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Toward aitiopoietic cognition:
bridging the evolutionary divide
between biological and
machine-learned causal systems

Tomas Veloz*

Departamento de Matemáticas, Universidad Tecnológica Metropolitana, Santiago, Chile

We examine and compare autopoietic systems (biological organisms) and

machine learning systems (MLSs) highlighting crucial di�erences in how causal

reasoning emerges and operates. Despite superficial functional similarities in

behavior and cognitive abilities, we identify profound structural di�erences in

how causality is operationalized, physically embodied, and epistemologically

grounded. In autopoietic systems, causal reasoning is intrinsically tied to

self-maintenance processes across multiple organizational levels, with goals

emerging from survival imperatives. In contrast, MLSs implement causality

through statistical optimization with externally imposed objectives, lacking

the material self-reorganization that drives biological causal advancement.

We introduce the concept of “aitiopoietic cognition”—from Greek “aitia”

(cause) and “poiesis” (creation)—as a framework where causal understanding

emerges directly from a system’s self-constituting processes. Through analyzing

convergence pathways including evolutionary algorithms, material intelligence,

homeostatic regulation, and multi-scale integration, we propose a research

program aimed at bridging this evolutionary divide. Such integration could lead

to artificial systems with genuine intrinsic goals and materially grounded causal

understanding, potentially transforming our approach to artificial intelligence

and deepening our comprehension of biological cognition.

KEYWORDS

artificial intelligence, emergence, causal reasoning, autopoieisis, metasystem

transitions, embodied cognition, synthetic biology

1 Introduction

Machine learning systems (MLSs) are rapidly increasing their influence in our lives,
transforming sectors from healthcare to entertainment (Marcus and Davis, 2019; LeCun
et al., 2015), and where substantial investments are flowing into their sophistication (Maslej
et al., 2025), there is an increasing need to understand the fundamental differences between
“us and them” (Bengio et al., 2024). For clarity and analytical precision, we will refer to
“them” asMLSs, acknowledging their primary mechanism of development and adaptation.

Considering the perspective of a child first learning to distinguish entities in a
computer-interface level, or for an alien visiting our planet, there is no major difference
between humans and MLSs. Both can read, understand text and images, type and
draw, speak, and engage in a stream of complex actions including planning abilities,
communication skills, and even abstract reasoning about concepts, causal relationships,
and reflexive understanding of self and others. This similarity is recognized as well in
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robotic interfaces that allow for physical interaction andmovement
(Moro et al., 2019; Manzi et al., 2020). This seemingly remarkable
similarity is often explained through the lens of computational
functionalism (Putnam, 1967; Chalmers, 1996), which posits that
mental states are defined by their functional roles rather than their
physical substrate. Under this view, if MLSs functionally replicate
human cognitive processes, even from a completely different
substrate, they can be considered fundamentally equivalent—and
hence subjected to comparison at the agential level (Goertzel, 2007).

1.1 The “equivalence hypothesis” for testing
causal cognition in human and machines

By looking more closely at how we compare ourselves and
machines, we arrive at the strong influence that has played
the Turing test, which is assumed to be known by the reader.
While it aims at testing thinking, it more precisely tests the
ability to engage in a conversation using previously learned
information, and hence it does not test thinking directly, but
learning and the ability to express such learning (Moor, 1976).
In this article we do not want to dig into the definitions
of learning, thinking and intelligence and how that impacts
our understanding of artificial intelligence (see Wang, 2019 for
such analysis). Instead, we want to explore the consequences
of comparing the causal cognitive abilities of a machine and a
human using input-output architectures. Mainstream cognitive
science implicitly assumes that these architectures “mean the
same” for both humans and machines. In fact, the input-output
architecture is, as well, generally believed to be responsible for
the learning process, in an equivalent way, for both humans and
MLSs. The latter is accepted and well-justified by a large number
of successful scientific programs in a variety of fields including
various branches of psychology and cognitive science (Anderson,
2007), linguistics (Fodor, 1975; Chomsky, 1986; Pinker, 1994),
computer science (Russell and Norvig, 2020), ethology (Lorenz,
1981), and others (Clark, 2001). These have shown that the design
of processes and experiments based on input-output architectures
have a high inductive power and allow to explain how learning,
adaptation, and the development of increasingly complex responses
(behaviors) to environmental challenges can be generated/stopped
or enhanced/inhibited. Therefore, it is assumed that the way in
which the “processing unit” that transforms input to output, i.e. the
“black-box” for MLSs or “the mind” for humans, has no particular
difference for what concerns defining cognition (Chalmers, 1996;
Clark and Chalmers, 1998).

However, the above implicit equivalence assumption masks
profound differences in how the inner workings of the material
implementations of the input and output, and more crucially of
them together with the “processing unit” forming a full system,
shapes the existential, developmental and evolutionary features of
cognition in MLSs and humans (Deacon, 2011).

At the existential level, cognition in Humans and other
biological organisms is implemented within autopoietic systems—
self-creating and self-maintaining entities that constantly
regenerate their components through metabolic processes that
harness energy from its environment (Boden, 1999; Maturana

and Varela, 2012; Thompson, 2007). In contrast, cognition
in MLSs is implemented in physically static machines whose
embodiment remains unchanged. At the developmental level
autopoietic systems develop through multi-level structures based
on cells made of molecular networks (Fields and Levin, 2022;
Witkowski et al., 2023), each level having its own sense of self
and its own competences resembling cognitive abilities aligned to
their particular physical instantiation (which might or might not
implement universal Turing computation), while for MLSs their
development is based on external assemblage without multi-level
structures and no internalized sense of self, and a “single level
of intelligence” evolves through algorithmic adjustments and
data-driven feedback in a universal Turing machine setting.

At the evolutionary level, these differences amplify what
cognition means at each substrate. Autopoietic systems have
evolved through natural selection operating on genetic variations
across billions of years, with multiple major transitions creating
hierarchical levels of organization (Smith and Szathmáry, 1995;
Szathmáry, 2015). This evolutionary process has resulted in
systems where purposeful behavior emerges from the intricate
interplay between material constraints and informational
dynamics at multiple scales (West et al., 2015; Heylighen,
2023). In stark contrast, MLSs “evolve” through directed human
engineering, following developmental trajectories on a fixed Von
Neumann architecture, optimized for specific). purposes involving
performance, economic cost, size, and computation speed, rather
than survival in open-ended environments (Stanley and Lehman,
2015). Their evolutionary trajectory lacks the self-organized
complexity and emergent properties characteristic of biological
evolution, instead following design principles imposed externally
by human developers with predetermined objectives (Lake et al.,
2017).

1.2 Goals as a criteria for comparing causal
cognition

Instead of focusing on performance to test causal cognition,
we can focus on “goal-directedness,” as goals reflect the source
of actions in the processing unit (Heylighen, 2023). Following
this idea, goals serve as a crucial pivot point for comparing the
causal cognition between humans and machines (Deacon, 2011).
In autopoietic systems, goals are defined by the relation between
the imperative for the system’s physical existence through self-
preservation and the ways available to interact with its environment
(Kolchinsky and Wolpert, 2018). For MLSs, goals are externally
defined optimization targets disconnected from any necessity of
material self-preservation. This difference in the origin and nature
of goals highlights an important gap in how their causal cognition
operates. This aspect raises issues regarding the comparison of
other significant aspects of cognition such as intelligence and
adaptation (see Stano et al., 2023, and other articles in that
special issue).

This paper examines the fundamental characteristics of
autopoiesis and machine learning, analyzes their key differences
using goals as a reference concept that concern causal cognition,
and explores potential convergence in futuristic systems that
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integrate their diverse “cognitive scaffoldings” (Ziemke et al., 2004).
Finally we outline a path toward bridging this evolutionary divide
(Witkowski et al., 2023; Seth, 2021), by proposing “aitiopoietic
cognition”—from Greek “aitia” (cause) and “poiesis” (creation)—
as a framework where causal understanding emerges directly
from a system’s self-constituting processes, creating a recursive
relationship between physical organization and causal reasoning.

2 Autopoietic systems: from survival to
goals

Autopoietic systems, introduced by biologists Humberto
Maturana and Francisco Varela in the 1970s, are defined as
networks of processes that produce the components necessary
for their continued existence and boundary maintenance.
This concept provides a cybernetic-inspired framework for
understanding biological autonomy (Maturana and Varela, 2012).
Unlike mechanistic or vitalistic accounts of life, autopoiesis
offers a naturalistic perspective that emphasizes the dynamic,
process-oriented nature of living systems (Weber and Varela,
2002).

2.1 The inner-outer structure

From a biochemical perspective, autopoietic systems operate
through metabolic networks that continuously transform matter
and energy to regenerate their components while maintaining
organizational stability. This self-production occurs through
thermodynamically open processes that sustain the system far
from equilibrium (Moreno and Mossio, 2015). The continuous
production of a semi-permeable boundary distinguishes the
system from its environment while regulating internal processes
and external exchanges, creating a fundamental inside-outside
asymmetry crucial for biological autonomy (Luisi, 2003).

A defining characteristic of autopoietic systems lies in their
hierarchical organization across spatial and temporal scales.
This multi-level architecture enables nested autonomy: molecular
networks maintain metabolic closure, cells exhibit decision-making
via signaling pathways (Gao et al., 2023), and tissues coordinate
via biophysical feedback (Forgacs and Newman, 2005). Each
level sustains operational closure while contributing to higher-
order autopoiesis, exemplifying Varela’s concept of “autonomous
identity at several levels” (Varela, 1979). This organization
aligns with Salthe’s (1985) hierarchical evolution framework
and enables bidirectional causality: “downward causation” (Ellis,
2012), where higher levels modulate lower-level processes, and
“upward constraints,” where molecular dynamics limit higher-level
possibilities (Kauffman, 1993; West-Eberhard, 2003).

The operational closure of autopoietic systems does not
preclude dynamic engagement with environments; rather, it
enables multi-level structural coupling—a process by which
recurrent interactions trigger compensatory changes while
preserving organizational coherence (Di Paolo, 2005; Moreno and
Mossio, 2015). This coupling operates hierarchically: molecular
networks couple with intracellular conditions, cells with tissue
microenvironments, and organisms with ecological niches, each

level maintaining its autonomy while contributing to the system’s
viability (Maturana and Varela, 2012; Salthe, 1985). Evolutionary
pressures sculpt this hierarchy, favoring modularity for robustness
(Wagner, 1996) and degeneracy (Edelman and Gally, 2001) to
buffer against perturbations.

Crucially, coupling is asymmetrical and structurally
determined: the environment does not dictate changes but
perturbs the system, whose architecture—shaped by evolutionary
and developmental history—filters which perturbations are
salient (Barandiaran and Moreno, 2008; Juarrero, 1999). A cell’s
membrane receptors selectively respond to extracellular ligands
while its metabolic state constrains receptor expression, illustrating
how multi-level dependencies mediate environmental interactions
(West-Eberhard, 2003; Huang, 2012; Rafelski and Theriot, 2024).

Thus, autopoietic systems enact their worlds through multi-
scalar, history-laden interactions—a process where autonomy
and dependency coexist, and every perturbation becomes an
opportunity for meaning-making (Varela et al., 1991; Barandiaran
et al., 2009).

2.2 Autopoietic cognition

The connection between autopoiesis and cognition emerges
from the system’s need to maintain itself through adaptive
interactions with its environment. As Maturana and Varela
provocatively stated, “living is knowing,” suggesting that even basic
autopoietic systems exhibit a primitive form of cognition through
their selective environmental coupling (Thompson, 2007). This
perspective reframes cognition not as information processing but
as sense-making—transforming neutral environmental stimuli into
meaningful distinctions relevant to continued existence (Di Paolo
and Thompson, 2014).

The transition of autopoietic systems into sense-making
adaptive agents hinges on their capacity to develop multi-
level regulatory hierarchies that monitor and modulate viability
conditions across scales (Di Paolo, 2005; Moreno and Mossio,
2015). From these processes goal-directedness becomes naturally
linked to autopoietic organization. Autopoietic systems exhibit
“purposive” behavior because their structure—forged through
structural coupling (Juarrero, 1999)—embodies historical solutions
to viability challenges (Deacon, 2011). For instance, slime molds
optimize nutrient networks via self-organizing gradients (Nakagaki
et al., 2000). This naturalized teleology (Weber and Varela, 2002)
proposes a solution to the paradox of purpose as entities in the
future influencing its past: goals are emergent properties of systems
that recursively couple action to self-maintenance across scales
(Barandiaran et al., 2009).

The formal representation of goals in autopoietic systems
presents unique modeling challenges precisely because goals
emerge from the system’s organization rather than being explicitly
encoded (Veloz, 2021). Several mathematical frameworks have
been developed to capture this emergence, each highlighting
different aspects of how purpose arises from process.

Dynamical systems theory provides the broadest framework,
representing autopoietic goals as attractor states in state space that
maintain viability amid perturbations (Heylighen, 2023; Kauffman,
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1993). Crucially, these attractors shift based on the system’s
internal state, creating a landscape where goals are context-
dependent rather than fixed. This adaptive landscape model has
been formalized in work on viability boundaries and adaptive
control (Barandiaran and Egbert, 2014), providing mathematical
tools to analyze how autopoietic systems generate and modify goals
in response to changing conditions.

More specific mathematical frameworks address different
aspects of goal-directedness. Chemical Organization Theory
(Dittrich and Speroni di Fenizio, 2007; Veloz and Razeto-Barry,
2017) models self-maintaining chemical networks where closure
and self-production create stability conditions that serve as
implicit goals. This approach enables rigorous analysis of how
chemistry creates persistent identity—a precondition for purpose—
by identifying organizational closure in reaction networks.
Meanwhile, Free Energy Principle models (Friston, 2010; Priorelli
et al., 2025) formalize how predictive regulation serves autopoietic
maintenance, representing goals as probability distributions over
viable states that systems act to maintain through active inference.
This Bayesian approach provides a computational bridge between
autopoietic goals and machine learning frameworks. Agent-based
modeling has become increasingly important for modeling how
goals emerge from simple behavioral mechanisms tied to viability
constraints, demonstrating how selection pressures can drive
the emergence of increasingly complex goal hierarchies through
simulated evolution (Froese and Ziemke, 2009; Packard et al.,
2019).

While the conceptualization of goals is thoroughly integrated
with theoretical frameworks of autopoiesis, and the relationship
between goal-directedness and biological purpose is well-
established in philosophical terms, the formal mathematical
representation of these concepts remains in its infancy. Current
models capture aspects of emergent purpose but struggle to
represent the full richness of biological goal-directedness—
particularly the multi-scale competencies that comprise biological
intelligence (Witkowski et al., 2023; Fields and Levin, 2022).
These competencies, from basal cognition in single cells to the
abstract reasoning of complex organisms, suggest multiple forms
of intelligence operating across different scales and materialities,
challenging our current modeling capabilities. As autopoietic
theory continues to evolve, bridging the gap between rich
theoretical accounts and precise formal representations remains a
crucial frontier—one that will not only deepen our understanding
of biological cognition but also provide insights for developing
artificial systems with more naturalistic forms of goal-directedness
(Veloz, 2021; Thompson, 2007; Di Paolo, 2005).

2.3 From autopoiesis to aitiopoiesis

The transition from autopoietic to aitiopoietic cognition,
i.e., going from achieve material self-preservation to embody
affordances through behaviors that resemble causal reasoning,
represents a fundamental leap where systems transcend mere
organizational closure to actively constitute causal knowledge
through their very existence (Deacon, 2011). This transition
becomes evident when examining how autopoietic systems

generate what we term “agential causality”—causal understanding
that emerges not from abstract computation but from the
material processes of self-constitution and environmental
coupling. Consider bacterial chemotaxis: the cell’s sensory-motor
apparatus doesn’t simply detect gradients but constitutes a
knowledge-generating system where the phosphorylation cascade
dynamics simultaneously maintain cellular organization and create
understanding about environmental cause-effect relationships
(Davies and Levin, 2023; Levin, 2019). The bacteria’s tumble-and-
run behavior emerges from constitutional processes where causal
learning and self-maintenance are inseparably intertwined—the
system literally embodies its causal models through the recursive
dynamics of its own material organization.

Recent advances in synthetic multicellularity illuminate
this transition by revealing how collective systems can exhibit
emergent aitiopoietic properties that exceed their individual
components’ autopoietic capabilities. Xenobots, constructed
from amphibian skin and cardiac cells, demonstrate a primitive
form of aitiopoietic cognition where collective behavior emerges
from cellular self-organization without genetic programming or
external control circuits (Moreno and Etxeberria, 2005; Newman
and Bhat, 2009; Kriegman et al., 2020). These “living robots”
navigate their environment through constitutive processes—their
locomotion, object manipulation, and collective coordination
arise from the same self-maintaining dynamics that preserve their
multicellular integrity. Crucially, their behavioral competencies
represent endogenous properties of agential materials rather
than externally imposed algorithms, suggesting that aitiopoietic
cognition scales naturally from autopoietic foundations when
appropriate organizational architectures emerge. Similarly,
Anthrobots self-assemble from human lung cells into motile
spheroids with cilia-driven propulsion and tissue-repair
capabilities, demonstrating how multicellular collectives can
exhibit goal-directed behaviors that emerge from, rather than being
programmed into, their constitutional dynamics (Solé et al., 2024).

The synthetic biology framework reveals aitiopoiesis as
fundamentally involving multi-scale agency where causal
competencies emerge through hierarchical coupling between
different levels of organization (Solé et al., 2016). In organoid
systems, individual cells contribute to tissue-level morphodynamic
reasoning—the collective navigation of anatomical morphospace
through perception-action loops that simultaneously maintain
tissue architecture and generate knowledge about spatial
relationships (Solé et al., 2024). This represents a form of
“collective aitiopoietic cognition” where causal understanding
emerges from the constitutional dynamics of cellular collectives,
not from pre-programmed instructions. The tissue “learns” about
its environment through the very processes that constitute its
existence—growth gradients, mechanical forces, and bioelectrical
patterns become both the medium of self-maintenance and
the substrate of causal reasoning. Importantly, this scaling of
aitiopoietic competency reveals a crucial principle: higher-order
causal understanding doesn’t reduce to lower-level mechanisms
but emerges through what Levin terms “agential materials”—
substrates with intrinsic competencies that can be guided through
behavioral interventions rather than mechanical control.

The implications for artificial aitiopoietic systems are
profound. Current synthetic approaches reveal that genuine
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aitiopoiesis cannot be engineered through traditional top-
down design but must emerge from substrates that exhibit
“competency in transcriptional, anatomical, and physiological
problem spaces” (Davies and Levin, 2023). The failure of purely
computational approaches to achieve constitutional causality
suggests that future aitiopoietic systems will require physical
substrates where information processing affordances such
as pattern recognition and causal reasoning as well as self-
maintenaning affordances such as reparation and duplication
are materially unified rather than functionally separated (Gill
et al., 2025). This points toward a research program focused not
on programming artificial agents but on cultivating synthetic
systems where aitiopoietic cognition can emerge from the
recursive dynamics of embodied self-organization, potentially
through hybrid bio-synthetic architectures that combine the
constitutional properties of living materials with the scalability of
artificial substrates.

3 Machine learning systems: from
goals to causality

Machine learning represents the current paradigm to artificial
intelligence by allowing algorithms to improve through experience
by learning from data (Russell and Norvig, 2020). Early machine
learning focused on representational approaches and decision
trees, but the field underwent a transformation with the advent
of deep learning architectures that could automatically extract
hierarchical features from raw data (LeCun et al., 2015). This
evolution reflects a broader transition from engineering-centric
to data-centric approaches, where system behavior emerges from
statistical patterns rather than explicit design.

3.1 Machine learning instantiations of
causal cognition

At its core, machine learning operates through statistical
inference and optimization processes that adjust internal
parameters to minimize prediction errors or maximize reward
signals. MLSs operationalize causality through statistical
associations rather than mechanistic or teleological reasoning.
Rooted in pattern recognition, these systems optimize for
predictive accuracy by minimizing loss functions (e.g., cross-
entropy, mean squared error) that measure deviations from
training data distributions (Goodfellow et al., 2016). According
to Pearl’s (2019) Causal Hierarchy, ML systems operates at Level
1 (observational inference), lacking capacity for intervention
(Level 2) or counterfactual reasoning (Level 3). For instance,
deep neural networks trained on medical datasets may correlate
hospital beds with patient mortality without inferring beds as
sites of treatment rather than causation (Geirhos et al., 2020).
Such spurious correlations stem from ML’s reliance on statistical
shortcuts—surface features that maximize training accuracy but
fail to capture causal invariance (Arjovsky et al., 2019).

This process can be formalized mathematically as finding a
function f∗ such that prioritizes empirical risk minimization:

f∗ = argminf E[L(f(x), y)], (1)

where E means expected value, L quantifies prediction error
over a dataset D. While effective for interpolating training
distributions, this formulation conflates correlation with
causation, as models lack mechanisms to distinguish confounding
variables (Schölkopf, 2022). For example, ML systems trained on
socioeconomic data often reproduce biased associations (e.g., race
and loan default rates) due to dataset imbalances rather than causal
relationships (Koh et al., 2021).

Recent critiques highlight how this statistical foundation
limits ML’s causal robustness. Adversarial attacks—minor input
perturbations that deceive models (Szegedy et al., 2013)—expose
the fragility of associational reasoning, while distribution shifts
(e.g., hospital data from urban vs. rural settings) degrade
performance catastrophically (Koh et al., 2021). Unlike biological
systems, which evolved to prioritize causally salient features (e.g.,
predators, nutrients), ML lacks evolutionary pressure to distinguish
signal from noise, rendering its causal cognition inherently shallow
(Marcus and Davis, 2020).

3.2 Engineered causal architectures and the
limits of extrinsic goals

Contemporary machine learning (ML) systems attempt to
integrate causal reasoning through architectures that blend
statistical learning with formal causal frameworks. Structural causal
models (SCMs) represent one approach, applying Pearl’s do-
calculus (Pearl, 2019) to infer interventions from observational
data. Tools like DoWhy (Sharma and Kiciman, 2020) and
CausalNex based on Bayesian DAGs (Zheng et al., 2018)
operationalize this by encoding causal graphs, yet they require
human-specified variables and struggle with latent confounders—a
critical limitation in real-world datasets (Schölkopf et al., 2021). For
example, in healthcare, SCMs often fail to account for unmeasured
socioeconomic factors that mediate treatment outcomes (Kaddour
et al., 2022).

Causal reinforcement learning (CRL) extends this by training
systems to learn intervention policies. DeepMind’s Causal Meta-RL
(Ke et al., 2022) demonstrates how systems can infer task structure
through trial-and-error interventions, yet their objectives remain
static (e.g., maximizing game scores). Unlike biological systems,
which dynamically repurpose goals (e.g., switching from foraging
to predator evasion), CRL systems lack mechanisms to reconfigure
objectives in response to existential needs (Lake et al., 2017).

Neuro-symbolic hybrids merge neural networks with symbolic
logic to enforce causal rules (Sheth et al., 2023). However,
these rules are externally imposed rather than emergent from
self-constitution, rendering them brittle under novel scenarios
where “goal-directed commonsense is needed” (Garcez and Lamb,
2023). For instance, symbolic constraints in autonomous driving
systems (e.g., “stop at red lights”) fail to adapt when road
conditions defy predefined norms (e.g., emergency vehicles).
Table 1 summarizes the limitations of causality from our goal-
oriented perspective.

These architectures reveal a fundamental limitation regarding
their goals: MLS goals are extrinsic optimizations (e.g., loss
minimization), and hence they decouple causal reasoning from
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variables that underlie the actions their knowledge shall engage into
Marcus and Davis (2020).

4 Key causal reasoning di�erences
between autopoietic systems and
machine learning systems

We now organize the differences between how Autopoietic
Systems and MLS relate to causal reasoning into key dimensions
that help to identify further venues for their scientific study.

4.1 Operationalization of goals and
causality

Causality in autopoietic systems is fundamentally recursive
and self-referential, rooted in their operational closure. These
systems’ fundamental goal is to remain alive, i.e., maintain their
identity through circular cause-effect chains that simultaneously
produce and depend on their own boundaries (Maturana
and Varela, 2012). For instance, a cell’s metabolic network
synthesizes the very components—enzymes, membranes, and
organelles—that enable its continued existence. Here, causality
is inseparable from the system’s teleological imperative: self-
preservation. Perturbations to autopoietic systems (e.g., nutrient
deprivation) trigger adaptive responses aimed at restoring
homeostasis, illustrating how causal reasoning is intrinsically
directed toward sustaining systemic coherence (Luisi, 2003). The
system’s “goal” is not external but emergent of its self-reinforcing
organizational structure.

In contrast, causality in machine learning (ML) systems
is extrinsically defined by statistical correlations derived from
training data. ML models, such as deep neural networks, infer
patterns through gradient-driven optimization, with no inherent
representation of counterfactuals or physical mechanisms (Pearl,
2019). For example, a convolutional neural network trained to
classify images associates pixel configurations with labels (e.g.,
“cat” or “dog”), but these associations lack intrinsic grounding
in the system’s structure. The “goal” of an ML system—
minimizing a loss function—is imposed externally by designers,
reflecting no existential imperative. While autopoietic systems
exhibit endogenous causality (causal processes emerge from self-
maintenance), ML systems rely on exogenous causality, where
causal attribution is bounded by the scope and biases of training
datasets (Marcus, 2018) or rules imposed (Marcus andDavis, 2020).
We summarize our discussion in Table 2.

4.2 Material embodiment and causal
reasoning improvement

In autopoietic systems, causal reasoning improves through
physical embodiment of increasingly complex goals. The material
substrate available by its current operational organization,
under the right mutations, directly enables the development of
sophistication through what Heylighen (1995) calls meta-system

TABLE 1 Training method for achieving goals and limitation examples.

Training
paradigm

Causal
limitation

Example References

Supervised
(accuracy)

Fails under
distribution shift

Medical
diagnosis

Geirhos et al.,
2020

Reinforcement
(reward)

No adaptive
repurposing of
objectives

Game score
maximization

Ke et al., 2022

Neuro-symbolic
(rules)

Brittle to novel
scenarios needing
commonsense

Autonomous
driving

Garcez and
Lamb, 2023

transitions. These transitions enable new levels of control, i.e.,
the ability to handle perturbations in novel ways. This process
is physically instantiated—cellular differentiation creates novel
causal potentials through material reorganization that enables
emergent functions. Major evolutionary transitions (Szathmáry,
2015) demonstrate how material reorganization drives causal
advancement. When independent autopoietic units integrate
into higher-order collectives, they physically restructure to
enable a larger entity with new causal capabilities not only in
relation to its environment but also with respect to its own
components via top-down control (Rosas et al., 2020). This
physical restructuring creates multi-level regulatory networks
where causality operates across nested spatial and temporal
scales—from molecular recognition (microseconds) to memory
formation (decades).

Thismaterial integration enables the expansion of goal-directed
structures across wider spatial domains and longer temporal
horizons, termed the “care cone” (Witkowski et al., 2023). Long-
term planning in mammals emerges not from computational
scaling but from physical evolution of neural structures that
materially integrate multiple internal states. In contrast, MLSs
develop causal reasoning through pathways decoupled from
their material embodiment. Their physical substrate remains
static while abstract parameters adjust, creating a thermodynamic
disconnect between energy expenditure and causal improvement.
Neural networks expend identical energy regardless of whether
they’re refining causal models or reinforcing spurious correlations
(Thompson et al., 2020).

This thermodynamic decoupling constrains how causal
reasoning improves in MLSs. Without material reorganization
that extends control across scales, causal advancement becomes
purely instrumental—serving externally defined objectives without
extending capacity for self-maintenance, or any other existential
notion embedded in it. MLS causal improvements depend
primarily on data quantity rather than material reorganization.
While evidence suggests resemblances of major evolutionary
transitions, by the identification of phase-transition-like
improvements when crossing certain network size thresholds
(Schölkopf et al., 2021), these remain qualitatively different
from evolutionary transitions. ML systems expand within
predefined architectural constraints without generating novel
material configurations that enable fundamentally new forms of
causal reasoning.
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TABLE 2 Summary of operational di�erences between autopoietic and

machine learning causal reasoning systems.

Dimension Autopoietic
systems

Machine learning
systems

Causal
mechanism

Recursive, based on
self-referential loops at
multiple hierarchical levels

Non-recursive, based on
statistical correlations and
gradient optimization

Teleological
basis

Endogenous
(self-maintenance)

Exogenous (loss
minimization)

Boundary
definition

Operational closure
(self-produced
membrane/organization)

Data distribution and
algorithmic constraints

TABLE 3 Di�erences on how autopoietic and ML systems improve their

causal cognition.

Aspect Machine learning
systems

Autopoietic
systems

Mechanism of
Improvement

Parameter optimization
within fixed architecture

Material reorganization
across multiple scales

Thermodynamic
Relationship

Energy use unrelated to
causal advancement

Energy expenditure
aligned with control
capabilities

Temporal
integration

Reconstruction through
increasingly smaller
processing timescales

Nested timescales from
molecular to evolutionary

Evolutionary
potential

Bounded by architectural
constraints

Open-ended through
major transitions

Self-reorganization No physical restructuring
during learning

Continuous physical
adaptation to maintain
viability

The latter explains why biological causal reasoning exhibits
open-ended improvement while artificial causality remains
bounded by its instrumental nature and thermodynamic
decoupling. We summarize our discussion in Table 3.

4.3 The attribution of causality

The epistemological foundations of causal attribution differ
radically between autopoietic and machine learning systems,
illuminating a philosophical dimension that combines their
divergent material and operational principles.

4.3.1 Mechanistic causality in autopoietic systems
In autopoietic systems, causal attribution is mechanistic and

grounded in material interactions. The experimental methods used
to understand biological causality—such as knockout studies in
yeast that reveal causal roles of genes in glycolysis (e.g., PGI1
deletion halts glucose metabolism)—directly manipulate physical
components to observe system-wide effects (Kitano, 2002), and can
alter or be altered by features at other scales through mechanisms
that might involve for example electrical, chemical and fluid-
dynamics levels (Levin, 2019). The epistemology of causation is
tied to physically observable and manipulable processes, such

as enzyme-substrate binding observed via crystallography or
electron microscopy.

This mechanistic approach to causality reveals the ontic nature
of autopoietic causation—causal relationships are embedded in
the system’s physical structure and processes rather than being
observer-dependent constructs. When biologists identify a gene
as causal for a phenotype, they are identifying material pathways
through which physical interactions propagate effects (Bechtel and
Richardson, 2010). The multi-level organization of these systems
means that causality operates simultaneously across molecular,
cellular, and organismal scales, with bidirectional influences
between levels.

4.3.2 Instrumental causality in machine learning
systems

In contrast, causal attribution in ML systems is instrumental
and post hoc. Researchers employ techniques such as ablation
studies (removing a neural network layer) or Shapley values
(Lundberg and Lee, 2017) to approximate feature importance, but
these approaches provide statistical approximations rather than
revealing physical causal mechanisms. When an ML researcher
identifies a feature as “causal,” they are making an epistemic
claim about statistical relationships rather than identifying a
physical pathway.

The epistemology of ML causality remains fundamentally
statistical—a high Shapley value for a pixel in an image classification
task doesn’t imply a physical causal pathway but instead indicates
a statistical correlation that the model has learned to exploit.
This distinction becomes critical when deploying ML systems
in real-world contexts where causal understanding (rather than
correlation) is necessary for safe and effective operation.

5 Complementarity through
evolutionary perspectives

Despite the fundamental differences between autopoietic
systems and MLS outlined in previous sections, several promising
pathways for complementarity are emerging. These approaches
address the key gaps we’ve identified—particularly in goal
formation, material embodiment, and causal understanding—
offering potential bridges across this evolutionary divide.

5.1 Evolutionary algorithms and
open-ended exploration

The application of evolutionary principles to machine learning
design represents a significant step toward more biologically-
inspired systems. Unlike traditional optimization approaches that
focus on maximizing predefined metrics, evolutionary algorithms
emphasize diversity, adaptation, and the emergence of novel
solutions (Lehman and Stanley, 2011). Recent advances in
quality diversity algorithms and Multi-dimensional Archive of
Phenotypic Elites (MAP-Elites) demonstrate how maintaining
behavioral diversity rather than focusing solely on performance
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leads to more robust and creative solutions that better resemble
biological adaptability (Mouret and Clune, 2015; Cully et al.,
2015).

Open-ended evolution research extends this approach
by creating computational environments where continuous
innovation emerges without predefined fitness functions (Taylor
et al., 2016). These systems begin to address the goal-directedness
gap identified in Section 4.1 by enabling the discovery of novel
objectives rather than merely optimizing predefined ones. As
Packard et al. (2019) note, truly open-ended artificial systems
require mechanisms that support not just optimization but the
continuous emergence of new ways to define and pursue goals—a
property inherent to biological evolution (Boden, 1998).

However, these approaches still operate primarily at the
algorithmic level, with limited impact on the material substrate
gap highlighted in Section 4.2. The challenge remains integrating
open-ended exploration with physical embodiment, a fundamental
requisite for aitiopoietic cognitive systems.

5.2 Embodied cognition and material
intelligence

A more direct approach to bridging the material gap involves
developing artificial systems where materiality plays a constitutive
role in cognition. Beyond conventional robotics, which often
implements disembodied algorithms in physical shells, emerging
research explores how material properties themselves can perform
computational functions (Pfeifer et al., 2007; Paul, 2006).

Recent work in morphological computation demonstrates how
physical dynamics can replace explicit computation, allowing
systems to leverage material properties for intelligent behavior
(Hauser et al., 2011; Müller and Hoffmann, 2017). Soft robotics
and programmable materials enable adaptive behavior through
their intrinsic material properties rather than through explicit
programming (Laschi and Cianchetti, 2014; Rieffel et al., 2009).
These approaches begin to address the thermodynamic decoupling
identified in Section 4.2 by creating systems where physical
structure directly participates in information processing.

The challenge remains developing materials that not only
compute but also maintain and regenerate themselves—a
defining aspect of autopoietic systems. However, the “aitiopoietic”
integration of autopoietic structures into causal and other forms of
reasoning is still in its infancy (McMillen and Levin, 2024).

5.3 Homeostatic regulation and predictive
processing

The active inference framework (Friston, 2010; Friston et al.,
2017) offers a computational approach that potentially bridges
autopoietic self-maintenance and machine learning. By framing
cognition as the minimization of surprise (or free energy) through
continuous prediction and updating, this framework provides a
computational account of how systemsmaintain homeostasis while
adapting to environmental challenges.

Recent implementations in artificial systems demonstrate how
predictive architectures can develop intrinsic goals related to
maintaining viable states (Baltieri and Buckley, 2019). Particularly
promising is research integrating homeostatic regulation directly
into neural network architectures. Lechner et al. (2021) have
demonstrated neural networks with homeostatic mechanisms that
maintain internal stability while adapting to external challenges,
exhibiting a primitive form of the intrinsic goal-directedness
characteristic of autopoietic systems.

These approaches begin to address the causality gap identified
in Section 4.3 by grounding causal understanding in the
system’s own viability conditions rather than in purely statistical
correlations. However, they still operate primarily within the
computational domain, with limited connection to physical self-
maintenance. In this vein, conceptual advancement has been made
by Kolchinsky and Wolpert (2018) by defining the concept of
“semantic information” that refers to the Shannon information
responsible for its viability, i.e., its self-production in autopoietic
terms. However, this measure has not been yet properly linked
to self-production but to proxy viability formulas that are
informational as well.

5.4 Multi-scale integration and hierarchical
agency

The hierarchical nature of autopoietic systems—with their
nested levels of organization and regulation—finds a parallel in
emerging approaches to multi-scale artificial intelligence. Recent
advances in hierarchical reinforcement learning and multi-agent
systems demonstrate how collective intelligence can emerge from
interactions between simpler agents operating at different scales
(Domingo-Fernández et al., 2022).

When designed with appropriate structural coupling between
levels, these systems can develop emergent goals and coordination
patterns reminiscent of biological collectives (Levin et al.,
2023). This multi-scale approach potentially addresses the causal
attribution gap identified in Section 4.3 by enabling both bottom-
up and top-down causation across different levels of organization.
This is consistent with evolutionary proposals that focus not only
on individual but group selection and cooperation mechanisms,
that have been proven useful in biology and culture (Wilson, 1975;
Foster et al., 2017; Wilson et al., 2023), and being recently adopted
as an alternative foundational paradigm in economics (Wilson and
Snower, 2024).

6 Discussion

We examined the fundamental differences between autopoietic
systems (biological organisms) and machine learning systems
(MLSs), focusing on how their different natures affect causal
cognition. We proposed that goals serve as a crucial pivot point for
comparing these systems and explored potential convergence paths
toward autopoietic systems that can integrate with MLS to embody
“aitiopoietic cognition.”

Our analysis proceeded by first establishing the apparent
functional similarity but fundamental structural difference
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TABLE 4 Comparative analysis of autopoietic systems and machine

learning systems across operational, substrate, and epistemological

dimensions.

Dimension Autopoietic
systems

Machine learning
systems

Goal formation
(operational)

Emergent from closure
and self-maintenance
imperatives

Externally imposed by
designers

Causality
implementation
(operational)

Feedback-driven: within
internal state via
structural coupling

Statistical correlations
and pattern recognition in
data distributions

Physical
embodiment of
information
(substrate)

Material substrate
dynamically
encode-decode
information achieving
computation through
autopoietic processes

Static mapping between a
specific physical part in
charge of information
states and other
independent part in
charge processing

Improvement
process (substrate)

Physical reorganization
across multiple scales
enables enhanced control
capabilities

Abstract parameter
adjustment while
maintaining fixed
material architecture

Energy-cognition
coupling (substrate)

Thermodynamic
processes directly linked
to cognitive enhancement
and self-maintenance

Thermodynamic
disconnect between
energy expenditure and
causal improvement

Causal knowledge
source
(epistemological)

Constitutional causality
arising from material
self-organization and
boundary maintenance

Statistical inference from
training data patterns and
correlational structures

Causal attribution
(epistemological)

Grounded in existential
imperatives and viability
conditions of the system
itself

Based on computational
optimization of externally
defined loss functions

Learning
foundation
(epistemological)

Sense-making through
autonomous
environmental coupling
and meaning generation

Information processing
through
supervised/unsupervised
pattern extraction

between humans and MLSs cognition. We then examined
autopoietic systems in depth, highlighting their self-organizing
nature, emergent goals, and multi-level organization. Next,
we analyzed how MLSs implement causal reasoning through
statistical inference and optimization with externally imposed
goals. This comparative framework allowed us to identify key
differences in causal reasoning between these systems across
three crucial dimensions: the operationalization of goals and
causality, material embodiment and improvement mechanisms,
and the epistemological foundations of causal attribution. Table 4
summarizes these fundamental operational, substrate, and
epistemological differences, providing a concrete framework for
understanding the evolutionary divide between biological and
machine-learned causal systems.

The differences illustrated in Table 4 reveal profound
implications for how we understand and develop artificial
intelligence. Autopoietic systems exhibit recursive, self-referential
causality rooted in their operational closure, with goals emergent
from self-maintenance imperatives. Their causal reasoning
improves through physical reorganization enabling multi-
scale control, with material embodiment directly participating
in cognition. In contrast, MLSs operate through extrinsic
optimization and statistical correlations, with their physical

TABLE 5 Convergence pathways between autopoietic and ML systems.

Convergence
pathway

Addresses
key gap

Current
limitations

Exemplar
research

Evolutionary
algorithms

Goal
formation

Limited
material
impact

MAP-Elites
(Mouret and
Clune, 2015)

Material
intelligence

Physical
embodiment

Lacks self-
maintenance

Soft robotics
(Laschi and
Cianchetti, 2014)

Homeostatic
regulation

Causal
grounding

Primarily
computational

Neural
homeostasis
(Lechner et al.,
2021)

Multi-scale
integration

Causal
attribution

Limited
embodiment

Multi-agent
systems (Levin
et al., 2023)

substrate remaining static while abstract parameters adjust—
creating a thermodynamic disconnect between energy expenditure
and causal improvement.

Our analysis suggest the need for integrating both cognitive
architectures, including ML and autopoietic and perhaps others,
with philosophical questions about causality and agency. Recent
striking examples, reviewed in section “From Autopoiesis to
Aitiopoiesis,” demonstrate how these philosophical concepts
find concrete expression in biological examples. Xenobots
and organoids illustrate how collective behavior can emerge
from cellular self-organization without external programming,
suggesting that aitiopoietic properties can scale naturally
from autopoietic foundations when appropriate organizational
architectures emerge (Kriegman et al., 2020; Davies and Levin,
2023).

Therefore, the aitiopoietic cognition research program
should proceed through four complementary tracks: (1) minimal
aitiopoietic systems—engineering simple chemical/cellular systems
that exhibit constitutional causality using synthetic biology
techniques. For example, sensitivity and robustness of specific
components might unveil causal-like behavior (Shinar et al., 2009);
(2) measurement frameworks for characterizing aitiopoiesis—
operationalizing goal-directedness by compatibilizing matter
and information processing interplays. The latter requires an
integration of notions from dynamical systems theory related to
autopoiesis such as homeostatic recovery times, attractor basin and
viability analysis, with information theoretical metrics explaining
how the information of a system is processed in relation to its
existence as a collective (Friston, 2010; Kolchinsky and Wolpert,
2018; Rosas et al., 2020); (3) scaling constitutional cognition—
understanding how aitiopoietic properties emerge in a collective
through multi-scale modeling approaches (Szathmáry, 2015);
and (4) Hybrid Bio-Synthetic architectures—combining living
materials with artificial substrates to achieve increasingly complex
goal-directed behavior (Witkowski et al., 2023; Fields and Levin,
2022).

However, current convergence pathways face significant
limitations: evolutionary algorithms encounter computational
intractability in open-ended settings, material intelligence lacks
genuine self-maintenance capabilities, homeostatic approaches
remain primarily computational rather than constitutional,
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and multi-scale integration struggles with embodiment
challenges. These represent current research frontiers rather
than insurmountable barriers, suggesting that breakthrough
progress will require novel approaches that transcend these
individual pathway limitations. These convergence challenges are
summarized in Table 5.

7 Conclusion

The future of artificial intelligence may lie in systems that
are neither fully machine nor fully living, but that bridge this
evolutionary divide through novel forms of embodied, self-
maintaining cognition. From here, we suggest that a research
program aiming to reach “aitiopoietic cognition” should be
developed. This ambitious research program convergence pathway
involves the development of synthetic systems that exhibit genuine
autopoietic properties—self-creation, self-maintenance, and self-
boundary definition within their simulation domains. Research in
synthetic biology and artificial life aims to create minimal chemical
systems that display these properties (Luisi, 2003; Stano et al., 2023).

The realization of this research program will require studying
metasystem transitions (Heylighen, 1995) and major evolutionary
transitions (Szathmáry, 2015) in open-ended evolutionary
settings. Metasystem transitions represent moments when systems
develop new levels of control and coordination, fundamentally
transforming their problem spaces (Witkowski et al., 2023) and
enabling novel forms of causal reasoning. By creating artificial
environments where such transitions can emerge naturally, we
may navigate problem spaces with increasingly sophisticated
“care-cones” (Witkowski et al., 2023)—expanding the spatial and
temporal horizons over which they can exercise meaningful causal
influence based on intrinsic rather than externally imposed goals
(Deacon, 2011). This expansion of the care-cone would represent
a crucial step toward artificial systems that can adapt to complex,
open-ended environments through genuine understanding rather
than mere statistical optimization (Seth, 2021). As Fields and
Levin (2022) have argued, such systems would demonstrate
competence across multiple domains through intrinsically
motivated exploration and materially grounded causal reasoning
(Walsh, 2015), potentially transforming our understanding of both
biological and artificial intelligence.

This ambitious synthesis suggests a new understanding of
cognition and agency that might bring us closer to resolving
the mind-body problem, not through theoretical abstraction, but
through the concrete development of systems that embody both
material self-maintenance and sophisticated causal understanding.

The development of artificial entities with genuine intrinsic
goals and materially grounded causal understanding raises
fundamental ethical considerations that must be systematically
addressed within this research program. To maintain analytical
rigor within current scientific understanding, this discussion
focuses on early-stage developmental issues rather than interesting
but more speculative scenarios, which have been explored
elsewhere (Kurzweil, 2005; Aerts and Arguëlles, 2022; Vidal, 2024).
The proposed research program emphasizes minimal systems
with constrained operational scope, necessitating the establishment

of comprehensive safety protocols for self-modifying systems,
ensuring beneficial alignment of early aitiopoietic prototypes that
prioritize incremental progress with systematic monitoring of
emergent capabilities.

A particularly significant ethical consideration involves
understanding the fundamental material-informational dynamics
underlying experiential states in general systems—an investigation
that must remain central throughout the development of this
research program (Witkowski et al., 2023). Given that aitiopoietic
systems represent partially autonomous entities with potential
experiential capacities, ethical protocols require continuous
revision in accordance with evolving scientific understanding of
agency, sentience, and consciousness, in artificial systems. This
iterative ethical framework becomes essential precisely because the
research program’s object of study may possess forms of experience
or proto-sentience that demand careful moral consideration as
these systems develop greater autonomy and complexity.

This ambitious synthesis suggests a new understanding of
cognition and agency that might bring us closer to resolving the
mind-body problem, not through theoretical abstraction, but
through the concrete development of systems that embody both
material self-maintenance and sophisticated causal understanding.
By developing artificial entities with truly intrinsic goals and
materially grounded causal understanding, we may finally
bridge the evolutionary divide between life and machine while
maintaining commitment to careful, ethically-guided progress.
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