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We compare two methods to elicit graphs from people that represent the

causal structure of common artifacts. One method asks participants to focus

narrowly on local causal relations and is based on the “make-a-di�erence” view

of causality, specifically on an interventional theory of causality and so we call

it “Intervention.” It asks subjects to answer a series of counterfactual questions.

The second method draws directly from the graphical aspect of Causal Bayesian

Networks and allows people to consider causal structure at a more global level.

It involves drawing causal graphs using an online interface called “Loopy.” This

method does not depend on a definition of causal relatedness. We use signal

detection theory to analyze the likelihoods of people generating correct and

incorrect causal relations (hit rates and false alarm rates, respectively) using each

method. The results show that the interventionmethod leads people to generate

more accurate causal models.

KEYWORDS

causality, causal Bayes nets, graphical models, counterfactual reasoning, mental
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Introduction

To use an object, it is sometimes necessary to understand how it works. For instance,

it is hard to use a coffee machine without some idea of the function of each part. If

you don’t have that causal understanding yourself, you might need to rely on someone

else’s. Similarly, troubleshooting a problem depends on causal understanding and, when

we do not have the causal knowledge ourselves, accessing someone else’s is the next best

thing. More generally, eliciting causal understanding is an important form of learning.

To understand how a causal system works, we elicit causal understanding from experts.

To find out if a student understands a causal system, we elicit their understanding.

To collaborate with others to solve a problem involving causes and effects, we share

causal understanding.

This paper focuses on one aspect of causal understanding, the causal structure that

relates causes and effects to one another. Causal structure helps to identify invariants

that are integral to a causal system and is thus of great utility. Indeed, asking people to

provide structured causal understanding of a legal case in the form of a graph makes them

more likely to endorse simpler legal explanations containing fewer cause-effect relations

(Liefgreen and Lagnado, 2023). In other words, they become more sensitive to the value

of parsimony.

Eliciting causal understanding requires a format to represent the relevant causal beliefs.

To share my understanding of how a coffee machine works, it would be useful to have

a language to express it. Expressing it in a natural language like English is one option,

but has the drawback that every expression of the same causal system is likely to be very
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different because natural language offers so many ways to express

the same idea; it is just too powerful. One consequence of this

expressive diversity is that natural language expressions of two

causal systems may not capture the actual similarity of those

systems. My description of how a pen works and how a pencil

works may be so different that the listener would fail to realize how

similar pens and pencils are. Finally, natural language has no built-

in facility for ensuring completeness. That is, it provides no cue that

Imay have failed tomention a relevant cause or effect or the relation

between them.

To overcome these problems, we adopt a stripped-down

version of a popular representational system for expressing

causal understanding, Causal Bayes Nets (CBNs; Spirtes et al.,

2001; Pearl, 2000). CBNs have been proposed as a cognitive

model by philosophers (Glymour, 2001), computer scientists

(Pearl, 2000), and cognitive scientists (e.g., Dasgupta et al.,

2019; Sloman, 2005; cf. Waldmann, 2017). CBNs are types of

Bayesian Networks that represent causes and effects as nodes,

causal relations as directed edges from nodes representing

causes to nodes representing effects, and include a special

intervention operator (called the DO operator by Pearl) that

allows the value of a variable to be set by an agent external

to the causal system under scrutiny. The main virtue of

CBNs is their ability to learn causal structure and make

probabilistically correct inferences about the effects of actual and

counterfactual interventions.

Rather than importing the mathematics of CBNs wholesale,

we elicit causal understanding using simplified CBNs that better

reflect how people actually think about causal systems. It is known

that non-expert human causal understanding in most domains

is shallow and superficial (Rozenblit and Keil, 2002; Sloman and

Fernbach, 2017). Therefore, we elicit sets of causal relations that are

unparameterized. They represent only qualitative causal structure,

whether a causal relation exists between each pair of variables, not

its strength in any sense. When an effect is produced by multiple

causes, we do not demand that our subjects report the functional

relation expressing how the causes lead to the effect. Thus, we

only ask people to report causal structure at the high level at

which actions and properties need to be described and not detailed

causal structure. We refer to these abstract and simplified CBNs as

“causal models.”

What form should causal structure elicitation take? We

consider two forms that differ in the granularity that they demand

people think about the causal system. Onemethod is drawn directly

from a popular class of theories of what comprises a causal relation

and it asks participants to focus narrowly on local causal relations.

The second method draws directly from the graphical property of

CBNs and allows people to consider causal structure at a more

global level.

Our first method relies on the “make-a-difference” view of

causality (Lewis, 1973;Walsh and Sloman, 2011;Wolff, 2007), more

specifically the interventional view championed by Woodward

(2003). Woodward proposes that a causal relation is one that

supports intervention. Roughly, A causes B if and only if an

intervention by an external agent that sets A to some value results

in B taking an associated value. The central idea is that, for A to be

a cause of B, it must be more than correlated with B. The relation

must be such that changing A by a sufficient amount also changes

B. In that sense, A makes a difference to B. We will refer to this

method as “Intervention.”

To implement it, we first break our causal system down into

a set of component variables, each corresponding to a part of

the causal system (see Figure 1 for an example). First we ask

participants to imagine that the system is functioning normally.

Then, for each pair of variables, we ask whether removing the

first variable of the pair would result in the second variable still

functioning.We assume that removing a variable corresponds to its

associated part no longer functioning. We test the methods using a

set of common objects like lamps, sinks, and bicycles. To illustrate

the Intervention method, to elicit the causal structure of a desk

lamp, one question we ask is “imagine that the outlet is removed,

would the lightbulb still generate light?” If the subject answers “yes,”

then we infer there is no causal relation between the two elements;

a “no” implies that there is. For n elements, this produces a matrix

of n – 1 × n – 1 responses (we assume variables are not causally

related to themselves). In addition, we introduce an element that

corresponds to the function of the whole object and serves only

as an effect, never as a cause. From that matrix, we infer a causal

structure from the set of causal relations on the assumption that two

variables that are connected indirectly cannot also be connected

directly. So if we obtain a causal chain from A to B to C then

we assume there is no direct relation from A to C. We make this

assumption because none of the parts in our objects serve as a both

direct and an indirect cause of an effect. In cases where the link

between A and B are bidirectional, we do not remove the direct

link from A to C or B to C, as this would require us to arbitrarily

choose whether we should treat A or B as the direct cause of C.

An example causal model from a participant where we see such a

structure is shown in Figure 2b, where there is both a direct link

from wick to chimney and an indirect link through burner, but the

direct link is not removed because the link betweenwick and burner

is bidirectional.

This method has the virtue that it derives directly from a

popular definition of causal relations in terms of counterfactuals

(Gerstenberg et al., 2021) and requires that subjects consider only

local, pairwise causality. It does have several drawbacks. First, it

fails to measure the strength of a causal relation and any functional

relations embedded in the causal structure. Second, it does not

scale well. For an object with N parts, it requires N2 questions, a

lot if n is large. Third, it cannot elicit the correct structure in the

rare case that a variable is both a direct and an indirect cause of

an effect.

Our second method (the “Drawing” condition) involves

drawing causal graphs using an online interface called “Loopy”.1

Participants are given a graphical interface with all the elements of

the causal system depicted as nodes. Their task is to draw arrows

between nodes to represent causal structure. In essence, they are

being asked directly to draw an unparameterized Bayesian Network

although they are not restricted to acyclic graphs.

This method is less dependent on a definition of causal

relatedness. Subjects may assume a counterfactual or interventional

1 Loopy is an open-source online software (see: https://ncase.me/loopy/).

We used amodified version of Loopy that prevented participants frommaking

unwanted modifications to the graphs as explained in the Methods section.
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FIGURE 1

Diagram of desk lamp and a table describing the functions of its parts used in Experiment 1.

make-a-difference view or they may assume a more mechanistic

understanding of causality. An example of the latter is Dowe’s

(1999) proposal that A causes B if and only if a change to A leads to a

conserved quantity traveling from A to B over time and space with

a resultant change in B. Lombrozo (2010) provides evidence that

people take amechanistic view in the case of physical causality but a

make-a-difference view when thinking about intentional causality.

Our graphical method also has the virtue that it allows people

to think either locally about pairwise relations or more globally

about several variables at a time. Finally, it scales better than the

Intervention method because participants are free to consider how

each variable influences all the others simultaneously. However, like

the Intervention method, it does not pick up on all the properties

of a CBN.

The purpose of the studies we report is to compare the

efficacy of these two methods for eliciting causal structure. We

evaluate the efficacy of the methods by comparing the causal

models we elicit from participants to a “ground truth” causal

model that is supposed to represent most closely how the object

really works. We look at whether either method leads people to

generate causal models that are closer to the ground truth models,

and if either method introduces biases into the process of causal

model elicitation.

Experiment 1

Methods

Participants
Two hundred and twenty six participants were recruited

from Prolific. Thirty-one participants in the Drawing condition

submitted causal graphs for all objects that either contained no

links between nodes or used the function of the whole object as a

cause which they were instructed not to do. These participants were

excluded. Median age of the final sample was 37. Ninety identified

as male, 100 as female, and 5 as other.

Materials and procedure
We elicited causal structure for four light-producing objects:

a desk lamp, a wall lamp, a flashlight, and a kerosene lamp. For

each object, participants saw a diagram of the object with its parts

labeled alongside a table describing the function of each part (see

Figure 1 for an example). The table also specified the function of

the entire object. We included a function for the entire object in

order to distinguish between parts that may be perceived as causally

irrelevant from parts that may be perceived as causally relevant

without having any direct links to other parts. As an example, for

the desk lamp the function of the “base” is “provide elevation and

stability” which is not causally linked to the functions of any other

parts. We defined the function of the whole object as “provide

elevated soft light” so that the base can be considered a cause of

this function.

We included only object parts that were present in the vast

majority of objects with that name. We only included parts that

were most important for the object to function and parts that

people were more likely to interact with. For instance, for the desk

lamp, we omitted the socket because most desk lamps come with

sockets pre-installed. The number of parts varied across objects

from 4 to 6.

All participants began the experiment by completing a

CAPTCHA to screen for bots. They were then asked to sign a

consent form.

Intervention condition

Participants were first asked to commit to giving thoughtful

answers (Geisen, 2022).2 Then they reviewed instructions

explaining that the experiment was going to test their

understanding of how objects work. They were told that they

needed to answer a series of questions in the following format:

2 After the experiment, we worried that participants may interpret this

question as a sign of researchers not trusting them, and thus we removed it

fromDrawing condition in Experiment 1 and both conditions in Experiment 2.
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“If one removed the [X part] from the [object], would the [Y

part] still [perform Y’s function]?”

We used an example object (a pistol) that was not related

to the test objects to explain how participants should answer the

questions. For instance, we pointed out that if removing part

X indirectly caused part Y to stop functioning by preventing

an intermediate part from functioning, they should answer this

question by saying “No”. Following the instructions, they saw

an attention check question that asked what object was used

as an example in the instructions. Then they proceeded to

the experiment.

For each object, participants first saw a diagram of the object

and a table describing the functions of its parts (see Figure 1).

Then they were presented with the intervention questions for all

permutations of pairs of object parts. We asked about the function

of the whole object only as a potential effect of intervening on

another part, but not as a potential cause of another part fulfilling

its function. For example, we asked “If one removed the cord from

desk lamp, would the desk lamp still provide elevated soft light”,

but we never asked, “If one removed the desk lamp, would the

cord still transfer electricity”. We ordered the questions in blocks

corresponding to a specific part being removed. For instance,

all questions involving “remove lightbulb” were asked after one

another. The order of questions within these blocks, the order of

blocks, and the order of objects were all counterbalanced across

participants. The diagram, the table, and the questions were all on

the same page, so participants were free to revisit the information

about the object at any time.

Drawing condition

Participants were told that their task was to create causal models

that explain how objects work in terms of the functional roles of

the object parts. Using a spray bottle as an example, we gave a

brief explanation of how graphs should be interpreted. For instance,

they were told that each node represents a function of an object

part, and an arrow from “X” to “Y” implies that “X” is a direct

cause of “Y”. They were instructed to include all the relevant cause-

effect relations for the whole object to fulfill its function in their

graphs. They were also told that the node corresponding to the

function of the whole object should only be used as an effect

and not a cause. This restriction parallels the procedure in the

intervention condition where participants were only asked about

the function of the whole object as a potential effect. After this, they

saw a demonstration of how the graphical interface worked before

proceeding to the study.

Similar to the Intervention condition, participants in the

Drawing condition first saw a diagram of the object and a table

describing the functions of its parts. Then, they were asked to

click a link to open the graphical interface on a separate page. By

default, the interface displayed labeled nodes corresponding to the

functions of each object part (and the whole object). Participants

then had to draw links between nodes to create a causalmodel. They

were also allowed to remove links they created and to restructure

the graph visually, but they were prevented from making any

other modifications such as removing or relabeling nodes. After

creating the graph, they had to click a button on the interface to

receive a link to their graph, which they had to paste into the

Qualtrics survey page before proceeding to the next object. The

order of objects was counterbalanced across participants. After

completing all objects, participants in both conditions answered

demographic questions.

Results

Causal models from participants were excluded if they

contained no causal links or contained a link that used the

function of the whole object as a cause, as these violated

our instructions. As will become clear, this biases against

our conclusions.

To evaluate participants’ causal models, we compare them to

“ground truth” causal models. The structure of the ground truth

models was agreed on by all authors and checked against expert

knowledge found on the internet. To evaluate participants’ models,

we calculated hit rates (HR) and false alarm rates (FAR). They were

defined as the following:

HR =

# of links present in both the ground truth and participant′s model

# of links in the ground truth model

FAR =

# of links absent in the ground truth model that are present in the participant′s model

# of links absent in the ground truth model

As shown in Table 1, the results were very clear. For all 4 objects,

HRs were higher in the Intervention than the Drawing condition.

FARs were also higher in the Intervention condition for 3 out of

4 objects, although one FAR difference (for flashlight) was small.

Table 1 also lists the results of independent samples t-tests that

compare HRs of each object across the two conditions and FARs

of each object across the two conditions. The difference was highly

significant in every case for HRs (p < 0.001) and in two of four

cases for FARs. The average number of causal links was 4.69 in the

Drawing condition, and 6.96 in the Intervention condition.

We conducted a 2 × 4 mixed ANOVA, with condition as a

between-subjects factor and object as within-subjects factor. There

was a significant effect of condition F(1, 177) = 136.05, p < 0.001,

ηp
2
= 0.44, where HR was lower in the Drawing condition (M =

0.54, SE = 0.01) than the Intervention condition (M = 0.75, SE =

0.01). There was also a significant effect of object F(3, 531) = 115.32,

p< 0.001, ηp
2
= 0.39, and a significant condition∗object interaction

effect F(3, 531) = 5.87, p < 0.001, ηp
2
= 0.03.

We repeated the same analysis for FAR. There was a significant

effect of condition F(1, 177) = 21.52, p < 0.001, ηp
2
= 0.11, where

FAR was lower in the Drawing condition (M = 0.12, SE = 0.00)

than the Intervention condition (M = 0.18, SE = 0.01). Due to

the object variable violating the assumption of sphericity (p <

0.001), F values were derived using the Huynh–Feldt statistic for

the following: There was a significant effect of object F(2.62, 464.01)
= 62.53, p < 0.001, ηp

2
= 0.26, and a significant condition∗object

interaction F(2.62, 464.01) = 15.65, p < 0.001, ηp
2
= 0.08.

The HRs and FARs indicate that the causal models that were

elicited varied in their quality. Models of a flashlight elicited by
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FIGURE 2

Example causal models of Kerosene Lamp from Experiment 1. (a) Causal model of a participant in the Drawing condition with d’ = −0.16. (b) Causal

model of a participant in the Intervention condition with d’ = 1.77. (c) Ground truth causal model.

the Intervention method were excellent while models of kerosene

lamps were poor, especially when obtained with the Drawing

method (see Figure 2 for examples).

Do these differences mean that the Intervention method

provides a more sensitive method of eliciting causal relations than

the Drawing method or do they mean that people are biased to

report more causal relations with the Drawing method? To answer

this question, we deployed signal detection theory (SDT; Green

and Swets, 1966). SDT is a method developed in psychophysics to

distinguish people’s ability to detect a signal (e.g., a flash of light or
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TABLE 1 Means with standard errors in parentheses for hit rates and false alarm rates across subjects in Experiment 1 for each object in both Drawing

and Intervention conditions.

Object Drawing Intervention t-tests

HR FAR HR FAR HR FAR

Desk lamp 0.61 (0.02) 0.08 (0.01) 0.78 (0.02) 0.14 (0.01) t(185) =−5.60∗∗∗ t(135.24) =−5.23∗∗∗

Flashlight 0.71 (0.03) 0.1 (0.01) 0.91 (0.02) 0.12 (0.02) t(150.14) =−6.13∗∗∗ t(150.71) =−1.40

Kerosene lamp 0.29 (0.02) 0.17 (0.01) 0.61 (0.02) 0.3 (0.01) t(180.71) =−10.48∗∗∗ t(134.86) =−8.07∗∗∗

Wall lamp 0.54 (0.02) 0.15 (0.01) 0.73 (0.02) 0.14 (0.01) t(187) =−6.75∗∗∗ t(152.86) = 0.74

t-tests comparing the two HRs and the two FARs in each row are also shown.

t-statistic not assuming homogeneity of variance was computed when Levene’s test was significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

evidence in memory for a causal relation) from any biases they may

have to say “yes” or “no” when asked about the presence or absence

of a signal. The ability to discriminate the presence of a signal from

the absence of one for a given object in a given task is indicated by d’,

z(HR) – z(FAR). d’ measures the similarity between a participant’s

causal model and the ground truth causal model. The more similar

they are, the higher the d’ is. An orthogonal measure, c, reflects

any bias to report a causal link, averaged over when a causal link

is present in the ground truth model and when it is absent: –[z(HR)

+ z(FAR)]/2. c= 0 means there is no bias in the task for that object,

c < 0 means the subject is biased toward reporting a signal, c > 0

means a bias toward not reporting a signal.

One obstacle with using d’ and c measures is that their values

cannot be calculated when either the HR or FAR is either 1 or 0

because z(1) =∞ and z(0) = –∞. We therefore replaced values of

1 with 0.99 and values of 0 with 0.01 when calculating d’ and c.

Table 2 shows d’ and c for each object using each elicitation

method. The d’ results in Table 2 make clear that, for every object,

the Intervention condition led to better discrimination of true

from imagined causal relations than the Drawing condition. The

difference between the two d’s was significant in every case. They

also show that subjects are more biased to report causal relations in

the Intervention than the Drawing condition.

To investigate these effects using all the data on d’, we conducted

a 2 × 4 mixed ANOVA, with condition as a between-subjects

factor and object as a within-subjects factor. There was a significant

effect of condition F(1, 177) = 52.06, p < 0.001, ηp
2
= 0.23 where

d’ was lower in the Drawing condition (M = 1.46, SE = 0.08)

than the Intervention condition (M = 2.14, SE = 0.07). Due to

the object variable violating the assumption of sphericity (p <

0.001), F values were derived using the Huynh-Feldt statistic for

the following: a significant effect of object F(2.66, 471.17) = 122.37, p

< 0.001, ηp
2
= 0.41 and a significant condition∗object interaction

F(2.66, 471.17) = 3.72, p = 0.015, ηp
2
= 0.02. All ANOVAs met the

assumption of sphericity throughout the rest of the paper, unless

mentioned explicitly.

We repeated the same analysis for c. There was a significant

effect of condition F(1, 177) = 161.70, p < 0.001, ηp
2
= 0.48 where

c was higher in the Drawing condition (M = 0.55, SE = 0.02) than

the Intervention condition (M= 0.08, SE= 0.03). Due to the object

variable violating the assumption of sphericity (p < 0.05), F values

were derived using the Huynh–Feldt statistic for the following: a

significant effect of object F(2.94, 519.73) = 35.02, p < 0.001, ηp
2
=

0.17 and a significant condition∗object interaction F(2.94, 519.73) =

9.13, p < 0.001, ηp
2
= 0.05.

Experiment 1 shows clearly that the Intervention method

leads to a greater bias to report causal links than the Drawing

method. More importantly, it generates causal models that are

more discriminating. The causal relations they elicit are relatively

more likely to be true causal relations than incorrect ones.

Experiment 2

Experiment 2 attempts to replicate the results of Experiment 1

using more and more complex objects.

Methods

Participants
Two hundred and fifty five participants were recruited

from Prolific. Twenty-two participants in the Drawing condition

submitted causal graphs for all objects that either contained no

links between nodes or used the function of the whole object as

a cause, which they were instructed not to do. These participants

were excluded. Median age of the final sample was 35. One

hundred and twenty one identified as male, 108 as female, and 4

as non-binary.

Materials and procedure
The methods of Experiment 2 were identical to Experiment

1 except for the following. We elicited causal models for 10

objects: bicycle, cannon, electric mixer, hand mixer, paddle boat,

pistol, scooter, sink, toilet, tricycle. The number of object parts

ranged from 5 (hand mixer) to 12 (bicycle). We changed

the tutorial object used in the Intervention question from

pistol to desk lamp, as we used pistol as a test object in

this experiment.

Results

In this experiment, participants were exposed to only 3 out of

10 randomly chosen objects. This prevents us from running the

same ANOVA analysis that we ran for Experiment 1 as it requires

participants to undergo every level of the within-subjects factor.

Instead, to analyze the effect of condition on HR, we calculated

an average HR score for each participant by taking the mean
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TABLE 2 Signal detection theory measures d’ and cwith standard errors in parentheses averaged across subjects in Experiment 1 for each object in both

Drawing and Intervention conditions.

Object Drawing Intervention t-tests

d’ c d’ c d’ c

Desk lamp 1.86 (0.11) 0.57 (0.03) 2.21 (0.1) 0.1 (0.05) t(177) =−2.28∗ t(151.26) = 8.53∗∗∗

Flashlight 2.35 (0.19) 0.31 (0.03) 3.36 (0.14) −0.16 (0.05) t(152.83) =−4.20∗∗∗ t(167.53) = 7.75∗∗∗

Kerosene lamp 0.32 (0.09) 0.82 (0.02) 0.94 (0.08) 0.12 (0.06) t(177) =−5.18∗∗∗ t(127.78) = 10.96∗∗∗

Wall lamp 1.15 (0.11) 0.51 (0.03) 2.15 (0.14) 0.23 (0.04) t(174.55) =−5.71∗∗∗ t(173.22) = 5.40∗∗∗

t-tests comparing the two d’s and the two c’s in each row are also shown.
∗ denotes p < 0.05.
∗∗ denotes p < 0.01.
∗∗∗ denotes p < 0.001.

HR of their 3 objects. Then we ran an independent samples t-

test on average HR. This revealed a highly significant effect of

condition t(202.20) = −12.51, p < 0.001, d = −1.68, where HR was

lower in the Drawing condition (M = 0.29, SE = 0.02) than the

Intervention condition (M = 0.54, SE = 0.01). The same analysis

on average FAR scores also showed a highly significant effect of

condition t(168.36) = −13.95, p < 0.001, d = −1.67. FAR was

lower in the Drawing condition (M = 0.09, SE = 0.00) than the

Intervention condition (M= 0.23, SE= 0.01). The average number

of causal links was 8.40 in the Drawing condition, and 21.82 in the

Intervention condition.

These results reveal the same pattern as Experiment 1. As

indicated in Table 3, for every one of the 10 objects, both HRs

and FARs were higher in the Intervention than the Drawing

condition. Table 3 also lists the results of two t-tests for each object,

one comparing HRs and the other comparing FARs in the two

conditions. For HRs, the difference was significant (p < 0.001) in

every case but one (for sink). For FARs, all differences between the

conditions were significant.

Does the Interventionmethod provide amore sensitive method

of eliciting causal relations than the Drawing method or does it

induce people to report more causal relations? We again address

this question with SDT. Using the average d’ as our DV, we

found a significant effect of condition t(171.09) = −2.89, p =

0.004, d = −0.40, where d’ was lower in the Drawing condition

(M = 0.67, SE = 0.07) than the Intervention condition (M =

0.92, SE = 0.04). For the c measure, there was a significant

effect of condition t(213.89) = 17.31, p < 0.001, d = 2.29,

where c was higher in the Drawing condition (M = 1.06, SE =

0.03) than the Intervention condition (M = 0.35, SE = 0.03).

For the average HR, FAR, and d’ measures, Levene’s test was

significant so the t statistics were computed without assuming

equal variances.

d’ and cmeasures for each object are reported in Table 4. Again,

d’ tends to be higher in the Intervention than Drawing condition,

however the difference is only significant for 3 objects: paddle,

scooter, and tricycle. For c, all differences are significant.

As an exploratory analysis, we looked at the correlation between

the number of object parts and the HR, FAR, and d’ measures to see

if the variation between objects was related to the complexity of the

object. We found that objects with more parts resulted in lower HR

r(639) =−0.10, p= 0.009. However, the number of object parts did

not significantly correlate with FAR r(639) =−0.03, p= 0.488, or d’

r(639) =−0.08, p= 0.059.

General discussion

Of the two methods we compared for eliciting causal structure,

the Intervention method elicited more accurate causal models

than the Drawing method in the sense that Interventional models

more effectively discriminated true from false causal links. The

Intervention method was also associated with a higher bias to

report causal links compared to the Drawing method.

In both cases, participants were given a set of parts along with

associated functions and they were asked to generate causal links

among the parts. The Drawing methodmade use of an open-source

tool to allow participants to generate causal graphs in whatever way

they preferred. They were free to consider each pair of parts or to

think about multiple parts simultaneously. It also did not constrain

their interpretation of causality. They were asked to draw all the

cause-effect relations for the whole object that allowed it to fulfill

its function. They could think about causal relations in terms of a

mechanism (the transfer of some conserved quantity from causes

to effects), a relation that supports intervention, or indeed any sort

of dependency relation that supports the counterfactual, “The cause

and effect both obtained and, if the cause had not been present, then

the effect would not have occurred.”

The Intervention method asked a series of counterfactual

questions, essentially one for each pair of parts, and a causal model

was inferred for each object from each subject’s answers. By virtue

of asking this series of questions, this method presupposes that

causal relations support counterfactuals and, in that sense, depends

on a more constrained definition of causality than the Drawing

method. The method also poses questions about pairs of variables

and thus involves a more local perspective on causal relations; i.e.,

one pair of parts at a time.

Why did the Intervention method generate more and more

discriminating causal relations? Is it because of its more local

perspective compared to the Drawing method, to its more

constrained interpretation of causality, or some other difference

between the two procedures? Although our experiments were not

designed to answer this question, we guess that it is the more

local perspective of the Intervention method. Our reasoning is that

the method forces people to consider each pair of parts and is

thus more likely to induce them to consider causal links that they

might otherwise have overlooked. Nothing in the Drawing method

forces this kind of exhaustive consideration of the space of possible

causal relations. Furthermore, we doubt that how people think
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TABLE 3 Means with standard errors in parentheses for hit rates and false alarm rates across subjects in Experiment 2 for each object in both Drawing

and Intervention conditions.

Object Drawing Intervention t-tests

HR FAR HR FAR HR FAR

Bicycle 0.25 (0.05) 0.07 (0.01) 0.56 (0.02) 0.26 (0.02) t(28.81) =−5.30∗∗∗ t(43.09) =−9.83∗∗∗

Cannon 0.26 (0.02) 0.10 (0.0) 0.50 (0.02) 0.30 (0.03) t(61) =−7.07∗∗∗ t(38.43) =−7.38∗∗∗

Electric mixer 0.26 (0.02) 0.09 (0.0) 0.45 (0.03) 0.26 (0.03) t(57) =−4.69∗∗∗ t(36.75) =−6.50∗∗∗

Hand mixer 0.42 (0.03) 0.13 (0.01) 0.56 (0.03) 0.25 (0.02) t(72) =−2.88∗∗ t(51.85) =−4.98∗∗∗

Paddle boat 0.32 (0.04) 0.09 (0.01) 0.60 (0.03) 0.16 (0.01) t(61) =−5.37∗∗∗ t(54.67) =−4.71∗∗∗

Pistol 0.25 (0.03) 0.06 (0.01) 0.52 (0.02) 0.20 (0.02) t(70) =−7.48∗∗∗ t(44.61) =−6.12∗∗∗

Scooter 0.15 (0.03) 0.12 (0.01) 0.52 (0.03) 0.17 (0.02) t(62.66) =−8.86∗∗∗ t(53.77) =−2.26∗∗

Sink 0.57 (0.07) 0.06 (0.01) 0.68 (0.03) 0.22 (0.02) t(33.86) =−1.46 t(56.42) =−7.40∗∗∗

Toilet 0.24 (0.03) 0.07 (0.01) 0.50 (0.02) 0.23 (0.02) t(57) =−5.94∗∗∗ t(48.70) =−9.53∗∗∗

Tricycle 0.18 (0.04) 0.12 (0.01) 0.47 (0.04) 0.26 (0.02) t(61) =−4.77∗∗∗ t(51.67) =−5.48∗∗∗

t-tests comparing the two HRs and the two FARs in each row are also shown.
∗ denotes p < 0.05.
∗∗ denotes p < 0.01.
∗∗∗ denotes p < 0.001.

TABLE 4 d’ and cwith standard errors in parentheses averaged across subjects in Experiment 2 for each object in both Drawing and Intervention

conditions.

Object Drawing Intervention t-tests

d’ c d’ c d’ c

Bicycle 0.43 (0.26) 1.27 (0.1) 0.82 (0.08) 0.28 (0.05) t(24.34) =−1.43 t(28.79) = 8.70∗∗∗

Cannon 0.54 (0.14) 1.03 (0.06) 0.59 (0.1) 0.30 (0.05) t(61) =−0.31 t(61) = 9.25∗∗∗

Electric mixer 0.67 (0.1) 1.01 (0.04) 0.54 (0.1) 0.41 (0.07) t(57) = 0.86 t(51.80) = 7.55∗∗∗

Hand mixer 0.93 (0.18) 0.75 (0.04) 0.91 (0.1) 0.30 (0.07) t(57.46) = 0.08 t(60.14) = 5.73∗∗∗

Paddle boat 0.82 (0.21) 1.02 (0.07) 1.32 (0.11) 0.37 (0.05) t(39.16) =−2.15∗ t(61) = 7.70∗∗∗

Pistol 0.80 (0.15) 1.20 (0.06) 0.96 (0.07) 0.44 (0.05) t(44.91) =−1.01 t(70) = 9.60∗∗∗

Scooter 0.01 (0.16) 1.20 (0.07) 1.15 (0.13) 0.51 (0.07) t(63) =−5.17∗∗∗ t(63) = 5.99∗∗∗

Sink 2.02 (0.34) 0.69 (0.1) 1.38 (0.12) 0.14 (0.07) t(27.24) = 1.76 t(63) = 4.55∗∗∗

Toilet 0.70 (0.14) 1.14 (0.07) 0.79 (0.07) 0.39 (0.05) t(57) =−0.66 t(57) = 8.29∗∗∗

Tricycle 0.00 (0.22) 1.23 (0.09) 0.62 (0.12) 0.39 (0.08) t(61) =−2.73∗∗ t(61) = 6.50∗∗∗

t-tests comparing the two d’s and the two c’s in each row are also shown.
∗ denotes p < 0.05.
∗∗ denotes p < 0.01.
∗∗∗ denotes p < 0.001.

about causal relations (as mechanisms or dependencies) is likely

to have much effect on their reports. Data from other domains

of cognition lead us to suspect that people are not even aware of

how they are thinking about causal relatedness (Nisbett andWilson,

1977).

The Intervention method is better at generating more complete

and accurate causal models than the Drawing method, but this

benefit does come at a cost. The Interventionmethod does not scale

as well as the number of parts increases. If there are N parts, the

Intervention method requires asking N2 questions and this can be

laborious if N is large. For reasonable N, it is manageable because

questions can be grouped as we grouped them for maximum

efficiency. Each of theN causes can be considered (“If one removed

[X part] from [object],...”) with a list of its N potential effects,

(“would [Y part] still [perform Y’s function]?”), so subjects only

have to imagine removing the cause once, while ticking off all of the

effects of that removal. Nevertheless, the Drawing method is less

vulnerable to this scaling issue as it allows subjects to think about

connecting parts in whatever way they want, including as clusters

of causes and effects.

The notion of causality we are eliciting focuses on how an

object actually operates rather than an object part’s potential to

operate. For instance, the ground truth model for the kerosene

lamp (Figure 2c) indicates that in order for the chimney to prevent

smoke, fuel and fire are necessary because without them, there

would be no smoke for the chimney to prevent. However, this does

not imply that the chimney loses its ability to prevent smoke. Our

causal models are meant to capture the events involved in how the
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object functions, and the event of “prevent smoke” cannot occur in

the absence of smoke.

In conclusion, causal structure determines how the world works

and therefore how we make predictions, generate explanations,

troubleshoot problems, and many of the myriad cognitive tasks

that we perform. The ability to elicit causal structure is therefore

fundamental to understanding how people think about the world.

Our studies suggest that a method that relies on imagined

interventions produces more accurate results than one that relies

on drawing graphs. One theoretical implication of these findings is

that people do not necessarily store fixed mental representations

of causal systems. Instead, these representations are constructed

in response to the method used to elicit them. The practical

applications of these results are illustrated in our own work. We

used causal models generated by participants to improve robot

planning algorithms to aid in tasks such as object assembly and

troubleshooting (Basu et al., 2025; Basu et al., 2024). More broadly,

there are many real-life situations where people need to explicitly

represent or use causal information to make decisions, such as

jurors reaching a verdict (Liefgreen and Lagnado, 2023), decisions

about one’s own health (Kleinberg et al., 2023), or personal finances

(Korshakova et al., 2023). Our results indicate the method of

presenting causal information can impact people’s causal beliefs,

and in turn, their decisions.
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