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The vigilance decrement in speed and accuracy of response is prevalent in

studies of sustained attention. The amplitudes of Event-Related Potentials (ERPs)

elicited by task stimuli also show temporal decline. However, it is di�cult

to link the behavioral performance decrement to loss of e�ciency in the

specific brain circuits that control human attention. A recent study published

by the authors used an extended duration-version of the Attention Network

Test to explore temporal changes in behavioral and electroencephalographic

indices in executive control, alerting, and orienting attention networks. This

study found evidence for temporal decline in ERPs associated with the alerting

network, as well as slowing of uncued reaction time. This study, like most

psychophysiological studies of sustained attention, analyzed group data. The

present article provides new analyses of data from the authors’ previous

study to investigate individual di�erences in loss of attention on the extended

ANT, and their relationships with positive and negative a�ect. Data analyses

addressed the temporal stability of attention network metrics, inter-relationships

between di�erent metrics, and associations between metrics and a�ective

states. Results illustrated some challenges in assessment of brain networks

at the individual level on tasks requiring sustained attention. Issues included

di�erential temporal stability of metrics, divergence of behavioral and ERP

measures, and distinguishing changes in network function from changes in

baseline response. The ANT is well-supported by group data as a tool for

investigating attentional functioning. However, the present results suggest that

caution is necessary in utilizing network indices at the individual level in clinical

and other applied contexts.
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attention networks, sustained attention, alerting, event-related potentials, individual
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1 Introduction

The Attention Network Test (ANT; Fan et al., 2002) is widely used in diverse research

areas including studies of cognitive neuroscience, human performance, and clinical

conditions (de Souza Almeida et al., 2021; Posner, 2023). A strength of the ANT is that

is based on Petersen and Posner’s (2012) attention network theory which distinguishes

brain circuits for executive control, alerting, and spatial orienting. The theory is supported

by converging evidence from behavioral, psychophysiological, and neurological research

(Petersen and Posner, 2012; Posner, 2023; Posner and Rothbart, 2007).
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Much research using the ANT is focused on group data, such as

differences between patient groups and healthy controls. However,

the ANT is considered a validated psychometric test (Fan et al.,

2002, 2007) although some psychometric limitations have been

identified (MacLeod et al., 2010). As such, it can be utilized to assess

attentional functioning in individuals, supported by correlational

evidence that establishes a nomological network for the three

indices of network functioning (e.g., Matthews and Zeidner, 2012).

In this article, we consider the extent to which behavioral and

electroencephalographic ANT indices can serve as indicators for

individual readiness for vigilance and sustained attention.

1.1 Attentional network theory and
research

According to attention network theory, the executive control

network, localized in prefrontal and frontal areas, supports

top-down regulation of attention, especially when stimuli elicit

conflicting responses (Posner and Rothbart, 2007). Alerting is

supported by frontal, parietal, and thalamic circuits that maintain

attention following arrival of a warning of cue stimulus. Orienting,

supported by parietal areas and the frontal eye fields, enhances

selective attention to a sensory source. The ANT (Fan et al.,

2002) measures the three networks as follows. The basic task is to

discriminate whether an arrow stimulus is pointing left or right.

Executive control is measured as the difference in response times

(RTs) to target stimuli flanked by incongruent or congruent stimuli.

Inhibition of incongruent flankers engages the executive control

network. Alerting is measured as the RT difference for cued and

uncued stimuli, with a variable foreperiod. Assessment of orienting

is based on response to stimuli presented above or below the initial

fixation point. The orienting index is the RT difference between

trials with a spatial cue to direct attention and trials with a non-

directional cue presented at fixation. The three indices are largely

independent of one another, although dependencies that reflect

interactions between the three networksmay occur (Fan et al., 2002,

2007). Indeed, brain networks defined by intrinsic connectivity

may overlap and it is challenging to map attention networks; the

Petersen and Posner (2012) theory may need updating (Markett

et al., 2022).

The ANT has been used to investigate attentional dysfunction

in a wide range of clinical conditions, including psychiatric

disorders such as attention deficit/hyperactivity disorder (ADHD;

Arora et al., 2020), depression (Sinha et al., 2022), anxiety (Heeren

et al., 2015), neurodegenerative diseases (Sarrias-Arrabal et al.,

2023), and physical conditions such as cardiovascular disease

(Razumnikova et al., 2021). Use of the ANT can link disorders to

specific networks, such as deficits in executive control observed in

schizophrenia (Spagna et al., 2018), depression (Sinha et al., 2022),

and anxiety (Pacheco-Unguetti et al., 2011). The ANT may thus

be useful to clinicians for psychiatric and neurological assessment,

identifying cognitive decline, and as a diagnostic aid (Guo et al.,

2022; Li et al., 2023).

The ANT has also been used in studies of individual

differences in performance in non-clinical samples. Such studies

elucidate relationships between personality traits, mood states

and attentional processing (Matthews and Zeidner, 2012; Moriya

and Tanno, 2009; Noh et al., 2012). For example, Matthews and

Zeidner (2012) found that extraversion and conscientiousness were

associated with stronger executive control. Some ANT studies

investigated individual differences in attentional functioning in

applied contexts. These include attentional factors in vehicle

driving performance (Guinosso et al., 2016; López-Ramón et al.,

2011) and impacts of shift work (Sumińska et al., 2021).

Studies of the ANT and individual differences in affect illustrate

the challenges of finding replicable effects. Theories of affect

propose that executive control is associated with negative emotional

conditions including anxiety (Eysenck et al., 2023) and depression

(Quigley et al., 2022). Matthews and Zeidner (2012) confirmed

that state distress was related to impaired executive control, but

other studies have failed to find similar associations (Finucane

et al., 2010; Noh et al., 2012). Another study found that trait

but not state anxiety was associated with poorer executive control

(Pacheco-Unguetti et al., 2010; Study 1).

Negative affect (especially anxiety) is linked to vigilance for

threat, so that associations with alerting and orienting are expected

(Ghassemzadeh et al., 2019). Pacheco-Unguetti et al. (2010)

confirmed this hypothesis for orienting but not alerting. Several

studies have reported associations between stronger orienting and

various trait and state negative affect dimensions (Matthews and

Zeidner, 2012; Moriya, 2018; Noh et al., 2012; Pacheco-Unguetti

et al., 2010), although there are also contrary findings (Moriya

and Tanno, 2009). There are similar inconsistencies in studies of

alerting, with some studies showing a positive association between

the ANT index and negative affect scales, and some showing no

relationship (Moriya, 2018). Noh et al. (2012) reported a negative

association between alerting and positive affect.

The ANT can also be used to secure electrophysiological

as well as behavioral indices of attentional network activity.

Analysis of the Event-Related Potential (ERP) response to ANT

stimuli may provide a more sensitive indicator of network activity

than RT-based indices, as well as tracking the time course of

activity (Kustubayeva et al., 2022; Neuhaus et al., 2010). Typically,

the cueing manipulations associated with alerting and orienting

networks increase the amplitude of the early N100 wave at posterior

sites, whereas the incongruent flankers that elicit executive control

reduce the later P300 response (Galvao-Carmona et al., 2014;

Kaufman et al., 2016; Kustubayeva et al., 2022; Neuhaus et al.,

2010). There has been extensive research on the use of ERPs

for evaluating neurocognitive functioning in a range of applied

contexts (Fu and Parasuraman, 2006), usages that might be

enhanced by further research on the validity of ERPs as measures

of brain attention networks.

Use of the ANT for diagnostic purposes in applied contexts

requires that is suitable for assessing the individual. Some

psychometric concerns have been raised including relatively low

reliability of measures (Ishigami and Klein, 2010; MacLeod et al.,

2010), statistical interdependence of network metrics (MacLeod

et al., 2010), handling of errors (de Souza Almeida et al., 2021),

and choice of control condition trials (de Souza Almeida et al.,

2021). An analysis of fMRI data secured from an ANT study raised

similar concerns about reliability and discrimination of attentional
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networks (Kong et al., 2024). The use of difference scores as

network indices is potentially a source of difficulty, especially if

criterion values are associated with RTs in control or baseline

conditions. Similarly, when using the ANT to investigate temporal

performance decrements, change scores may be confounded with

baseline scores. Typically, psychophysiological data obey the Law

of Initial Value (LIV; Wilder, 1957), such that change is negatively

correlated with baseline value, potentially leading to artifactual

findings (Burt and Obradović, 2013). There are different methods

for calculating change scores. The most straightforward is to

calculate a simple difference or delta between the index measured

at baseline and measured during task performance, or, as in

the present study, between the index measured at early and late

temporal stages. Alternative metrics for change include percentage

change from the initial score difference and residualized change

score. Different metrics have differing psychometric properties

and differing correlations with other criterion variables (Burt and

Obradović, 2013; Matthews et al., 2017a).

1.2 Applications to sustained attention and
vigilance

The ANT is a promising tool for understanding sustained

attention and the vigilance decrement, i.e., the decline in target

detections characteristic of performance over extended time

intervals (Warm et al., 2008). Currently, the leading theory of

vigilance is based on attentional resource theory (Helton and

Wen, 2023; Neigel et al., 2020; Warm et al., 2008), although

the decrement has also been attributed to failures in executive

control (Luna et al., 2021; Thomson et al., 2015) and to attentional

lapses (Smallwood et al., 2004). However, a limitation of resource

theory is that “resources” are difficult to define and operationalize

precisely (Matthews et al., 2000). The Petersen and Posner (2012)

theory potentially supports a more precise account of which

specific attention network(s) become impaired during prolonged

performance. A case could be made for each of the networks

contributing to loss of target detection accuracy. Thomson et al.

(2015) stated that impairment in executive control leads to

failure to allocate resources effectively, without temporal change

in resource availability. Posner (2008) himself attributed vigilance

to the alerting network. Consistent with this view, vigilance is

impaired by introducing temporal asynchrony to the stimulus

sequence (Scerbo et al., 1986), so that there is a variable rather than

a constant foreperiod, increasing demands on alerting. Conversely,

providing a cue that signals likely arrival of a target reduces

vigilance decrement (Hitchcock et al., 2003). The role of orienting

has been neglected but an earlier generation of theories of vigilance

including expectancy and observing theory highlighted the possible

role of selective attention failures in decrement (Davies and

Parasuraman, 1982). Spatial uncertainty in multiple modalities also

amplifies vigilance decrement (Hess and Greenlee, 2024).

ANT studies of sustained performance have provided mixed

outcomes. Zholdassova et al. (2021, Study 1) investigated the

sensitivity of the three attentional networks to temporal change

by utilizing an ANT that contained three times as many trials as

the standard ANT, lasting about 1 h. There were improvements in

alerting and executive control in initial trial blocks, after which

performance tended to stabilize; no network exhibited temporal

decrement. Zholdassova et al. (2021, Study 2) introduced masking

and trial-blocking manipulations to increase task demands, as

suggested by a resource theory perspective. However, even under

increased task demands no temporal decrements in the ANT

indices were found. This study found that RTs for congruent-

flanker trials tended to increase over time, highlighting the issue

that changes in ANT indices may potentially be contaminated by

changes in baseline RTs. Overall, these studies suggested that all

three networks were resilient during prolonged performance and

the traditional vigilance decrement (Davies and Parasuraman, 1982;

Warm et al., 2008) could not be attributed to any specific network.

An alternate approach is to modify the ANT to measure

vigilance independently of the three Petersen and Posner (2012)

networks. The ANTI-VEA (Luna et al., 2022) interpolates

additional trials to measure “executive vigilance” to small vertical

displacements of the central target arrow, and “arousal vigilance”

to a decrementing time counter. Executive vigilance represents

the ability to monitor and detect infrequent critical signals,

similar to classic vigilance tasks such as the Mackworth Clock

(Luna et al., 2023). Arousal vigilance reflects readiness for rapid

response without the need for the response selection, similar to the

Psychomotor Vigilance Task (PVT; Drummond et al., 2005). Two

reports on a large-scale study (Luna et al., 2021, 2022) reported

temporal decrements on both these novel indices of vigilance.

Luna et al. (2022) also found an increase in the standard ANT

executive control index across the first two three trial blocks of

their 33min task, contrary to Zholdassova et al.’s (2021) finding.

Participants who showed decreasing executive control on the

standard ANT index also showed greater temporal decrement

on the novel executive vigilance metric. These findings were

interpreted as supporting resource-control theory (Thomson et al.,

2015), which attributes vigilance decrement to weakening executive

control over time. Luna et al. (2022) also showed increasing RTs on

arousal vigilance trials, although the arousal vigilance decrement

was not modulated by executive control. Studies using the ANTI-

VEA have also investigated factors that influence vigilance such as

caffeine and exercise (Sanchis et al., 2020). Further discussion of

ANTI-VEA research is beyond the present scope but it appears

that there may be multiple mechanisms controlling temporal

decrements on the ANT, depending on the task version used.

Given the challenges of demonstrating temporal decrements on

the standard ANT indices, Kustubayeva et al. (2022) investigated

whether ERPs might provide more sensitive measures of temporal

change in the Petersen and Posner (2012) networks. Previous

studies of vigilance and other tasks requiring sustained attention

typically show temporal decline in the amplitude of both N100 and

P300 waves (Arnau et al., 2021) although there have been some

contrary findings (e.g., Haubert et al., 2018). An ANTI-VEA study

(Luna et al., 2023) found that temporal decrement in executive

vigilance was accompanied by increased amplitude in parietal P300

response on correct detection trials but there were no significant

temporal changes in either behavioral or ERP responses for arousal

vigilance. Kustubayeva et al. (2022) recorded ERPs from multiple

sites during performance of the extended-duration version of the
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ANT. Behavioral data showed a tendency for RT to increase inmost

conditions. There was no significant temporal change in executive

control over time but, paradoxically, the alerting index showed

increasing values over time. This finding reflected a greater slowing

in the control, no cue condition (1RT = 28ms) compared with

the double-cue condition that activates alerting (1RT = 14ms).

Participants become more dependent on the cue over time as

in standard vigilance paradigms (Hitchcock et al., 2003) but the

Alerting index was misleading as an index of temporal change.

Kustubayeva et al. (2022) also found a general tendency for

N100 and P300 amplitudes to decline over time in multiple

conditions, consistent with previous ERP studies of sustained

attention (Arnau et al., 2021). Temporal declines in amplitude

were somewhat similar for congruent and incongruent flanker trials

suggesting that there was no decrement specific to the executive

control network. However, N100 amplitude decrement at posterior

sites in the double cue condition was about twice the magnitude

of the decrement in the no-cue condition. These data suggest

temporal deterioration in alerting over time, but the ERP data did

not exactly match the behavioral data.

1.3 The present study

Kustubayeva et al. (2022) confirmed that, in ANT data, ERP

data may provide a more sensitive test of temporal change in

network function than the Fan et al. (2002) behavioral indices.

The present study reports additional analyses of the Kustubayeva

et al. dataset to examine the psychometric properties of indices

of temporal change in behavioral and ERP metrics for the three

attentional networks. What do the various metrics available tell

us about the individual’s neurocognitive readiness for performing

sustained attention tasks?

Specifically, data were analyzed to address the following issues:

• Stability of individual differences. We assessed the test-retest

stability of behavioral and electroencephalographic ANT

metrics across the first and last stages of the 70-min task.

Metrics included Fan et al.’s (2002) indices for the three

networks, as well as a baseline response index, given evidence

for temporal change in RT and ERP amplitude in control

conditions (Kustubayeva et al., 2022; Zholdassova et al.,

2021). Given that ANT metrics correlate with various stable

personality traits (e.g., Matthews and Zeidner, 2012) and

clinical conditions (e.g., Sinha et al., 2022), we hypothesized

that both types of metric would show significant stability.

From an applied perspective, results indicate whether initial

levels of performance and ERP amplitude predict responses

toward the end of the task.

• Inter-relationship of behavioral and ERP metrics. We expected

that RT and ERP-based metrics for the same network

would intercorrelate. We also checked correlations between

N100 and P300 amplitudes. These reflect different cognitive

processes and so should dissociate.

• Inter-relationships of initial and change scores. There are two

conflicting perspectives on the relationship between initial

metric values and subsequent temporal change. Consider

an individual whose alerting network is already functioning

poorly at the beginning of the task. Given the general trend

toward temporal decline in alerting, the person may show a

larger decline in alerting metrics than someone with a well-

functioning network. That is, initial processing inefficiency

predicts greater vulnerability to subsequent impairment. (The

logic is similar to additive factors theory, which posits that

two sources of impairment will together impact performance

disproportionately: Verwey et al., 2015). Conversely, adopting

the LIV perspective suggests that an individual initially poor in

alerting will show relatively small subsequent decline, either

for statistical reasons including regression to the mean or

because there is less scope for decline relative to a high-

alerting individual.

• Correlations between changemetrics.Analyses of change scores

compared metrics based on a simple difference score or

delta, with residualized metrics that express the extent to

which the change score is more or less than expected on

the basis of initial level of the metric. Although these two

metrics typically correlate highly they may have different

psychometric properties and relationships with external

criteria (Burt and Obradović, 2013; Matthews et al., 2017b).

We examined the inter-correlations of behavioral and ERP-

based change metrics for both types of change score, on an

exploratory basis.

• Correlations with individual differences in affect. Previous

work has shown correlations between the ANT RT-based

indices and affective variables. Findings are mixed but scales

for negative affect tend to correlate with impaired executive

control and enhanced orienting (Matthews and Zeidner,

2012; Moriya, 2018; Noh et al., 2012; Pacheco-Unguetti

et al., 2010). We explored whether scales for positive and

negative affect might relate more strongly to ERP than to

behavioral measures. We also tested associations with baseline

RT, which may relate more strongly to affective state than

the network indices do (Finucane et al., 2010). We also

explored relationships between affect scales and network

change metrics, given that sustained attention impairments

may provide amarker for various clinical conditions including

mood disorder (Fortenbaugh et al., 2018).

2 Method

2.1 Participants

One hundred and two healthy volunteers (49males; 53 females)

were recruited from the Almaty city area and universities. Mean

age was 22.33 (SD = 5.63). Achieved power values for Pearson

correlations of 0.1, 0.3, and 0.5 (p < 0.05, two-tailed) were 0.17,

0.87, and 1.00. The study received approval from the Ethics

Committee of the Faculty of Medicine and Health Care of the

al-Farabi Kazakh National University.

2.2 ANT task

The ANT task was programmed in E-Prime 2.0 software

(Psychology Software Tools, Pittsburgh, PA). The task was identical

to Fan et al.’s (2002) ANT, except that the number of trials
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was extended to nine periods of 96 trials (864 in total). Task

duration was ∼70min. The display for the task was 65 cm from

the participant’s eyes. Stimuli were presented in black, against a

white background (see Kustubayeva et al., 2022, for illustrations).

Cue stimuli subtended ∼0.3◦ visual angle, and the arrow stimuli

∼0.5◦. After presenting an initial fixation cross and a cue stimulus,

a central arrow stimulus (the target) appeared on the screen. The

participant had to discriminate the direction of the arrow as quickly

and as accurately as possible by using left and right response

keys. The experiment included four categories of the cue—no cue,

double cue, central cue, spatial cue (above or below fixation cross);

and three categories of the flanker—congruent, incongruent, or

neutral. The task was programmed as a sequence of nine blocks

of trials. Each block contained two repetitions of 48 different trial

types (96 trials per block), i.e., 4 cue types × 3 flanker types ×

2 target locations (above or below fixation) × 2 target directions

(left or right). All stimulus attributes were counter-balanced in a

fixed pseudorandom sequence. Response time to target in ms and

accuracy were recorded for each trial.

Kustubayeva et al. (2022) analyzed data using means averaged

across three consecutive stages, i.e., blocks 1–3, 4–6, and 7–9. This

article compared data from the first and third stages to investigate

temporal changes. Attentional network indices were calculated

according to Fan et al.’s (2002) formulae:

Executive control = mean RT for incongruent flanking trials –

mean RT for congruent flanking trials;

Alerting = mean RT for no-cue trials – mean RT for double-

cue trials;

Orienting = mean RT of center cue trials – mean RT of spatial

cue trials.

Mean RT on trials with no cue and neutral flankers was used

to provide a baseline measure of response speed. As a check on

the consistency of using the mean to capture central tendency in

response, we calculated the alpha coefficient for the six RTs that are

utilized in the Fan et al. (2002) formulae. Alphas were 0.989 at stage

1, and 0.986 at stage 3.

2.3 EEG recording

EEG recording was done with a 256Hz sampling rate with

a Neuron-Spectrum_4 system (Neurosoft Ltd, Ivanovo, Russia).

Electrodes were placed according to the 10–20% international

recording system from frontal, temporal, parietal, occipital, and

central areas (FPz, F3, F4, F7, F8, Fz, FCz, C3, C4, Cz, CPz, P3,

P4, Pz, O1, O2, Oz) with indifferent ear electrodes in the following

situations: open eyes (1min); closed eyes (1min); completing

the ANT task (70min). EEG/ERP preprocessing and analysis of

P300 and N100 parameters for the central and parietal-occipital

electrodes (Fz, Cz, Pz, FPz, FCz, CPz, P3, P4, O1, O2) were done

with the EEG/ERPlab toolbox (Lopez-Calderon and Lusk, 2014).

Preprocessing included DC correction, bandpass filtering (0.1–

30Hz), epoching, baseline correction, artifact rejection (75uV),

and artifact removal with ICA algorithm (Independent Component

Analysis). N100 wave was defined as the maximum negative peak at

the latency from 240 to 290ms after target stimulus; P300 wave was

determined as the maximum positive peak between the latencies

250 and 600ms. Latencies were determined separately for each

participant by calculating the peak amplitude for each participant

in each condition. These intervals were chosen to capture peak

amplitudes across multiple recording sites at intervals consistent

with previous ERP studies of the ANT (e.g., Neuhaus et al.,

2010). Further details of EEG recording methods are available in

Kustubayeva et al. (2022).

ERP data were analyzed by defining sets of electrodes linked

to each of the three networks according to past practice in ERP

studies and theory (Petersen and Posner, 2012). For the executive

control network, we averaged ERP amplitudes at Pz and CPz

sites, following Kaufman et al. (2016). For alerting and orienting

networks, amplitudes were averaged across Pz, P3, P4, O1, and O2

electrode sites (Neuhaus et al., 2010).

Network indices for ERP N100 and P300 amplitudes were

calculated according to Kaufman et al.’s (2016) formulae, analogous

to the behavioral ANT indices:

Executive control = ERP amplitude for congruent flanking

trials – ERP amplitude for incongruent flanking trials;

Alerting = ERP amplitude for double-cue trials – ERP

amplitude for no-cue trials;

Orienting = ERP amplitude of spatial cue trials – ERP

amplitude of center cue trials.

Because N100 is a negative voltage, we multiplied N100

amplitude measures by −1 so that higher scores indicate a larger-

amplitude wave.

We also analyzed no-cue baseline measures of amplitude

equivalent to the behavioral baseline measure. As for RTs, we

calculated alpha coefficients for the six amplitude measures utilized

in the above formulae. For N100, alpha was 0.953 at stage 1

and 0.933 at stage 3. For P300, the respective alphas were 0.961

and 0.953.

2.4 Measure of a�ect

The Positive and Negative Affect Scale (PANAS; Watson et al.,

1988) was used to measure positive affect (PA) and negative affect

(NA). Instructions asked respondents to report their current mood

state. It was translated into the Kazakh language. The PANAS was

administered prior to and after performance of the ANT.

3 Results

Statistical analyses to address the aims of this article are

reported, using the data reported by Kustubayeva et al. (2022).

All analyses are new. Box-and-whisker plots for key variables are

provided in Appendix 1 and confidence intervals for correlations

are reported in Appendix 2. ANOVAs testing effects of flanker

type, cue type, and stage of the task on RT and ERP amplitude

are reported in Kustubayeva et al. (2022). Voltage plots and

topographical maps to illustrate ERPS in different conditions may

also be found in this publication.

3.1 Distributions of measures

Table 1 gives means for the RT and ERP amplitude measures

at stages 1 and 3, together with Bonferroni-corrected t-tests for
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TABLE 1 Means (and SDs) for RT- and ERP-based indices at stages 1 and 3 of the task.

Type of index Baseline Executive control Alerting Orienting

Stage 1 Stage 3 t Stage 1 Stage 3 t Stage 1 Stage 3 t Stage 1 Stage 3 t

RT 577 (74) 608 (82) 6.12∗∗ 113(44) 109 (40) 1.26 55 (24) 73 (31) 5.31∗∗ 37 (23) 44 (31) 2.15

N100 2.60 (1.90) 1.90 (1.83) 3.61∗∗ 0.14 (1.47) 0.15 (1.43) 1.35 1.73 (2.07) 1.08 (2.22) 2.88∗∗ 0.31 (1.53) 0.33 (1.57) 0.12

P300 4.24 (1.90) 3.76 (2.11) 3.33∗∗ 0.31 (1.48) 0.36 (1.25) 0.30 0.04 (1.69) 0.26 (2.03) 1.11 0.28 (1.39) 0.28 (1.23) 0.10

∗∗p < 0.01.

TABLE 2 Intercorrelations of ERP-based indices at stages 1 and 3 of the task for N100.

Stage 1 Stage 3

Baseline Executive
control

Alerting Orienting Baseline Executive
control

Alerting Orienting

Stage 1 Baseline –

Executive control −0.149 –

Alerting −0.094 0.069 –

Orienting −0.045 0.236∗ 0.068 –

Stage 3 Baseline 0.542∗∗ −0.180 0.014 −0.031 –

Executive control 0.180 −0.184 0.045 0.005 0.016 –

Alerting 0.000 0.022 0.433∗∗ −0.190 0.040 0.127 –

Orienting −0.121 −0.109 −0.044 0.103 −0.015 −0.106 −0.225∗ –

∗p < 0.05, ∗∗p < 0.01.

differences in means by stage. N100 amplitudes were multiplied

by −1 as indicated previously. Mean values for the three network

indices were consistent with those reported by Fan et al. (2002)

and other investigations. The baseline RT data showed a substantial

increase in RT over time (Hedges’ g = 0.61), together with an

increase in the alerting index (g = 0.53). However, the apparent

improvement in alerting over time is misleading because of the

baseline change. It reflects a smaller increase in RT in the double-

cue condition (1RT= 14ms) than in the no-cue condition (1RT=

28ms; see Kustubayeva et al., 2022, Table 1). The Executive Control

and Orienting indices did not change significantly over time. In

the baseline condition, there were significant decreases over time in

amplitudes of both N100 (g = 0.35) and P300 (g = 0.35). The only

ERP network index measure to change was N100 alerting, which

decreased (g = 0.28). In this instance, by contrast with RT data,

amplitude decreased more in the double-cue condition (1N100 =

–1.29 µV) than in the control condition (1N100 = −0.63 µV; see

Kustubayeva et al., 2022, Table 2).

3.2 Stability of individual di�erences

Table 3 shows correlations between RT-based indices at stages

1 and 3. Baseline RT and executive control showed substantial

stability over time, whereas alerting was less stable, and the two

orienting measures were not significantly correlated. The table

also confirms the independence of the three network indices at

both time points. However, baseline RT was significantly positively

correlated with alerting, and, to a lesser degree, with executive

control.

Tables 2, 4 show the corresponding correlations between

indices for ERP amplitude measures. Baseline RT and alerting

showed the highest levels of stability, for both waves. For executive

control, there was a significant cross-stage correlation only for

P300, and orienting measures were unrelated. There were some

small but significant correlations between metrics for different

networks and baseline P300 amplitude was significantly negatively

correlated with the alerting metric at both time points.

3.3 Inter-relationships of behavioral and
ERP metrics

Table 5 shows correlations of the corresponding network

indices derived from RTs, N100 amplitudes and P300 amplitudes,

e.g., in the first cell, baseline N100 amplitude vs. baseline RT. The

behavioral, RT-based measures were largely independent of the

amplitude measures, with the exception of a small but significant

correlation between N100 and baseline RT at stage 1. The table

also shows a substantial negative correlation between the N100 and

P300 executive control indices at stages 1 and 3, and a smaller

positive association between baseline ERP amplitudes at stage 1.

3.4 Inter-relationships of initial index scores
and change scores

Simple change scores (deltas) were calculated as (stage 3

index–stage 1 index) for behavioral and EEG indices, using the

means given in Table 1. Table 6 shows correlations between stage
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TABLE 3 Intercorrelations of RT-based indices at stages 1 and 3 of the task.

Stage 1 Stage 3

Baseline
RT

Executive
control

Alerting Orienting Baseline
RT

Executive
control

Alerting Orienting

Stage 1 Baseline RT –

Executive control 0.196∗ –

Alerting 0.400∗∗ −0.059 –

Orienting 0.168 0.159 0.042 –

Stage 3 Baseline RT 0.796∗∗ 0.190 0.342∗∗ 0.093 –

Executive control 0.227∗ 0.650∗∗ 0.071 0.053 0.204∗ –

Alerting 0.230∗ 0.002 0.305∗∗ 0.102 0.476∗∗ 0.007 –

Orienting 0.058 −0.023 0.152 0.170 0.080 0.107 0.192 –

∗p < 0.05, ∗∗p < 0.01.

TABLE 4 Intercorrelations of ERP-based indices at stages 1 and 3 of the task for P300.

Stage 1 Stage 3

Baseline Executive
control

Alerting Orienting Baseline Executive
control

Alerting Orienting

Stage 1 Baseline –

Executive control 0.141 –

Alerting −0.247∗ 0.242∗ –

Orienting −0.196∗ 0.107 0.031 –

Stage 3 Baseline 0.743∗∗ 0.036 −0.072 −0.294∗∗ –

Executive control −0.06 0.280∗∗ 0.067 −0.059 −0.015 –

Alerting −0.050 0.117 0.422∗ −0.004 −0.543∗∗ 0.013 –

Orienting −0.760 −0.170 −0.129 0.073 −0.098 −0.080 −0.050 –

∗p < 0.05, ∗∗p < 0.01.

1 means for the four ANT indices and deltas. The table shows

a consistent pattern of negative correlations, except for baseline

RT which did not predict change in RT. Individuals with high

baseline ERP amplitudes showed decreases on both baseline ERP

indices, especially for N100. All three stage 1 index scores were

negatively associated with the corresponding deltas. Notionally,

these findings suggest that individuals initially poor at executive

control improve in control over time, and those with good alerting

and orienting deteriorate in these functions. However, these data

are also consistent with the LIV which may reflect purely statistical

factors such as regression to the mean (Burt and Obradović, 2013).

3.5 Correlations between change metrics

Residualized change measures were obtained by regressing the

stage 3 index on the stage 1 index and saving the standardized

residual. Residualized change scores correlate at zero with the

stage 1 index. Table 7 shows intercorrelations of the two versions

of the RT-based change scores, simple deltas and residuals. As

expected, correlations for the two types of score were highly

correlated for corresponding measures. For baseline RT, the

correlation approached unity, but correlations were somewhat

lower for network indices. The table also shows that change scores

for alerting were substantially correlated with change scores for

baseline RT.

Tables 8, 9 show the correlations between change scores for

the ERP measures. The two alternate change score measures

were highly correlated for corresponding indices, but correlation

magnitudes tended to be smaller than for RT, especially for

executive control and orienting. Baseline and alerting change scores

were strongly negatively correlated for P300 but not for N100.

We also investigated correlations between RT-based and

ERP-based metrics for change. Significant correlations between

behavioral and ERP metrics barely exceeded chance levels; the

correlation matrix is provided in Appendix 3. However, N100 and

P300 change scores were more extensively correlated. The first four

columns of Table 10 show correlations between delta scores and

the remaining columns show correlations between residuals. For

corresponding measures, significant negative correlations between

amplitudes were found for all three network index change scores.

For example, individuals who showed increasing N100 executive

control scores over time also showed decreasing P300 scores for

both types of change score. Baseline P300 change was positively

associated with N100 alerting change on both change measures.
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TABLE 5 Correlations of corresponding network indices at stages 1 and 3 of the task.

Stage 1 Stage 3

Baseline Executive control Alerting Orienting Baseline Executive control Alerting Orienting

N100 vs. RT-based −0.199∗ 0.047 −0.048 −0.079 0.026 −0.016 −0.060 0.067

P300 vs. RT-based −0.060 0.086 0.049 0.116 −0.037 −0.170 0.126 −0.049

N100 vs. P300 0.236∗ −0.478∗∗ −0.095 −0.084 0.157 −0.388∗∗ 0.064 −0.011

∗p < 0.05, ∗∗p < 0.01.

TABLE 6 Correlations between stage 1 scores for ANT indices and change

scores (deltas).

Delta Stage 1 scores

Baseline Executive
control

Alerting Orienting

RT-based −0.165 −0.507∗∗ −0.455∗∗ −0.514∗∗

N100 −0.512∗∗ −0.777∗∗ −0.486∗∗ −0.714∗∗

P300 −0.231∗ −0.684∗∗ −0.413∗ −0.728∗∗

∗p < 0.05, ∗∗p < 0.01.

Additional correlations between N100 executive control change

and other P300 measures were significant only for the delta

change measure.

3.6 Correlations with individual di�erences
in a�ect

Comparisons of pre- and post-task means on the PANAS

showed a significant decrease in NA during the task, t(101) = 2.66, p

< 0.01. Means (and SDs) were 16.8 (4.4) pre-task and 15.7 (3.9)

post-task. PA also decreased over time, t(101) = 2.67, p < 0.01.

Means (and SDs) were 29.4 (5.8) pre-task and 27.9 (7.1) post-task.

Thus, performing the task appeared to produce a general decline

in emotional arousal, but was not otherwise stressful. There were

significant test-retest correlations for both NA (r = 0.431, p <

0.001) and for PA (r = 0.676, p < 0.001). Subsequent analyses

used measures of NA and PA averaged across pre- and post-task

administrations on this basis.

Correlations between the two affect scales and RT-based

measures are shown in Table 11. The residualized measures were

used to index change. At stage 1, higher PA was associated with

faster baseline RT and with lower values for the Alerting index.

NA was positively correlated with the Executive Control index, i.e.,

poorer control. However, neither affect dimension was significantly

correlated with any of the change scores. We also correlated PA

and NA with N100 and P300 amplitude measures (stage 1 and

residualized change scores), but significant correlations did not

exceed chance levels.

4 Discussion

The current study explored individual differences in behavioral

and electroencephalographic metrics provided by the ANT (Fan

et al., 2002), including their suitability as markers for sustained

attention. Table 12 summarizes the outcomes of the data analyses

we performed. Findings differed from expectations in several

respects. We confirmed that the majority of metrics were

stable over the course of the experiment but level of stability

varied considerably. Contrary to expectation, RT-based and ERP

amplitude metrics were not significantly correlated, in general,

raising questions about which provides the more valid indices

of attentional network functioning. Analyses of simple change

scores (deltas) showed that almost all were subject to the LIV

(Wilder, 1957); that is, initial scores did not identify impairments in

attentional network functioning that deepened over time. Data also

showed moderate divergence of delta and residualized scores for

some measures. Finally, positive and negative affect both predicted

behavioral metrics but not ERP amplitudes or change metrics.

Next, we consider the implications of these findings for three

focal issues. First, we discuss choice of metrics for assessing

individual differences in sustained attention, including behavioral

vs. electroencephalographic measures, and network indices vs.

baseline measures. Second, we address the prediction of change

in sustained attention; how can we identify individuals vulnerable

to performance decrement? Third, we compare our findings on

associations between affect and attentional performance with

results of previous studies.

4.1 Metrics for individual di�erences in
sustained attention

Traditionally, sustained attention research has utilized a variety

of behavioral metrics, such as the hit and false alarm rate measures

commonly used in vigilance research (See et al., 1995). Suchmetrics

can be used to index both overall level of performance on a

task requiring sustained attention as well as temporal decrement

(Davies and Parasuraman, 1982). Cognitive neuroscience research

suggests two innovations. First, the identification of multiple brain

networks for attention (Petersen and Posner, 2012) implies that

we can discriminate multiple metrics for network functioning that

provide a more informative specification of stability and change

in sustained attention than overall performance measures. Second,

psychophysiological measures of network function such as ERP

amplitudes may provide more valid assessment of networks than

behavioral data. The present findings suggest some challenges in

deriving sustained attention metrics via the cognitive neuroscience

approach, as we next discuss. The temporal stability of metrics

varies across the different metrics, behavioral and ERP metrics
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TABLE 7 Intercorrelations of two types of change score measure for RT-based indices.

Deltas Residuals

Base. Exec.
control

Alerting Orient. Base. Exec.
control

Alerting Orient.

Deltas Base. –

Exec. control −0.028 –

Alerting 0.429∗∗ −0.109 –

Orient. 0.102 0.222∗ 0.015 –

Res. Base. 0.986∗∗ −0.026 0.422∗∗ 0.093 –

Exec. control −0.018 0.862∗∗ −0.099 0.184 0.003 –

Alerting 0.469∗∗ −0.043 0.891∗∗ 0.071 0.494∗∗ −0.038 –

Orient. 0.062 0.176 0.057 0.858∗∗ 0.068 0.174 0.139 –

Base., baseline; Exec. control, executive control; Orient., orienting; Res., residuals; ∗p < 0.05, ∗∗p < 0.01.

TABLE 8 Intercorrelations of two types of change score measure for N100.

Deltas Residuals

Base. Exec.
control

Alerting Orient. Base. Exec.
control

Alerting Orient.

Deltas Base. –

Exec. control −0.096 –

Alerting −0.063 0.079 –

Orient. 0.067 0.123 −0.008 –

Res. Base. 0.859∗∗ 0.015 −0.023 0.048 –

Exec. control −0.183 0.630∗∗ 0.075 −0.128 −0.121 –

Alerting −0.009 0.082 874∗∗ −0.056 0.007 0.119 –

Orient. 0.112 0.020 −0.164 0.700∗∗ 0.061 −0.134 −0.216∗ –

Base., baseline; Exec. control, executive control; Orient., orienting; Res., residuals; ∗p < 0.05, ∗∗p < 0.01.

fail to converge, and metrics for alerting are confounded with

baseline response.

Much of the applied literature assumes that individual

differences in network function in part reflect stable, traitlike

attributes of the brain. For example, research on depression (Sinha

et al., 2022) and schizophrenia (Spagna et al., 2018) has assumed

that deficits in executive function are integral to the clinical

condition concerned. Studies of test-retest reliability (stability) of

the Fan et al. (2002) behavioral indices across test sessions have

shown that stability is higher for executive control than for alerting

and orienting (Fan et al., 2001; Kong et al., 2024). Variation in

metric stability across networks may reflect both actual network

stability and variation in reliability of measurement (MacLeod et al.,

2010). The present study is the first to examine stability within

a prolonged test session. Similar to cross-session analyses (Kong

et al., 2024), we found greater temporal stability for executive

control than for alerting and orienting. We also found that baseline

RT stability was more stable than any of the derived indices.

A contrasting picture emerged from the ERP data, in which

alerting showed the highest stability from stage 1 to stage 3,

although the correlation magnitudes for the two waves were

modest. Executive control showed significant temporal stability for

P300 but not N100, which may reflect that the later waveform

represents the primary expression of network activity (Neuhaus

et al., 2010). The orienting ERP metric showed no stability. As

for RT metrics, the highest stability was found for ERPs in the

baseline condition.

We also anticipated convergence between behavioral and ERP

metrics, given that they reflect the same underlying construct of

network activity. However, both N100 and P300 amplitudes were

largely independent of the corresponding behavioral metrics, with

the exception of a small but significant association between N100

and speed of response in the baseline condition. We also found

an unanticipated negative correlation between N100 and P300

amplitudes for executive control, perhaps reflecting individual

differences in strategy for resource allocation across processing

stages. The effects of cue and flanker type in the dataset (see

Kustubayeva et al., 2022) were consistent with previous behavioral

(Fan et al., 2002) and ERP (Kaufman et al., 2016; Neuhaus et al.,

2010) findings, supporting the validity of both types of metric

at the level of group data. However, at the individual level,

RTs and amplitude measures do not seem to be measuring the

same construct.

A final measurement challenge is the role of baseline response

in assessment of sustained attention. In the behavioral data, we

found that baseline RT was significantly positively correlated with
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TABLE 9 Intercorrelations of two types of change score measure for P300.

Deltas Residuals

Base. Exec.
control

Alerting Orient. Base. Exec.
control

Alerting Orient.

Deltas Base. –

Exec. control 0.163 –

Alerting −0.658∗∗ 0.044 –

Orient. 0.192 0.172 0.063 –

Res. Base. 0.973∗∗ 0.126 −0.663∗∗ 0.205∗ –

Exec. control 0.098 0.729∗∗ −0.020 0.049 0.076 –

Alerting −0.689∗∗ −0.028 0.991∗∗ 0.018 −0.720∗∗ −0.022 –

Orient. 0.100 0.103 0.061 0.686∗∗ 0.065 −0.027 0.007 –

Base., baseline; Exec. control, executive control; Orient., orienting; Res., residuals; ∗p < 0.05, ∗∗p < 0.01.

TABLE 10 Intercorrelations of N100 and P300 change scores, for two types of change score measure.

N100 P300

Deltas Residuals

Baseline Executive
control

Alerting Orienting Baseline Executive
control

Alerting Orienting

Baseline 0.096 0.172 −0.046 −0.008 0.113 0.097 −0.032 −0.142

Executive control −0.306∗∗ −0.464∗∗ 0.049 −0.321∗∗ −0.166 −0.428∗∗ 0.037 −0.049

Alerting 0.287∗∗ −0.136 −0.530∗∗ 0.157 0.384∗∗ −0.020 −0.669∗∗ −0.013

Orienting −0.042 −0.141 0.080 −0.217∗ −0.015 0.047 0.191 −0.273∗∗

∗p < 0.05, ∗∗p < 0.01.

the alerting index at both time points. That is, individuals who

were slow to respond scored higher on alerting. The association

might reflect slow-baseline individuals being more dependent on

exogenous cuing or a statistical effect such that individuals who are

slowwith no cue havemore scope for speeding up when the alerting

cue is present. In either case, there is a confound that complicates

interpretation of individual differences in alerting. The P300

alerting index was also similarly confounded with baseline P300

amplitude. The negative baseline—alerting correlation indicates

that individuals with a smaller P300 response at baseline scored

higher on alerting. The magnitude of the correlation increased over

time from−0.247 at stage 1 to−0.543 at stage 3. Again, it is unclear

that the index can be interpreted as a pure network activity measure

at the individual level.

4.2 Predicting change in sustained
attention

The prediction of individual differences in temporal change

is important both theoretically and practically. From a theoretical

perspective, cognitive neuroscience accounts of sustained attention

(e.g., Langner and Eickhoff, 2013) should identify attributes

of network functioning that prefigure declines in network

functioning. From an applied standpoint, temporal decline in

sustained attention threatens performance and safety in a variety of

real-world contexts including transportation, industrial operations

and medical monitoring (Warm et al., 2008), requiring methods

for identifying operators at risk of temporal decrement. The

impairment model of decrement suggests a possible strategy for

predicting change, i.e., individuals in whom the network is already

impaired should be at most risk of decrement as time progresses.

The contrary view is that individual differences in change are

governed by the LIV (Wilder, 1957), so that higher scores on an

index will tend to regress to lower values over time.

The current data support the LIV rather than the impairment

model. Table 5 shows that all three Fan et al. (2002) behavioral

indices conformed to the LIV. Given the scoring of the ANT,

individuals with poor executive control (high index scores) tended

to improve over time, whereas high control individuals at stage 1

had poorer control at the later task stage. Alerting and orienting

indices showed a similar pattern. Similarly, initial levels of the

ERP-based network indices were negatively associated with change

scores. Baseline measures showed the strongest tendency toward

vigilance-like decrements in group-level mean data (Table 1). Mean

RT was longer at stage 3 than stage 1, and both waves decreased

in amplitude over time. We might expect that baseline measures

would thus provide the strongest support for the impairment

model. However, baseline measures showed a trend toward the LIV,

though somewhat weaker than for the derived network indices.

Baseline RT did not predict 1RT, and baseline ERP amplitudes

showed moderate LIV effects. The impairment model is quite

well-supported in group-level data; e.g., factors that impair initial
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TABLE 11 Correlations between RT-based indices and a�ect scales at stage 1 and for residualized (deltas).

Stage 1 Residuals

Baseline Executive
control

Alerting Orienting Baseline Executive
control

Alerting Orienting

PA −0.281∗∗ −0.105 −0.239∗ −0.011 −0.035 −0.085 −0.060 −0.176

NA 0.132 0.259∗∗ 0.031 0.136 −0.026 −0.039 0.014 −0.127

∗p < 0.05, ∗∗p < 0.01.

TABLE 12 Summary of tests of hypotheses.

Research
issue

Hypothesis Outcomes

Stability of

individual

differences

RT and ERP metrics

are stable over time

Stabilities vary with metrics

- Highest for baseline and RT

metrics

- Lowest for orienting

Inter-relationships

of RT and ERP

metrics

Corresponding

metrics are

correlated

RT and ERP metrics were

largely independent

N100 and P300 executive

control indices were

negatively correlated

Inter-relationships

of initial and

change scores.

Differing

predictions from

impairment model

and LIV

LIV was supported for both

RT and ERP metrics

Correlations

between change

metrics

Exploratory Deltas and residualized

measures were substantially

correlated, but dependent on

measure

Changes in baseline and

Alerting were correlated for

RT and P300 metrics

Correlations with

affect

NA is associated

with poorer

executive control

and better orienting

NA related to poorer executive

control

PA related to faster baseline

RT and weaker alerting

Affect was unrelated to

change scores and to ERPs

level of vigilance also tend to induce greater vigilance decrement,

consistent with resource theory (See et al., 1995; Warm et al., 2008).

Overall, the ANT indices do not seem to identify individuals at risk

of progressively increasing impairment over time; regression to the

mean is unlikely to be useful in applied contexts.

The delta score provides the simplest metric for change but

other methods for indexing change have been proposed (Burt and

Obradović, 2013). We compared deltas with residualized change

scores that are independent of the initial value for the measure.

Correlations between deltas and residuals varied from close to

unity for baseline RT to values in the 0.6–0.7 range for certain

of the ERP change scores. Especially for ERP data, the choice

of change metric may make a difference to the correlation with

external criteria. Behavioral and ERP metrics for change diverged,

but there was unexpected interdependence between N100 and P300

metrics, with negative correlations for both alerting and executive

control indices.

Change score data, similar to absolute level data, showed

confounding between baseline and alerting indices (Tables 6, 7).

Somewhat confusingly, the correlation between change in baseline

scores and change in alerting index score was positive for RT,

negative for P300 amplitude, and non-significant for N100. These

correlations can be understood in the context of temporal change

in the variables. RT, as previously noted, increased more over

time in no-cue than in double-cue conditions. Thus, an individual

whose baseline RT showed a large temporal increase, but whose

double-cue RT did not change, would show a large but possibly

artifactual increase on the RT alerting index. P300 response

declined similarly in both no-cue and double-cue conditions

so that there was no net effect on alerting, consistent with

alerting primarily influencing N100 rather than P300 (Kustubayeva

et al., 2022; Neuhaus et al., 2010). However, at the individual

level, the substantial negative correlation implies that individuals

whose baseline P300 increased the most also showed the smallest

amplitude increases in double-cue conditions, reducing scores

on the alerting index. As for absolute-level data, these findings

suggest challenges for interpreting temporal change in the alerting

index. Baseline—alerting correlation was similar for both deltas

and residualized change scores, implying that the issue is not

a consequence of confounding of baseline and change scores,

which is eliminated by residualization. However, the N100 alerting

change index, which appears to be one of the more promising

metrics for vigilance decrement, was unconfounded by change

in baseline N100 response, although, curiously, the index was

negatively correlated with P300 change measures (Table 8).

Taken together, these findings show the difficulty of indexing

change at an individual level. Behavioral and RT-based change

metrics should converge but do not. Alerting and baseline change

metrics should not converge, but they do for RT and P300

measures. There were also unexpected relationships between N100

and P300 changes. Using residualized change scores in place of

simple deltas does not mitigate these issues.

4.3 Correlations with a�ect

The final aim of this study was to evaluate how choice of

metric influenced correlations with affective state. We focused on

affect because there is a fairly substantial literature on affective

correlates of the ANT, utilizing both clinical and non-clinical

samples (e.g., Matthews and Zeidner, 2012; Moriya, 2018; Pacheco-

Unguetti et al., 2010; Sinha et al., 2022). Impacts of emotional

stress on attention network functioning are also relevant to human

factors applications such as predicting attentional impairment in

vehicle driving (Guinosso et al., 2016). Data from some clinical

groups show reasonable consistency across studies; for example,

Sinha et al.’s (2022) meta-analysis of 11 studies confirmed that

depressed patients have poorer executive control than healthy
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controls. However, correlational studies in non-clinical groups

show some inconsistencies (e.g., Finucane et al., 2010; Moriya,

2018). These inconsistencies may in part reflect limited validity of

the ANT indices at the individual level.

In the present study, we found a small but significant

association between state negative affect and the behavioral

executive control index (i.e., poorer control), consistent with other

studies in clinical groups (Pacheco-Unguetti et al., 2010; Sinha et al.,

2022) and a non-clinical sample (Matthews and Zeidner, 2012). In

this instance, inconsistency across studies may be a product of the

low effect size and need for statistical power. We replicated Noh

et al.’s (2012) finding of a significant negative association between

positive affect and alerting. However, we also found that positive

affect was associated with faster baseline response, and baseline RT

is confounded with the ANT index as previously discussed. This

finding reinforces the need to examine baseline data as well as the

computed indices (Finucane et al., 2010).

While behavioral data were broadly consistent with previous

findings, we found no more than chance-level associations between

affective state and ERP-based data, so that the neurological basis

for the behavioral correlates of affect remains uncertain. We also

anticipated that affect might be related to the change metrics, given

that sustained attention deficits are found in a variety of clinical

groups including depression and posttraumatic stress disorder

(Fortenbaugh et al., 2018) and chronic fatigue patients (Fernández-

Quirós et al., 2023). However, no significant associations between

affective state and change metrics were found.

4.4 Limitations

One possible limitation is that ERP amplitude measures

are not optimal for evaluating individual differences in brain

network functioning. In support of ERP analysis, group-level

analyses support the validity of amplitude measures (Kaufman

et al., 2016; Kustubayeva et al., 2022; Neuhaus et al., 2010) and

there is an extensive literature on individual-difference correlates

of ERPs (e.g., Hajcak et al., 2010). However, there are various

methodological challenges for research on individual differences

in ERPs (e.g., Clayson et al., 2021b) and alternative EEG metrics

might be more diagnostic for sustained attention. These include

measures of coherence (Kamzanova et al., 2020) and functional

connectivity (Imperatori et al., 2021), as well as those derived from

deep learning EEG models (Kamrud et al., 2021). Other types of

neurological measure such as fMRI (Kong et al., 2024) might also

enhance validity of measurement.

We utilized the standard ANT here because of its basis in

cognitive neuroscience theory (e.g., Fan et al., 2007) and the

extensive research base supporting its usage (de Souza Almeida

et al., 2021). The task produced moderate temporal declines

in baseline RT and ERP response. Effect sizes were consistent

with those previously reported in vigilance studies, according

to a meta-analysis (See et al., 1995). However, “vigilance” tasks

are heterogeneous and vary in their demands on information-

processing (Warm et al., 2008), and the magnitude of temporal

performance decrement varies markedly across different vigilance

tasks (See et al., 1995). Correlational studies of multiple vigilance

tasks have shown that while performance measures tend to

correlate significantly across tasks, correlational magnitudes are

often quite modest, falling into the 0.3–0.4 range (Matthews et al.,

1993, 2017b). Recent research utilizing the ANTI-VEA has made

a useful contribution to this literature in showing dissociation

between executive and arousal vigilance indices. However, the

field lacks a comprehensive dimensional model of performance

encompassing the spectrum of vigilance tasks. Thus, the current

results may not generalize to other vigilance tasks. Indeed,

convergence between behavioral and electroencephalographic

indices of decrement might be higher on vigilance tasks that

produce larger-magnitude temporal changes. It would also be

of interest to investigate inter-relationships of the two types of

vigilance, executive and arousal vigilance described by Luna et al.

(2022).

Statistical limitations include lack of power to detect small

effect sizes, such as those found here between affect and ANT

indices. There is also a risk of Type 1 error in reporting of

significant correlations, given the number of analyses. We chose

not to apply familywise corrections to significance levels because

in some cases we report correlations between arithmetically

dependent variables, e.g., initial score vs. delta, which existing

correction procedures are not designed to address. We urge

caution in interpreting correlations of 0.01< p < 0.05. The

key findings summarized in Table 12 are mostly supported by

correlations that were significant at p < 0.01 or better. However,

significant correlations between the ANT indices and affect were

of modest magnitude, in the 0.2–0.3 range. These associations

require replication although correlation magnitudes were in

line with those found in previous studies (e.g., Matthews and

Zeidner, 2012; Noh et al., 2012). Indexing temporal change solely

through comparing early and late stages of performance may also

be limiting.

A reviewer of this manuscript noted that using mean RT

to index behavioral response may be questionable because RT

distributions are commonly skewed. We used means here because

this metric is specified in the Fan et al. (2002) formulae which

are routinely used in ANT research. We also confirmed that

reliability of RT measurement across different conditions was high,

suggesting stability in measurement of individual differences in

mean. However, the strong intercorrelation of RTs across different

task conditions limits the accuracy of measurement of the Fan et al.

(2002) difference scores, consistent with previous psychometric

critiques of the ANT (MacLeod et al., 2010). Reliabilities of ERP-

based difference scores are also sensitive to the intercorrelation of

the constituent scores of the formula (Clayson et al., 2021a). Future

research might look more closely at properties of intra-individual

RT distributions. In the present data analysis, we checked inter-

individual distributions of mean RT and we did not detect excessive

skew. On a similar point, there are also concerns about the stability

of peak ERP amplitude as an individual difference measure, and it

has been recommended to use mean amplitude within a defined

window as a better alternative (Clayson et al., 2021b; Luck et al.,

2021). We chose to use peak amplitude for comparability with

our companion article (Kustubayeva et al., 2022) and other ERP

studies of the ANT (e.g., Neuhaus et al., 2010). However, it
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would be desirable for future research to compare psychometric

properties of peak and mean amplitude, given the advantages of

the latter.

4.5 Conclusion

The ANT has become established as a leading research tool

for investigating multiple aspects of attention (de Souza Almeida

et al., 2021), including sustained attention (Zholdassova et al.,

2021). Group-level data from many studies support its usage for

investigating a variety of research issues including clinical deficits

in attention and attentional impairments in real-life settings. In the

current data, the N100 alerting index showed promise as a metric

for sustained attention. However, the present findings also suggest

that researchers and practitioners should use considerable caution

in using the ANT to assess and temporal performance deficits in

individuals. Specifically, we identified the following issues:

• Metrics vary in stability; individual differences in temporal

change largely reflect the LIV. Further work is necessary to

identify neurocognitive measures that can be used in applied

settings to identify vulnerability to temporal decrements in

brain network functioning.

• Group-level data show that ERP-based metrics are

informative about the neural processes supporting attentional

performance. However, at the individual level, behavioral and

ERP-based metrics of network functioning failed to converge,

both for absolute-level and change metrics. Measuring the

individual’s network efficiency appears to be challenging, and

novel assessment methods may be necessary.

• The behavioral alerting index tended to be correlated with

baseline RT. Group-level data suggested participants become

increasingly dependent on the alerting cue over time.

Similarly, interpreting individual-level data requires attention

to changes in baseline as well as changes in the alerting index.

• Correlations between affect measures and the ANT were

broadly consistent with previous findings. However, findings

also show the need to examine baseline RT correlates as well

as those of the network indices.

Several authors (e.g., de Souza Almeida et al., 2021; MacLeod

et al., 2010) have drawn attention to psychometric limitations of

the ANT including its dependence on difference-score indices. The

current data are consistent with these critiques and highlight the

need to examine ANT data in depth rather than relying on analyses

of the three Fan et al. (2002) indices alone.

Data availability statement

The datasets presented in this article are not readily available

because restrictions apply to the datasets. Requests to access the

datasets should be directed to almira.kustubaeva@kaznu.edu.kz.

Ethics statement

The studies involving humans were approved by Ethics

Committee of the Faculty of Medicine and Health Care of

the al-Farabi Kazakh National University. The studies were

conducted in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.

Author contributions

GM:Writing – original draft. AK: Writing – original draft. MZ:

Writing – original draft. GB: Writing – original draft.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This research was funded

by the Committee of Science of the Ministry of Science and Higher

Education of the Republic of Kazakhstan (Grant No. BR27198099).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcogn.2025.

1547773/full#supplementary-material

Frontiers inCognition 13 frontiersin.org

https://doi.org/10.3389/fcogn.2025.1547773
mailto:almira.kustubaeva@kaznu.edu.kz
https://www.frontiersin.org/articles/10.3389/fcogn.2025.1547773/full#supplementary-material
https://www.frontiersin.org/journals/cognition
https://www.frontiersin.org


Matthews et al. 10.3389/fcogn.2025.1547773

References

Arnau, S., Brümmer, T., Liegel, N., and Wascher, E. (2021). Inverse effects of time-
on-task in task- related and task-unrelated theta activity. Psychophysiology 58:e13805.
doi: 10.1111/psyp.13805

Arora, S., Lawrence, M. A., and Klein, R. M. (2020). The attention network
test database: ADHD and cross-cultural applications. Front. Psychol. 11:388.
doi: 10.3389/fpsyg.2020.00388
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