high rate of participant who could not learn

to discriminate between the faces. Ahissar and Hochstein (1997,

2004), for instance, used a simple visual detection task (report

the presence or absence of an oddly oriented bar in an array

of oriented distractors bars) while manipulating task difficulty

and found that specificity increased with increased difficulty.

Although the context of a feature-to-noise transfer is somewhat

different, according to this account we would expect a transfer

from the face-feature to the face-noise task if the face-feature

task represents an easier learning task. While we cannot ascertain

this here, it is worth noting that a higher proportion of

participants in our study failed to show learning effects in the

face-noise task than the face-feature task, which may fit with

this idea.

However, a different account which may better fit our findings

suggests that specificity and transfer effects are related to the

tested rather than trained task (Jeter et al., 2009). Jeter et al.

(2009) used an orientation discrimination task under two different

precision demands. Their findings demonstrated that when testing

on the lower precision task similar (and substantial) transfer effects

were evident after training with both the low and high precision

versions. In contrast, no transfer was evident when testing on the

higher precision task. In our study, the face-noise task required

lower precision of face discrimination (the faces were located

further apart on the morph continuum). It could therefore be

argued that here too, lower precision demands of the tested task

led to transfer effects (including using a higher precision task

for training).

In contrast to the feature-noise transfer effect, we did not

find evidence for transfer across the two noise tasks, as the

Gabor-noise group showed similar improvements as the controls.

Indeed, this lack of transfer was also demonstrated in the opposite

direction with the face-noise group showing similar improvement

in the Gabor-noise as controls. These findings, therefore, fail to

provide support to previous reports suggesting that noise filtering

could be trained in perceptual learning and could be subsequently

implemented even when the specific feature that needs to be

discriminated is changed (Chang et al., 2013). One possibility

here is that perceptual learning involving noise filtering cannot be

transferred in the context of complex stimuli. This is supported

by a previous attempt using complex objects in noise displays

that also failed to show transfer to non-trained objects (Baeck

and Op de Beeck, 2010). However, there are other more likely

possibilities that reflect the specific parameters we have used. First,

it is possible that the lack of transfer we report was due to change

in stimuli complexity between the Gabor-noise and face-noise task.

In Chang et al. (2013), the noise filtering transfer effects occurred

between different tasks using simple features (motion direction,

orientation and depth). In contrast, in our study we tested the

transfer from simple feature (orientation) to complex features

(face identity) and vice versa. It is therefore plausible that transfer

could only occur when there is similarity in the levels of target

feature complexity (although see Baeck and Op de Beeck, 2010).

Secondly, and perhaps more likely, our implementation of the

Gabor-noise task may have driven this lack of transfer: the Gabor

patches were unusually centrally presented and showed limited

evidence for learning (we found no significant group differences

across the different training groups in the Gabor-noise task). While

learning did occur (demonstrated using a learning function) it may

have been confounded by a ceiling effect. Indeed we also found a

substantial difference at baseline (pre-training) between threshold

estimates of the Gabor and face-noise tasks with considerably

lower threshold for the Gabor task (Gabor noise task; M = 0.51,

SE = 0.02 compared to face-noise task; M = 0.76, SE = 0.02).

We, therefore, conclude that the learning observed in the Gabor-

noise task and its potential transfer effects should be interpreted

with caution.
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The transfer effect we report from the face-feature training

task to the face-noise task is particularly interesting as it

suggests that individuals who may exhibit difficulty in filtering

noise might benefit from training in a fine-discrimination

(no-noise) task. Performance in tasks with external noise

is thought to rely on attention processes of noise filtering

(e.g., Chang et al., 2014). It is therefore possible that

attention impairment may be related to difficulties in noisy

tasks or deficient learning in noisy tasks, but that training

with feature discrimination provides an alternative route

for improvement.

5 Limitations

This study has a few limitations. First our sample size was

relatively small although not unlike previous similar studies (e.g.,

Jeter et al., 2009; Bi et al., 2010; Chang et al., 2013). Second,

our use of a difficult face discrimination task may limit our

findings to the context of a specific (special) category of complex

stimuli. Moreover, the difficulty of the face discrimination task

led to the exclusion of participants who could not accurately

identify the faces or demonstrate learning. This therefore limits

our results to a sub-set of the population which is less likely

to experience face processing difficulties. Using more easily

discernible faces or even familiar faces may lead to a reduction

in the number of participants excluded from the study and to a

more generalizable participants cohort. Moreover, in the present

study, participants underwent only 3 days of training. Extending

the training period could potentially enhance the intensity of

learning, and this aspect should be taken into account in future

research. Finally, there was a marked difference in the current

study between the Face noise and Gabor noise tasks, both in

terms of the overall difficulty (with higher thresholds for the

face noise task) and in the magnitude of learning (with no

significant difference over the control for the Gabor noise task).

As such, we were unable to ascertain whether noise filtering

could have been transferred across the two tasks. Future studies

should attempt to equate these aspects between the tested signal-

in-noise tasks.
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