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In everyday life, we perform tasks (e.g., cooking or cleaning) that involve a

large variety of objects and goals. When confronted with an unexpected or

unwanted outcome, we take corrective actions and try again until achieving

the desired result. The reasoning performed to identify a cause of the observed

outcome and to select an appropriate corrective action is a crucial aspect of

human reasoning for successful task execution. Central to this reasoning is the

assumption that a factor is responsible for producing the observed outcome. In

this paper, we investigate the use of probabilistic actual causation to determine

whether a factor is the cause of an observed undesired outcome. Furthermore,

we show how the actual causation probabilities can be used to find alternative

actions to change the outcome. We apply the probabilistic actual causation

analysis to a robot pouring task. When spillage occurs, the analysis indicates

whether a task parameter is the cause and how it should be changed to avoid

spillage. The analysis requires a causal graph of the task and the corresponding

conditional probability distributions. To fulfill these requirements, we perform a

complete causal modeling procedure (i.e., task analysis, definition of variables,

determination of the causal graph structure, and estimation of conditional

probability distributions) using data from a realistic simulation of the robot

pouring task, covering a large combinatorial space of task parameters. Based on

the results, we discuss the implications of the variables’ representation and how

the alternative actions suggested by the actual causation analysis would compare

to the alternative solutions proposed by a human observer. The practical use

of the analysis of probabilistic actual causation to select alternative action

parameters is demonstrated.

KEYWORDS

robot pouring, causality, probabilistic actual causation, causal discovery, action-guiding

explanations

1 Introduction

Pouring the content of a source container into a target container requires planning,

perception, and action capabilities. Humans excel at these capabilities and can skillfully

pour any material into containers of arbitrary shapes and dimensions. If spillage occurs, we

can take corrective actions (e.g., selecting a target container with an appropriate capacity)
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and try again to pour without spilling. The ability to take corrective

actions is a crucial aspect of human reasoning for successful task

execution. Implementing similar reasoning capabilities in robotic

systems can reduce task failures and enable a robust operation in

unstructured environments.

In the pouring task, possible causes for the undesired outcome

of spilling the poured material include the low capacity of the target

container or the diameter difference of the containers (imagine

pouring from a wide glass into the narrow mouth of a bottle),

among others. It is reasonable to assume that corrective actions

we take in everyday life target the perceived actual cause of the

undesired outcome. The extreme opposite of this behavior would

consist of randomly changing action variables and observing the

task outcome until finding a suitable solution. For example, if

we perceive that the cause of spillage is the rim of the target

container being too narrow, the corrective action would consist

of selecting a target container with a wider rim. Implementing

similar reasoning capabilities on robotic or automatic systems

would require (1) a mechanism to identify the (not necessarily

unique) actual cause of an observed outcome and (2) a principled

way to determine how the causal variable needs to be changed to

obtain a different outcome.

Within the context of causal analysis and modeling methods,

the concept of actual cause refers to the conditions under which

a particular event is recognized to be responsible for producing

an outcome (Pearl, 2009a). Definitions of actual causation have

been mainly used in practical applications to generate explanations

for observed outcomes (see works reviewed in Section 3). It has

been argued that explanations obtained from the analysis of actual

causation can guide the search for alternative actions aiming to

change the observed outcome (Beckers, 2022). The practical utility

of the analysis of actual causation for the search and selection of

alternative actions remains to be explored in real-life applications.

In this paper, we explore the use of actual causation analysis

to select action parameters in a robot pouring task. The aim is to

identify the actual cause of spillage and to determine how a task

parameter should be changed to pour without spilling. We use

the probabilistic actual causation definition (Fenton-Glynn, 2021)

to identify the cause of spillage among the variables involved in

the task. In a series of examples, we illustrate how the analysis of

actual causation can be used to select alternative task parameters.

Section 2 introduces the probabilistic actual causation framework

and its potential use for action guidance. In Section 2.1, we propose

a procedure to use the actual causation probabilities as a principled

criterion to find alternative actions.

The robot pouring task was implemented in a simulation

(described in Section 4.1) using a physics engine for realistic

behavior. The simulation enabled us to generate trials covering a

large combinatorial space of trial parameters (fullness levels and

container properties), which would have been cumbersome to

achieve in a physical setup. There are two prerequisites to perform

an analysis of probabilistic actual causation: (1) a causal graph

of the system and (2) the conditional probability distributions

necessary to compute interventional queries (i.e., “do" operations

). The variables used to represent the pouring task as a causal graph

are described in Section 4.2. To obtain the graph structure, we

used a causal discovery algorithm (Section 4.3). The conditional

distributions used to compute the do-operations were estimated

using neural networks (Section 4.4). Subsequently, the causal

probability and actual causation expressions that result from the

graph structure are presented in Section 4.5.

Considering that causal probability computations cannot tell

per se what caused an observed outcome as this may be specific

to the given circumstances, in Section 5.1, we analyze the causal

probability functions for interventions on each variable to gain

insight into their influence on spillage and to emphasize their

limitations for action guidance.

Subsequently, in Sections 5.2 and 5.3 we demonstrate that the

analysis based on actual causation can be used in a principled

way to select alternative action parameters. Firstly, in Section 5.2

we present four detailed examples of applying actual causation

analysis on spillage trials to select alternative action parameters.

The examples illustrate how different alternative actions yield lower

or higher probabilities of spillage. Secondly, in Section 5.3 we

evaluate the likelihood of finding an alternative value and the

pouring success rates obtained when running the spillage trials

using alternative values. The evaluation was conducted using a

test dataset acquired in simulation. Overall, Sections 5.2 and

5.3 provide empirical evidence of the practical usefulness of the

actual causation approach to identify alternative parameters to

prevent spillage. Finally, in Section 6, we discuss the implications

of the variables’ representation and how the alternative actions

suggested by the actual causation analysis would compare to the

alternative solutions proposed by a human observer.

In summary, our contributions are:

• We report a complete analysis of probabilistic actual causation

on a practical problem with all the necessary steps for

its implementation (analysis of the task, variable definition,

causal-graph structure, and estimation of causal probabilities

using neural networks).

• We show how to use the explanations obtained with the

analysis of probabilistic actual causation for action guidance

in a practical use case. By doing this, we go beyond

the basic diagnostic (attribution of actual cause) toward

action guidance.

• We evaluate the capability of the actual causation

approach to automatically identify alternative parameters of

different variables.

• We evaluate the pouring success rates obtained when the

alternative parameters are used to prevent spillage.

2 Probabilistic actual causation and
action-guiding explanations

The concept of actual cause refers to the conditions under

which a particular event is recognized to be responsible for

producing an outcome in a specific scenario or context (Pearl,

2009a). The purpose of determining an actual cause is to find which

past actions explain an already observed output (Beckers, 2022).

The definition of actual causation proposed by Halpern and Pearl

(2005) for deterministic scenarios is one of the most prominent

definitions in the literature (Borner, 2023). Fenton-Glynn (2017,
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2021) proposed an extension of Halpern and Pearl’s definition

that is apt for probabilistic causal scenarios. The Fenton-Glynn’s

definition of actual causation is formulated in the framework of

probabilistic causal models, where the causal model is a causal

Bayesian network represented graphically as a directed acyclic

graph (DAG) and the link between each node/variable and its direct

causes is modeled probabilistically (Pearl, 2009b). In the DAG

formalism, nodes correspond to variables, and directed edges (i.e.,

arrows) indicate causal influences. Additionally, the do(x) operator

represents the operation of setting the value of a variableX toX = x

(i.e., the variable X is instantiated to a value x), such that P(y|do(x))

represents the probability of obtaining the outcome Y that would

result from setting X to x by means of an intervention. Fenton-

Glynn (2021) proposes the following definition of actual causation1:

Probabilistic Actual causation 1. Within a given causal model,

consider a cause X of an outcome Y with a directed path P from

X to Y ; let the variables that are not on P be denoted by W, and

the set of mediators on P by Z. Given the actually observed values

(x,w∗, z∗), we say that X taking the value X = x rather than X = x′

is the actual cause of event Y (or Y = 1) when the following

probability raising holds for all subsets Z′ of Z:

P(Y | do(W = w
∗,X = x,Z′ = z

∗)) > P(Y | do(W = w
∗,X = x′)).

(1)

It is important to emphasize that the term actual cause refers to

token causal relations, as opposed to type causal relations (Pearl,

2009a; Halpern and Pearl, 2005; Fenton-Glynn, 2017). That is,

an actual cause refers to a specific scenario, where the causal

statements of the definition are regarded as singular, single-event,

or token-level (Pearl, 2009a). This is evident in the inequality (1),

which compares the probabilities of an event or outcome Y given

the observed values of the variables inW and Z′, which can be seen

as the given context.

In general, the notion of actual causation is considered the

key to constructing explanations (Pearl, 2009a). Beckers (2022)

has used the term action-guiding explanations for scenarios where

the analysis of actual causation aims to find explanations for the

outputs produced as the result of performing an action. Beckers

(2022) suggests that actual causes can be used for action guidance

because they enable the identification of alternative actions that

provide better or worse explanations of an outcome. Beckers (2022)

provides a conceptual analysis2 of how action-guiding explanations

relate to sufficient and counterfactual explanations, two other forms

of potentially action-guiding explanations. In Beckers’ account,

a sufficient explanation indicates the conditions under which

an action guarantees a particular output. On the other hand, a

counterfactual explanation informs which variables would have had

to be different (and in what way) for the outcome to be different.

Beckers (2022, p. 2) concludes that actual causes stand between

1 The notation and terminology follow the definition PC1 presented by

Fenton-Glynn (2021, p. 72).

2 The conceptual analysis conducted by Beckers (2022) originally focused

on notions of causal explanations in the context of deterministic causal

models. Nevertheless, we consider that his conceptual accounts can be

applied to probabilistic causal models.

FIGURE 1

Example of actual causation test. The curve corresponds to the right

side of inequality (1) as a function of X = x′. The horizontal line

corresponds to the reference probability value (left side of

inequality (1)). The shaded area shows the x′ values for which

probability raising holds.

sufficient and counterfactual explanations: “an actual cause is a part

of a good sufficient explanation for which there exist counterfactual

values that would not have made the explanation better.”

2.1 Using the actual causation inequality to
select alternative actions

In inequality (1), P(Y|do(W = w
∗,X = x,Z′ = z

∗)) provides

a reference value to check for actual causation. This reference

value takes into account the actual values of the variables. Using

a contrastive value X = x′ on the right side of inequality (1),

P(Y|do(W = w
∗,X = x′) is used to check whether or not

probability raising holds, thereby providing a principled criterion

to determine whether X taking the value X = x rather than X = x′

is the actual cause of event Y .

When the variables are continuous, P(Y|do(W = w
∗,X = x′)

can be plotted as a function of the contrastive value X = x′.

This is illustrated in Figure 1. The comparison against the reference

probability P(Y|do(W = w
∗,X = x,Z′ = z

∗)) reveals the values x′

for which probability raising holds (shaded region in Figure 1).

Fenton-Glynn’s framework of actual causation provides

contrastive explanations in a given context (Borner, 2023). By

definition, inequality (1) demands that the explanation remains

valid when holding fixed all variables in W and (the subsets)

Z
′ at their actual values; probability raising need not hold for

other contexts. In this work, we propose to use the contrastive

explanations obtained by applying the actual causation inequality

for action guidance. Given that an outcome Y has been observed,

the goal is to select an alternative action that will prevent the

outcome. Recalling that probability raising entails that X taking

the value X = x rather than X = x′ is the cause of event Y ,

we propose to select x′ values as alternative actions. In the case
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illustrated in Figure 1, while selecting an X value in the shaded

area much smaller than the actual X = x is likely to change the

outcome, selecting X close and above the actual value will likely

leave the outcome unchanged. We emphasize that the magnitude

of probability raising might drastically differ within the range

of contrastive values. This has implications for the suitability of

different x′ values as alternative actions. Consider the alternative

actions X = −5 and X = 0 in the schematic example illustrated in

Figure 1. Based on the probabilities, it can be assumed that X = −5

is a better choice since selecting X = 0 has a higher chance of

leaving the outcome unchanged. Under these considerations, the

selection of an alternative parameter can be based on a pre-defined

probability threshold.

An alternative parameter can be found automatically with the

following steps:

1. Identify the range of contrastive values where probability raising

holds using inequality (1).

2. Within these values, select the subset of values with a probability

below a pre-defined probability threshold.

3. From this second subset, select the closest value to the

current parameter.

In the last step we use a distance criterion. However, other

application-dependent criteria can be used (e.g., the cost or

availability of different alternatives) to select an alternative

parameter. The crucial aspect of the automatic search is that the

probability threshold is selected such that it becomes very likely to

change the outcome.

In summary, to check for actual causation using inequality (1),

one must decide which variable takes the role of X and,

given the graph structure, identify the variables for the sets W

and Z
′. Thus, the analysis of actual causation can be applied

to different variables. In the robot pouring task, if spillage

occurs, the aim is to find alternative parameters to repeat the

action. In this work, we use the probabilistic actual causation

framework to guide the selection of alternative parameters in

a principled way. In Section 5.2, we illustrate in a series

of detailed examples the impact of using different probability

thresholds (i.e., 0.2 for low spillage probability and 0.5 for

chance-level probability) on the identified alternative parameters.

Subsequently, in Section 5.3, we evaluate the pouring success rates

obtained using the alternative parameters identified using a 0.1

probability threshold.

3 Related work

This section presents robotics applications that use

causal methods related to our work (i.e., actual causation,

causal Bayesian networks, and causal discovery). We start

by presenting applications that use the Halpern-Pearl

definition of actual causality (Halpern and Pearl, 2005).

Subsequently, we review works that use causal discovery to

learn the structure of causal Bayesian networks to model

robotic tasks in different contexts. Finally, we review the

method proposed by Diehl and Ramirez-Amaro (2023) to

predict and prevent failures using causal-based contrastive

explanations, highlighting the similarities and differences to

our approach.

Araujo et al. (2022) use the actual causation framework by

Halpern and Pearl in a human-robot interaction setting where

a robot interacts with children with Autism Spectrum Disorder

(ASD). The robot plays different interactive games with the

children, aiming to improve the children’s ability to see the world

from the robot’s point-of-view. The authors present a tool that uses

a causal model of the interactive games and the actual causation

framework. This is applied to explain events during the game’s

course. For example, if the robot cannot see an object involved in

the interaction, it explains to the child why it cannot see it (e.g.,

“I cannot see it because it is too high") (Araujo et al., 2022). The

actual cause of an event is analyzed using a rule-based system, as

opposed to a search over the possible counterfactuals (Araujo et al.,

2022). The usefulness of the explanations generated by the system

was evaluated by asking a group of observers to watch videos of the

robot providing explanations in different situations and then rate

each explanation. The rating was based on qualitative criteria, e.g.,

whether the explanation was understandable, sufficiently detailed,

or informative about the interaction, among other aspects.

Zibaei and Borth (2024) use the Halpen and Pearl actual

causation framework to retrieve explanations of failure events

in unmanned aerial vehicles (UAVs). In this context, an actual

causation analysis aims to provide actionable explanations, that is,

an explanation that indicates which corrective actions can be taken

to prevent future failures. The analysis of actual failure causes was

applied to different UAV failure scenarios (loss of control, events

during take-off and cruise, and equipment problems). The causal

models of failure events were constructed using flight logs recorded

at run-time containing abstracted events and raw sensor data. In

order to diagnose instances of a particular type of failure (e.g.,

instances of crash events in the logs), the causal graph of the failure

and the actual values of the monitored event and sensor data were

analyzed using a tool for the automatic checking of the Halpern and

Pearl actual causation conditions. The correctness of the diagnoses

was evaluated using a manually labeled ground-truth dataset.

Chockler et al. (2021) designed an algorithm to explain the

output of neural network-based image classifiers in cases where

parts of the classified object are occluded. The algorithm applies

concepts of the Halpern and Pearl definition of actual causation

to generate explanations. The explanation consists of a subset of

image pixels, which is the minimal or approximately minimal

subset that allows the neural network to classify the image. It can

be tested if a pixel is a cause of the classification by considering a

subset of pixels in the image that does not include that pixel. In

this case, applying a masking color to any combination of pixels

from this subset does not alter the classification output. However,

if we apply a masking color to the entire subset along with the

individual pixel, this will lead to a change in the classification

result. In this way, the algorithm ranks pixels according to

their importance for the classification. The authors evaluate the

explanations of their system by comparing their results with the

outputs of other explanation tools. They compare the size of the

explanation (smaller is better) and the size of the intersection of

the explanation with the occluding object (smaller is better), getting

favorable results for their approach. Additional work on explaining
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image classifiers was done by Chockler and Halpern (2024) and

has been applied to extend the work of Kommiya Mothilal et al.

(2021), who used a simplified version of the actual causation

framework. The authors show that extending the previous work to

the full version of the framework is possible and can benefit future

work in explaining image classifiers. However, they suggest that

using the full definition might make computing the explanations

more complex.

The reviewed works show that practical applications of

the concepts of actual causation have focused on generating

explanations, leaving the potential to guide decision-making

processes aside. To the best of our knowledge, the probabilistic

actual causation definition of Fenton-Glynn (2017, 2021) has not

been used in any practical application.

Causal methods have been applied to model generic robot

tasks such as pushing, pick-and-place, and stacking (Ahmed et al.,

2020; Brawer et al., 2020; Huang et al., 2023; Diehl and Ramirez-

Amaro, 2023) and context-specific ones such as human-robot

interaction (Castri et al., 2022) and household tasks (Li et al., 2020).

In the context of tool affordance learning, causal discovery has

been used to identify the effect of push and pull actions on an

object’s final position in a real setup (Brawer et al., 2020). To reduce

the sim-to-real gap in robot-object trajectories, a custom causal

discovery algorithm was used to optimize the simulated physical

parameters (Huang et al., 2023). Additionally, recent work has used

simulations to explore large combinatoric spaces of task parameters

and causal methods to model task outcomes (Ahmed et al., 2020;

Huang et al., 2023; Diehl and Ramirez-Amaro, 2023).

Similar to our work, causal methods have been applied to

find causal-based contrastive explanations for task failures (Diehl

and Ramirez-Amaro, 2022). In subsequent work, this method has

been extended to predict and prevent task failures by finding

corrective parameters (Diehl and Ramirez-Amaro, 2023). Examples

of contrastive explanations are provided for a cube stacking task

and for dropping spheres into different containers (bowls, plates,

and glasses) (Diehl and Ramirez-Amaro, 2022), and the method

for prediction and prevention has been applied to a cube stacking

task (stacking one cube and stacking three cubes) (Diehl and

Ramirez-Amaro, 2023).

In particular, the method proposed by Diehl and Ramirez-

Amaro (2023) has methodological similarities to our approach.

Their method uses a causal Bayesian network to predict errors

and probabilities of success to find a corrective action. Simulated

data are used to learn the causal Bayesian network’s structure

and estimate its joint probability distribution. When an action

is predicted to fail, a search is conducted in a discretized

parameter space to find the parametrization that needs the least

interval changes to achieve a successful execution based on the

predicted success probability (Diehl and Ramirez-Amaro, 2023).

For example, searching for close parametrizations in the cube-

stacking task means that starting from a robot hand position that

will likely fail leads to finding the closest position that will likely

succeed (Diehl and Ramirez-Amaro, 2023).

The search criterion is based on contrastive explanations (Diehl

and Ramirez-Amaro, 2022), which compare the variable

parametrization of the failed action and the closest parametrization

that exceeds a success probability threshold (ǫ) (Diehl and

Ramirez-Amaro, 2023). The success probabilities are retrieved

from the factorized form of the joint probability distribution.

The search is conducted within a tree that contains a complete

parametrization of the parent variables of the outcome variable.

Since the search is conducted within a tree structure, the time

to find an alternative parametrization depends on the success

probability threshold, the number of parent variables, and

the number of discrete intervals of the variables (Diehl and

Ramirez-Amaro, 2023).

In Table 1, we summarize the similarities and differences

between the method proposed by Diehl and Ramirez-Amaro

(2023) and our approach. Their method automatically finds the

corrective parameters, which might involve changing the value

of one or more variables. In contrast, our approach is restricted

to searching for corrective parameters in a single variable. Their

method identifies the closest parametrization that is predicted to

succeed. On the other hand, our approach identifies a range of

values that explain the outcome according to the probability-raising

criterion. Within this range of values, a specific value likely to yield

success can be selected using a probability criterion (see explanation

in Section 2.1). Similarly to Diehl and Ramirez-Amaro (2023), a

success probability threshold can be used as a selection criterion.

4 Materials and methods

4.1 Robot pouring simulation

The robot pouring task was simulated using CoppeliaSim

Version 4.8.0 (rev. 0) (Rohmer et al., 2013) with the Open

Dynamics Engine (ODE), a physics engine for rigid body

dynamics and collision detection. The setup consists of an UR5

robot arm with a parallel jaw gripper, as shown in Figure 2.

In the simulation, the robot poured marbles from a source

container into a target container. The marbles were simulated with

CoppeliaSim’s particle object, which simulates spherical particles

using parameters for their diameter (1.5 cm) and density (2, 829.42

kg/m3, empirically determined).

In each trial, the source container (capacity = 514.72 cm3 )

was filled with simulated marbles (Figure 2a). The characteristics of

the pouring movement were fixed for all trials. The robot grasped

the source container and brought it to a pouring position relative

to the target container’s rim (Figure 2b). In the pouring position,

the gripper was rotated with a fixed rotation velocity (1 rad/s)

until reaching a fixed angle of −15◦ (Figure 2c). After pouring

all the marbles (Figure 2d), spillage was detected using a force

sensor located on the base of the target container. In each trial

we manipulated the amount of marbles in the source container

and the dimensions of the target container. The dimensions of

the source container remained fixed across trials. In each trial,

the source container was filled with a random amount of marbles,

and a target container with random dimensions (height and rim

diameter) was generated. The positioning of the marbles inside

the source container was random. Six thousand pouring trials

were simulated. The rationale of the random trial parameters

and variable definitions are explained in Section 4.2. Details of

the random distributions used to sample the trial parameters are
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provided in Table 2. In each trial, the randomness of the spillage

outcome results from the behavior of the particles simulated by the

physics engine and its interaction with the characteristics of the

target container.

4.2 DAG variables

In each trial, the source container was filled to a random

fullness level, and a target container with random dimensions

was generated. The rationale for the poured amounts and the

target container characteristics in each trial aims to capture typical

spillage causes. Table 2 provides details of the variable definitions

and random sampling distributions. The target container can have

an equal, smaller, or larger capacity than the source container.

The capacity of the target container influences the probability of

spillage (spillage is more likely to occur when pouring into a target

container of a small capacity). We represent this cause of spillage

with the variable relative capacity (RC).

Aside from the target container’s capacity, spillage depends

on the complex interplay between the fullness level of the source

container and the rim dimensions of the source and target

containers. Imagine pouring marbles from a wide glass into a

bottle through its narrow mouth. While pouring a single marble

is likely to succeed, the amount spilled will increase as the number

of marbles increases. We represent the fullness level of the source

container with the variable fullness (FU).

The target container’s rim can be equal, smaller, or larger in

diameter than the source container. The relation between rim

diameters influences the probability of spillage (spillage is more

likely to occur when pouring into a target container with a smaller

rim diameter). We represent this cause of spillage with the variable

relative diameter (RD). As a result, in each trial, the dimensions of

the target container (height and rim diameter) are determined by

the RC and RD variables.

We also consider the fact that spillage occurs when the amount

of marbles exceeds the capacity of the target container. The

source containers’ capacity and fullness level determine the poured

amount (recall that all the marbles are poured). We represent the

difference in volume between the poured amount and the target

container’s capacity with the variable relative volume (RV). Finally,

we represent the outcome of the pouring trial with the variable

spillage (S), a binary variable that indicates whether or not spillage

occurred. S is labeled as true irrespective of the number of spilled

marbles (i.e., spilling one or twenty marbles yields S = true).

4.3 Determination of DAG structure using
causal discovery

In order to perform an analysis of actual causation, we require

a DAG of the causes of spillage, where edges represent probabilistic

effects between variables. A naive approach to setting the causal

structure would be to assume that each variable described in

Section 4.2 is connected to the outcome S with an edge. This would

constitute a strong assumption in which all variables are direct

causes of S, excluding the possibility of indirect effects. In this
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FIGURE 2

Course of pouring trial. (a) Source container is filled with simulated marbles and a target container of random dimensions is generated. (b) The

source container is transported to the pouring position. (c) The source container is rotated to pour the marbles into the target container. (d) Trial end.

TABLE 2 Variable definitions and sampling of trial parameters.

Variable Acronym Definition and sampling distribution

Relative capacity RC RC represents the relation between the containers’ capacities, defined as RC =
target capacity
source capacity

. Sampled from a truncated Gaussian

distributionNtrunc.(µ = 1.0, σ = 0.25,min = 0.5,max = 2.0). RC < 1 corresponds to target containers of lower capacity, and

RC > 1 to target containers of larger capacity.

Fullness FU FU expresses the fullness level of the source container as a fraction. Sampled fromNtrunc.(µ = 0.7, σ = 0.2,min = 0.3,max = 1.0).

For example, FU = 0.5 corresponds to a half-full source container.

Relative diameter RD RD represents the relation between the container rim diameters, defined as RD =
target diameter
source diameter

. Sampled from

Ntrunc.(µ = 1.0, σ = 0.25,min = 0.5,max = 1.5). RD < 1 corresponds to target containers of smaller diameter, and RD > 1

corresponds to target containers of larger diameter. The target container’s height and diameter were determined based on the

sampled RC and RD.

Relative volume RV RV represents the volume relation between the poured amount and the target container’s capacity, defined as RV =
poured volume
target capacity

.

RV < 1 indicates that the poured amount fits into the target container, and RV > 1 indicates that the poured amount exceeds the

target container’s capacity.

Spillage S Binary variable indicating whether or not spillage occurred.

respect, it is important to recall that the validity of the analysis of

actual causation relies on the correctness of the DAG structure.

To avoid making naive assumptions about the causal structure, we

leverage the availability of simulated pouring trials to determine the

structure of the DAG using a causal discovery algorithm.

In order to determine the structure of the DAG, the

variables described in Section 4.2 were processed with the PC

algorithm (Spirtes and Glymour, 1991), a well-established causal

discovery algorithm (Glymour et al., 2019; Nogueira et al., 2022).

In general, causal discovery algorithms, also known as structure

learning algorithms, perform a systematic analysis of many possible

causal structures, typically by testing probabilistic independence

and dependence between the variables (Malinsky and Danks,

2017; Glymour et al., 2019; Nogueira et al., 2022). We used

the PC implementation available in Tetrad (version 7.6.5-0),3

a software toolbox for causal discovery (Ramsey et al., 2018).

As a statistical test, we use the Degenerate Gaussian Likelihood

Ratio Test (DG-LRT) (Andrews et al., 2019), which has shown

3 Publicly available at: https://www.ccd.pitt.edu/tools/, access: 06.12.24.

good discovery performance on datasets containing continuous

and discrete variables (Andrews et al., 2019). We executed the

algorithm on 1,000 bootstraps of the data to ensure the stability

and reliability of the inferred causal relationships (if the results

vary widely over the different bootstrap samples, the output of

the algorithm is considered unstable) (Glymour et al., 2019).

Further details about the PC parameters, bootstrapping results, and

modeling assumptions are provided in the Supplementary material.

The discovered DAG is shown in Figure 3.

4.4 Estimation of do-probabilities using
neural autoregressive density estimation

In this paper, we use neural autoregressive density estimators

(NADEs) (Garrido et al., 2021) to estimate the conditional

distributions necessary to compute the interventional queries in

inequality (1). NADEs are used as universal approximators and

are flexible to work with models containing continuous and

discrete variables (Garrido et al., 2021). Garrido et al. (2021)
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FIGURE 3

Discovered DAG.

demonstrated in a series of examples that NADEs provide a

practical modeling architecture to estimate causal quantities from

models with linear and non-linear relationships between variables

of different distributions (e.g., Normal, Log-normal, and Bernoulli)

using the DAG formalism and the do-calculus framework.

A DAG model represents the conditional dependencies

between the set of J random variablesX1, · · · ,XJ . The DAG induces

a joint probability distribution P(X) of the variables, which can be

factorized into the conditional distributions of each Xj conditioned

on a function fj of its parents PA(Xj) (the causal Markov condition):

P(X) =

J
∏

j

P(Xj|fj(PA(Xj))) (2)

A NADE is a generative model that estimates the conditional

distributions in Equation 2 (Garrido et al., 2021). The functions

fj are parametrized as independent fully connected feed-forward

neural networks. Therefore, there is a neural network for each

variable in the DAG. Each neural network takes the parents of

the variable of interest PA(Xj) and outputs the parameters of the

distribution of Xj. For example, the neural network outputs the

mean and standard deviation of Gaussian variables. These networks

are trained using the negative log-likelihood of Equation 2 as

the loss function. The individual conditional distributions in

Equation 2, also called independent causal mechanisms or Markov

Kernels, are used to estimate the effects of interventions (Garrido

et al., 2021). The causal estimates are reliable under the assumption

that the DAG structure is correct and that the training data provides

enough support to learn the distribution parameters (Garrido

et al., 2021). Details of the implementation are provided in the

Supplementary material.

4.5 Causal probability expressions and
actual causation inequalities

The factorized joint probability distribution that results from

the DAG structure shown in Figure 3 is expressed as a product of

conditional distributions and independent causal mechanisms:

P(RC, FU,RV ,RD, S) = P(RC) · P(FU) · P(RV|RC, FU)

P(RD) · P(S|FU,RD,RV) (3)

These conditional distributions and independent causal

mechanisms are approximated using NADEs, as described in

Section 4.4. The implemented neural networks are shown in

Figure 4. The distribution of the continuous variables RC, FU,

RV , and RD is approximated by Gaussian distributions. For these

variables, each network takes the parent of the corresponding

variable as input and produces two parameters, one for the mean

(µ) and one for the standard deviation (σ ) of the Gaussian

distribution. Following the implementation of Garrido et al. (2021),

the root nodes (RC, FU, and RD) take a constant value as input,

represented as a “1" in Figure 4. The discrete variable S follows a

Bernoulli distribution. Its neural network takes the variables RV ,

FU, and RD as input and outputs the probability of sampling

S = true given the input values. The NADE estimators are used to

compute causal (or interventional) probabilities (e.g., P(S|do(RD)))

and actual causation queries in the form of inequality (1).

4.5.1 Causal probability expressions
The DAG indicates that S has direct and indirect causes. The

path RC → RV → S shows that RC is an indirect cause of S, and

its effect is mediated by RV . The causal relation between FU and S

combines a direct path (FU → S) and indirect path (FU → RV →

S). Finally, RD is a direct cause of S (path RD → S). Ultimately,

the probability of S depends on the interactions between RV , FU,

and RD. Additional insight into the factors that yield spillage can

be gained by estimating the effects of each variable on S. Causal

effects are functions of interventional probabilities P(S|do(X)) over

different values of X; the expressions can be obtained using the

rules of do-calculus with the causaleffect R package (version 1.3.15)

(Tikka and Karvanen, 2017). Following the procedure done by

Garrido et al. (2021), we use Monte Carlo integration in order

to obtain a numerical approximation of the causal expressions

of interest.

Under the given causal model, the interventional probability of

spillage P(S|do(RC)) under a given choice of RC is obtained as:

P(S | do(RC)) =

∫

RD,FU,RV
P(S|FU,RD,RV) · P(RV|RC, FU)

P(RD) · P(FU) dRV dRDdFU

(4)

We approximated P(S|do(RC)) using Monte Carlo integration

by sampling from the distributions P(RD), P(FU), and

P(RV|RC, FU), and propagating forward through the neural

network implemented for P(S|FU,RD,RV).
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FIGURE 4

Implemented NADEs for the DAG nodes used for causal e�ect estimation.

The interventional probability P(S|do(FU)) for a given choice

of FU is obtained as:

P(S | do(FU)) =

∫

RC,RV ,RD
P(S|FU,RD,RV) · P(RV|RC, FU)·

P(RD) · P(RC) dRC dRDdRV

(5)

Similarly, P(S|do(FU)) was approximated using Monte Carlo

integration by sampling from the distributions P(RC), P(RD),

and P(RV|RC, FU), and propagating forward through the neural

network implemented for P(S|FU,RD,RV).

The expression P(S|do(FU)) in Equation 5 combines the effect

mediated by RV and the direct effect of FU. In order to assess the

direct effect of FU on S we must fix RV . This enables us to assess

how the direct effect of FU may differ for different choices of RV .

The direct effect can be expressed by varying the values of FU with

constant RV in P(S|do(FU,RV)), which is obtained as:

P(S | do(FU,RV)) =

∫

RD
P (S|RD, FU,RV) · P (RD) dRD (6)

The probability P(S|do(FU,RV)) was also approximated using

Monte Carlo integration by sampling from the distributions P(RD)

and propagating forward through the neural network implemented

for P(S|FU,RD,RV).

Furthermore, P(S|do(RV)) is obtained as:

P(S | do(RV)) =

∫

RD,FU
P(S|RD, FU,RV) · P (RD) · P(FU) dFU dRD

(7)

The probability P(S|do(RV)) was approximated using Monte

Carlo integration by sampling from the distributions P(RD) and

P(FU), and propagating forward through the neural network

implemented for P(S|RD, FU,RV).

Finally, P(S|do(RD)) is obtained as:

P(S | do(RD)) =

∫

RC,FU,RV
P(S|FU,RD,RV) · P(RV|RC, FU)

·P(FU) · P(RC) dRC dFU dRV

(8)

The probability P(S|do(RD)) was approximated using Monte

Carlo integration by sampling from the distributions P(FU), P(RC),

and P(RV|RC, FU), and propagating forward through the neural

network implemented for P(S|FU,RD,RV).

4.5.2 Inequalities for analysis of probabilistic
actual causation

For the analysis of actual causation we identify the sets of

variables necessary to compute the probabilities compared in

inequality (1). In order to analyze whether RD is an actual cause of

S, we consider the only pathP : RD → S. The set of variablesW that

lie off the path isW = {RC, FU,RV}, and the set Z of variables that

lie intermediate between RD and S is Z = ∅. RD taking the value

RD = rd rather than RD = rd′ (in the context of the observed

values rc, fu, rv) is an actual cause of S (or S = true) when the

following probability raising holds:

P(Y | do(W = w
∗,X = x,Z′ = z

∗)) > P(Y | do(W = w
∗,X = x′))

P(S | do(rc, fu, rv, rd)) > P(S | do(rc, fu, rv, rd′))

P
(

S | fu, rv, rd
)

> P
(

S | fu, rv, rd′
)

(9)

The conditional probabilities in inequality (9) were

approximated using the neural network for P(S|RV , FU,RD).

In order to analyze whether FU is an actual cause of S, we

consider the path P : FU → RV → S. The set of variables W that

lie off the path is W = {RC,RD}, and the set Z of variables that

lie intermediate between FU and S on P is Z = {RV}. Recalling

that inequality (1) is tested for all the subsets of Z which includes

the empty set (Fenton-Glynn, 2021), FU taking the value FU = fu

rather than FU = fu′ is an actual cause of S (or S = true) when the

probability raising holds both for Z′ = RV (inequality (10)) and
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Z
′ = ∅ (inequality (11)) :

P(Y | do(W = w
∗,X = x,Z′ = z

∗)) > P(Y | do(W = w
∗,X = x′))

P(S | do(rc, rd, fu, rv)) > P(S | do(rc, rd, fu′))

P
(

S | rd, fu, rv
)

>

∫

RV
P

(

S | rd, fu′,RV
)

· P
(

RV | rc, fu′
)

dRV

(10)

P(Y | do(W = w
∗,X = x,Z′ = z

∗))

> P(Y | do(W = w
∗,X = x′))

P(S | do(rc, rd, fu)) > P(S | do(rc, rd, fu′))
∫

RV
P

(

S | rd, fu,RV
)

· P
(

RV | rc, fu
)

dRV

>

∫

RV
P

(

S | rd, fu′,RV
)

· P
(

RV | rc, fu′
)

dRV

(11)

The integrals in inequality (11) and on the right side

of inequality (10) were approximated using Monte Carlo

integration by sampling from the distribution P(RV |RC, FU) and

propagating forward through the neural network implemented for

P(S | FU,RD,RV).

5 Results

5.1 Causal probabilities

The causal probability P(S|do(RC)) was computed using

Equation 4 over a range of RC values covering low (RC < 1)

and large (RC > 1) target container capacities. The estimated

probabilities are shown in Figure 5a. Over the whole range of RC,

the probability lies slightly below 0.5. This probability curve reflects

the fact that RV mediates the effect of RC, which in turn crucially

depends on FU. Without knowing the context of FU, the total effect

of RC on S lies around the chance level. Thus, solely knowing or

setting a RC value does not provide enough information on causing

or preventing spillage.

The probabilities P(S|do(FU)) and P(S|do(FU,RV)) were

computed using Equations 5, 6, respectively, over a range of FU

values covering low (FU < 0.4), medium (0.4 ≤ FU ≤ 0.6),

and high (FU > 0.6) fullness levels of the source container.

The estimated probabilities for P(S|do(FU)), shown in Figure 5b,

indicate that low fullness levels yield a low probability (≈ 0.2) of

spillage. This probability increases as the fullness level increases,

reaching a maximum of 0.6. For the direct effect P(S|do(FU,RV)),

we present the probabilities obtained for three levels of RV : RV =

0.25 (the poured amount fits into the target container), RV = 1

(the poured amount equals the target container’s capacity), and

RV = 1.5 (the poured amount exceeds the target container’s

capacity). The estimated probabilities are shown in Figure 5c. It

can be observed that the probabilities obtained for RV = 0.25 and

RV = 1 are similar. Thus, for RV < 1, increasing FU will have a

similar effect on the probability of spillage. In contrast, the results

obtained for RV = 1.5 show different non-linear behavior with

overall spillage probabilities above the chance level.

The probability P(S|do(RV)) was computed using Equation 7

over a range of RV covering values where the poured amount

fits into the target container (RV < 1) and the poured amount

exceeds the target container’s capacity (RV > 1). The estimated

probabilities are shown in Figure 5d. For RV < 1, we obtained

spillage probabilities ≈ 0.4. Therefore, without knowing the

context of the other variables, when RV < 1, the probability of

spillage lies slightly below the chance level. For RV > 1 we observe

a moderate probability increase, reaching a maximum of 0.88. By

definition, RV > 1 indicates that the poured amount exceeds the

target container’s capacity. Thus, in practice, a large probability of

spillage (≈ 1) for RV≫1, and a step probability increase for RV ≈ 1

would have been expected. This suggests that the NADE for RV is

smoothing the estimated probabilities.

The probability P(S|do(RD)) was computed using Equation 8

over a range of RD values covering target containers of smaller

diameter (RD < 1) and target containers of larger diameter (RD >

1). The estimated probabilities are shown in Figure 5e. For RD <

0.8, we observe a constant large probability of spillage (≈ 0.9). For

0.8 ≤ RD ≤ 1.1, we observe a sharp probability decrease. For

RD > 1.1 we observe a low probability of spillage.

In contrast to the results obtained for P(S|do(FU)) and

P(S|do(RV)), P(S|do(RD)) shows distinct ranges where RD yields

low and high probability of spillage. Additionally, the range of

values where P(S|do(RD)) shows a sharp probability decrease

indicates that a slight change in RD can significantly affect the

probability of spillage.

Overall, the causal effects presented in this section exhibit non-

linear behavior. Due to the non-linear behavior and the different

magnitudes of the spillage probability, using the individual causal

probabilities to analyze a trial with particular RC, FU, RV , and

RD values does not provide conclusive information. This happens

because causal probabilities in the form of P(S|do(X)) do not

consider the context (i.e., the actual value) of the other variables.

In the following section, we present a set of examples where the

actual causation framework is used to determine which variable (at

its actual value) is an actual cause of spillage and how the variable

should be changed to yield a different outcome.

5.2 Actual causes of spillage and
alternative actions

As explained in Section 2, the actual causation inequality

compares a reference probability value against the probabilities

obtained from contrastive values to check whether or not

probability raising holds. As proposed in Section 2.1, we

use the contrastive values where probability raising holds

to guide the selection of alternative parameters to avoid

spillage. In this section, we present the results obtained by

using the automatically-selected alternative values to achieve

either a chance-level or a low probability of spillage. In the

following, we explain the rationale behind the selected spillage

trial examples.

According to the considerations presented in Section 4.2 and

the DAG discovered from the training data (Figure 3), spillage

has three direct causes: RV , FU, and RD. At the beginning of the
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FIGURE 5

Causal probabilities of DAG variables. (a) Causal probability of RC on S. (b) Total causal probability of FU on S. (c) Direct causal probability of FU on S.

(d) Causal probability of RV on S. (e) Causal probability of RD on S.

pouring action, i.e., at the pouring onset, the interaction of FU

and RD determines the probability of spillage. Afterward, as the

content is poured into the target container, spillage will occur after

the poured amount exceeds the container’s capacity; that is, spillage

caused by RV . Recalling that RV is caused by FU and RC, the

capacity of the target will be exceeded only if RC < 1. The smaller

the RC, the smaller the FU will be necessary to exceed the target

container’s capacity. Otherwise, when RC > 1, spillage is caused

only by FU and RD. Therefore, we exemplify the usage of the

actual causation framework for the analysis of spillage trials with

0.5 < RC < 1. For simplicity, we focus the analysis on RD and FU,

which have a direct effect on S. We do not consider RC because it

doesn’t have a direct effect on S (the effect of RC is mediated by RV ,

which also depends on FU).

In each example, we start by presenting the frequency of

the outcomes (spillage true or false) over 100 replications using

the actual trial parameters. Afterward, we perform the actual

causation analysis of the FU and RD variables. To compare the

suitability of different alternative parameters, we select alternative

FU or RD parameters where P(Y|do(W = w
∗,X = x′) yields

a low probability (0.2) and a chance-level (0.5) probability. The

alternative parameters are identified automatically following the

steps described in Section 2.1. We conduct 100 replications

using the alternative parameters and present the frequency of

the outcomes.

5.2.1 Example 1
In this example, the source container was filled to a medium

level (FU = 0.51). The particles were poured into a target container

of smaller capacity (RC = 0.70) and smaller diameter (RD =

0.70). The actual trial parameters are shown in Figure 6a. The

outcomes over 100 replications with the actual parameters, shown

in Figure 6b, indicate a high probability of spillage.

Figure 6c shows the reference probability and the probabilities

obtained for contrastive RD values obtained from inequality (9).

In the area where probability raising holds, the contrastive

probabilities show a sharp decrease around RD ≈ 0.8 and a

low probability for RD > 0.9. We select the alternative values

RD = 0.87 (chance-level probability) and RD = 0.89 (low

probability ≈ 0.2), as shown in Figures 6e, g, respectively. It is

important to note that changing RV and keeping RC constant

produce a target container of smaller height. The results from 100

replications are shown in Figures 6f, h. The replications with the

alternative parameters show that RD = 0.89 is better suited to avoid

spillage. It is also interesting to note that due to the non-linearity

of the probabilities, small changes in RD yield a large effect on the

probability of spillage.

Figure 6d shows the reference probabilities and the

probabilities obtained for contrastive FU values obtained

from Equations 10, 11. The probability curve that results from the

contrastive values is nearly horizontal and very close in magnitude
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FIGURE 6

Actual causation analysis of example 1. (a) Actual trial parameters of trial with spillage and (b) outcome frequencies over 100 replications.

(c) Probabilities of actual causation inequality for RD. (d) Probabilities of actual causation inequality for FU. (e) Alternative RD for 0.5 spillage probability

and (f) outcome frequencies over 100 replications. (g) Alternative RD for 0.2 spillage probability and (h) outcome frequencies over 100 replications.

to the reference probabilities. The area for which probability raising

holds (i.e., the shaded region) thus results from small magnitude

differences barely noticeable in Figure 6d. The contrastive values

for which probability raising holds yield a large probability of

spillage. Therefore, selecting an alternative FU is unlikely to change

the outcome.

5.2.2 Example 2
In this example, the source container was filled to a medium-

high level (FU = 0.64). The particles were poured into a target

container of a slightly smaller capacity (RC = 0.96) and slightly

larger diameter (RD = 1.10). The actual trial parameters are

shown in Figure 7a. The outcomes over 100 replications with the

actual parameters, shown in Figure 7b, indicate a low probability

of spillage.

Figure 7c shows the reference probability and the probabilities

obtained for contrastive RD values obtained from inequality (9). It

can be observed that the contrastive values for which probability

raising holds yield a low probability of spillage. Therefore, selecting

an alternative RD is unlikely to change the outcome. A similar result

is observed from the actual causation analysis of FU. Figure 7d

indicates that selecting an alternative FU will unlikely change the

outcome. In this example, the analysis of actual causation indicates

that repeating the execution of the pouring action with the actual

parameters is likely to succeed.

5.2.3 Example 3
In this example, the source container was filled to a high level

(FU = 0.77). The particles were poured into a target container

of smaller capacity (RC = 0.79) and slightly smaller diameter

(RD = 0.98). The actual trial parameters are shown in Figure 8a.

The outcomes over 100 replications with the actual parameters,

shown in Figure 8b, indicate a moderately larger probability of

spillage (≈ 0.6).

Figure 8c shows the reference probability and the probabilities

obtained for contrastive RD values obtained from inequality (9).

In the area where probability raising holds, the contrastive

probabilities show a sharp decrease around RD ≈ 1.0 and a low

probability for RD > 1.1. We select the alternative values RD =

0.99 (chance-level probability) and RD = 1.02 (low probability

≈ 0.2), as shown in Figures 8e, g, respectively. The results from

100 replications are shown in Figures 8f, h. The replications with

the alternative parameters show that RD = 1.02 is better suited to

avoid spillage.

Figure 8d shows the reference probabilities and the

probabilities obtained for contrastive FU values obtained

from inequalities (10) and (11). In the area where probability

raising holds, we observe low probabilities for FU < 0.6.

For FU > 0.6, we observe smooth probability increments.

We select the alternative values FU = 0.75 (chance-level

probability) and FU = 0.64 (low probability ≈ 0.2), as

shown in Figures 8i, k, respectively. The results from 100

replications are shown in Figures 8j, l. The replications with the
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FIGURE 7

Actual causation analysis of example 2. (a) Actual trial parameters of trial with spillage and (b) outcome frequencies over 100 replications.

(c) Probabilities of actual causation inequality for RD. (d) Probabilities of actual causation inequality for FU.

alternative parameters show that FU = 0.64 is better suited to

avoid spillage.

5.2.4 Example 4
In this example, the source container was filled to a high level

(FU = 0.91). The particles were poured into a target container of

smaller capacity (RC = 0.69) and slightly larger diameter (RD =

1.08). The actual trial parameters are shown in Figure 9a. The

outcomes over 100 replications with the actual parameters, shown

in Figure 9b, indicate a large probability of spillage.

Figure 9c shows the reference probability and the probabilities

obtained for contrastive RD values obtained from inequality (9). It

can be observed that the contrastive values for which probability

raising holds yield a high probability of spillage. Therefore,

selecting an alternative RD is unlikely to change the outcome.

Figure 9d shows the reference probabilities and the

probabilities obtained for contrastive FU values obtained from

inequalities (10) and (11). In the area where probability raising

holds, we observe low probabilities for FU < 0.4. For FU > 0.4, we

observe smooth probability increments. We select the alternative

values FU = 0.76 (chance-level probability) and FU = 0.53

(low probability ≈ 0.2), as shown in Figures 9e, g, respectively.

The results from 100 replications are shown in Figures 9f, h. The

replications with the alternative parameters show that FU = 0.53

is better suited to avoid spillage.

5.3 Evaluation of alternative actions to
prevent spillage

In this section, we evaluate the capabilities of the analysis of

probabilistic actual causation to guide the selection of alternative

parameters to prevent spillage. For this evaluation, we generated

a test dataset of 3,000 pouring trials. The trial parameters of the

test dataset were sampled from the same distributions used for the

training dataset, as described in Table 2. Spillage occurred in 1216

trials and 1784 trials were successful.

Following steps described in Section 2.1, we conducted the

analysis of probabilistic actual causation on the spillage trials. We

identified the range of contrastive values where probability raising

holds, and within these values, we selected the subset of values with

probability of spillage < 0.1. From this subset, the closest value

to the current parameter was selected as alternative parameter.

We ran the trial using the alternative parameter and recorded

the outcome.

As explained in Section 2.1, the analysis of actual causation can

be applied to different variables, one at a time. When inequality (1)

does not hold for any of the contrastive values, the variable cannot

be regarded as an actual cause. This indicates that there are no

alternative values for the analyzed variable. Even if inequality (1)

holds, it can also occur that the probabilities within the range of

contrastive values where probability raising holds lay above the

chance level or above the desired probability threshold (0.1 in our

case). Therefore, it may happen that no alternative values for the

variable being analyzed can be identified. To evaluate this aspect, we

conducted the analysis of probabilistic actual causation on the RC,

FU, and RD variables, and determined the percentage of the spillage

trials for which an alternative parameter satisfying the probability

threshold could be identified. For RC, an alternative parameter

could be identified in 2.7% of the spillage trials, for FU in 59% of

the spillage trials, and for RD in 97.9% of the spillage trials.

The marked differences between variables can be attributed to

the causal structure of the task and the magnitude of the causal

probabilities presented in Section 5.1. RC has an indirect effect

on S through RV . FU also has an indirect effect on S through RV

and a direct effect. Comparing the causal probabilities P(S|do(RC))

(Figure 5a), with P(S|do(FU)) and P(S|do(FU,RV)) (Figures 5b, c,

respectively), it can be observed that the effect of FU on S is

stronger than the effect of RC. Under these considerations, finding

an alternative RC value is less likely than finding an alternative

FU value. In contrast to RC and FU, RD has a direct effect

on S, and the P(S|do(RD)) (Figure 5e) shows a range with low

spillage probability, which leads to a higher likelihood of finding

an alternative value.

Next, we evaluate the pouring success rates obtained by running

the spillage trials using the alternative RD and FU values, while

keeping the other variables unchanged.4 As explained at the

beginning of this section, in each spillage trial we set RD or FU to

4 RC was not considered for this evaluation due to the low number of trials

for which an alternative value was found.
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FIGURE 8

Actual causation analysis of example 3. (a) Actual trial parameters of trial with spillage and (b) outcome frequencies obtained over 100 replications.

(c) Probabilities of actual causation inequality for RD. (d) Probabilities of actual causation inequality for FU. (e) Alternative RD for 0.5 spillage

probability and (f) outcome frequencies over 100 replications. (G) Alternative RD for 0.2 spillage probability and (h) outcome frequencies over 100

replications. (i) Alternative FU for 0.5 spillage probability and (j) outcome frequencies over 100 replications. (k) Alternative FU for 0.2 spillage

probability and (l) outcome frequencies over 100 replications.

an alternative value (closest to the current value) predicted to have a

spillage probability< 0.1 according to the actual causation analysis.

A trial was successful if all the particles were poured into the target

container. From 1,216 spillage trials, an alternative RD value was

identified for 1,191 trials. Running these trials with the alternative

DD values produced a success rate of 88.7%. From 1,216 spillage

trials, an alternative FU value was identified for 718 trials. Running

these trials with the alternative FU values success rate of 86.9%. The

success rates demonstrate the practical value of the actual causation

approach in identifying alternative parameters.

Finally, we evaluate the empirical success rates observed when

conducting trial replications using the alternative FU and RD

values. For this, we selected a random subset of 100 spillage

trials from the test dataset. We ran 10 replications of each

trial of the subset using the alternative RD or FU values.

As a result, we obtained an empirical success rate for each

trial (
number of successful replications

10 ). The histogram of the empirical

success rates obtained with the alternative RD values is shown

in Figure 10a, and the histogram obtained for the alternative FU

values is shown in Figure 10b. In general, the observed success
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FIGURE 9

Actual causation analysis of example 4. (a) Actual trial parameters of trial with spillage and (b) outcome frequencies over 100 replications.

(c) Probabilities of actual causation inequality for RD. (d) Probabilities of actual causation inequality for FU. (e) Alternative FU for 0.5 spillage probability

and (f) outcome frequencies over 100 replications. (g) Alternative FU for 0.2 spillage probability and (h) outcome frequencies over 100 replications.

rates are in line with the probability criterion used to select the

alternative values. Nevertheless, lower success rates of 0.6 and 0.7

were also obtained for some trials. Crucially, all the success rates

are above the chance level, which provides empirical support for

the usefulness of the alternative values.

6 Discussion

In Section 5.2, an analysis of actual causation was conducted to

determine the actual cause of spillage in a set of selected spillage

trials. The analysis of the FU and RD variables was conducted

individually. Based on the analysis, alternative FU and RD values

were selected. In the examples, we also observed cases in which

the analysis indicated that no alternative FU or RD values would

significantly reduce the probability of spillage.

The actual causation probabilities exhibit a non-linear

behavior. In particular, a sharp decrease in the spillage probability

can be observed in some ranges of RD. Considering the sharpness

in the transition from low to high probability of spillage observed

in the causal probability P(S|do(RD)) (Figure 5e) and in the actual

causation probabilities in examples 1, 2, and 3 (Figures 6c, 7c, 8c,

respectively), we verified that the sharp transition is not an artifact

of the binary representation of the outcome. For this verification,

we examined the number of particles spilled and the percentage

of spilled particles as a function of RD in the range with sharp

probability transitions. Within this range of values, small changes

in RD yield significant changes in the number of spilled particles

and the spilled percentage. As a result of the sharp probability

decrease, when the analysis indicates that a RD is the actual cause

of spillage, small changes in its value significantly impact the

probability of spillage (cf. examples 1 and 3). The actual causation

probabilities of FU also exhibit non-linear behavior, though the

ranges where the probability of spillage transitions from low to

high show a less pronounced slope (cf. example 4). Nevertheless,

there are cases where a small change in FU leads to significant

differences in the probability of spillage (cf. example 3).

The examples show that the probabilities of actual causation

provide a principled criterion for comparing alternative actions

with respect to the probability of the desired outcome. In

the pouring task, small differences between values separate

a “bad" from a “good" alternative action due to the non-

linear effect of the variables on the outcome. Based on this

consideration, it is reasonable to assume that the alternative

actions identified using the automatic application of the actual

causation analysis might differ from those chosen by a human

observer. Consider the target container dimensions from example

3 compared in Figure 11. A human observer might fail to
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FIGURE 10

Empirical success rates obtained over 10 replications. (a) Empirical success rates using alternative RD values. (b) Empirical success rates using

alternative FU values.

realize that a slight change in diameter can significantly reduce

the chances of spillage due to non-linear interaction between

the task variables. Therefore, it can be assumed that a human

observer will choose alternative actions based on larger parameter

differences than the ones suggested by the analysis of actual

causation. For a human observer, a significantly larger diameter

difference or a lower fullness level might result from an implicit

safety margin in the selection of an alternative action to avoid

spillage. Overall, human reasoning about alternative solutions

will hardly resemble the analysis of actual causation, as it relies

on probabilistic reasoning about the (non-linear) interaction

between variables.

Regarding the usage of actual causation for action guidance, it

is important to consider the availability or feasibility of alternative

actions in the context of application. In simulation, generating

target containers of different dimensions or changing the source

container’s fullness levels is straightforward. However, the available

alternative actions might be limited in the real world. For example,

if target containers are available only in two diameter sizes, the

selection of an alternative action is reduced to making a forced

choice, leaving aside any reasoning about the effect of the diameters

in a continuous space on the probability of spillage. Nevertheless,

even if the alternatives are limited, an analysis of actual causation

can provide the agent performing or monitoring the task with

useful information about possible alternative actions.

It is important to recall that the results obtained from applying

the analysis of actual causation depend on the structure of

the causal graph and the variable representation. In this work,

we opted to represent spillage as a binary variable. However,

other representations of the outcome are possible. For example,

spillage could be represented as the number of spilled marbles

or as a relation, such as S =
number of spilled marbles

number of marbles in the source container
.

Defining spillage as a binary variable treats spilling one or many

marbles equally. In this sense, the binary representation loses

information regarding the severity of spillage. Ideally, the perfect

realization of the task entails pouring without spillage. However,

whether information about the severity of spillage is necessary

depends on the context. For example, while spilling a few snacks

at a party would not be a problem, spilling a single particle

in a chemistry laboratory might be inadmissible. The previous

situational examples emphasize that the context of the application

must be considered when determining the definition of the

outcome variable(s).

The representation of the variables has implications for the

perceptual capabilities of the agent performing or monitoring the

task, be it a human or a robot. The perception of the outcome and

the container properties relies on sensory cues, which might consist

of visual and force feedback. For example, to determine the number

of spilled particles, the agent must be able to perceive and count

individual particles. The extent to which this is feasible depends on

the context (e.g., counting spilled candies might be way easier than

counting spilled rice grains, both for a human or a robot). In this

respect, representing spillage as a binary variable has the advantage

of being easier to determine, both for a human and a robot,

as it requires less perception, reasoning, and action capabilities.

Overall, the successful implementation of action guidance based

on the analysis of probabilistic actual causation in a real-world

application relies on the availability of the information necessary

to compute the probabilities in inequality (1). For the pouring task,

the agent would need an accurate perception of both containers’

dimensions, the source container’s fullness level, andwhether or not

spillage occurred.

7 Conclusions

In this paper, we conducted a probabilistic actual causation

analysis of a robot pouring task. The modeling based on causal

graphs and the estimation of conditional probability distributions

using neural networks facilitated a qualitative and quantitative

understanding of the influence of various factors on the task’s

outcome. Throughout a series of examples, we demonstrated that

the analysis of actual causation provides a principled approach

to check whether a variable is a cause of the outcome and

to select alternative actions appropriate to change the observed

outcome. Our results show that the analysis of actual causation
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FIGURE 11

Actual causation probabilities, actual trial parameters and target containers with di�erent RD values.

provides information about the extent to which a variable caused

an observed outcome that cannot be retrieved directly from simple

causal probabilities. This occurs because the causal probability of

a variable on the outcome lacks information about the context of

the other variables. In contrast, the definition of probabilistic actual

causation considers the context of the variables and their role in

the causal structure (i.e., whether the variables are mediators or are

outside the causal path). In the pouring task, the analysis of actual

causation enabled us to determine whether a variable was a cause of

spillage and, based on the assessment of the probabilities of actual

causation, the selection of an alternative action parameter.

The reliability of the analysis of actual causation relies on

the correctness of the causal graph structure and the estimated

conditional probability distributions. This constitutes a major

challenge for implementing an actual causation analysis in real-

life tasks as it requires (1) a careful selection of the variables’

representation, (2) determining the structure of the causal graph,

and (3) estimating conditional probability distributions. The

methods described in Section 4 constitute state-of-the art best

common practices to obtain reliable and robust causal modeling

results. Specifically, we used a realistic simulation of the pouring

task to cover an ample combinatorial space of task parameters,

which would have been cumbersome to replicate in a real

environment. The simulation provided us with a large dataset to

learn the causal structure of the task using a causal discovery

algorithm with bootstrapping and to estimate its causal probability

distributions using neural networks. In addition to the information

provided in Supplementary Section 4, we discuss further modeling

assumptions and we provide empirical support to the correctness

of the causal model.

We demonstrated the practical use of probabilistic actual

causation in a robotic task. In addition, the information retrieved

from actual causation analysis can be used in the context of human-

machine interaction to support human decision-making. Recalling

that the actual causation probabilities can be interpreted as the

extent to which an alternative action parameter is a “good" or “bad"

corrective action, the framework can provide the human operator

with additional information and contextual cues, for example, in

augmented or virtual reality applications, to support the selection

of action parameters.

In an additional scope of application, the analysis of actual

causation can provide an objective baseline to evaluate the human

perception of actual causes and the selection of alternative actions

when a different outcome is sought. For example, the extent to

which the causes perceived by a human observer correspond to

the actual causes identified by the probabilistic framework can be

investigated. Furthermore, the framework can be used to assess the

extent to which human ratings of corrective actions in a continuum

from “bad" to “good" correspond to the interpretation of the

goodness of an alternative action parameter based on the actual

causation probabilities used in this paper.
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